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ABSTRACT

Microbiome is an essential omics layer to elucidate
disease pathophysiology. However, we face a chal-
lenge of low reproducibility in microbiome studies,
partly due to a lack of standard analytical pipelines.
Here, we developed OMARU (Omnibus metagenome-
wide association study with robustness), a new
end-to-end analysis workflow that covers a wide
range of microbiome analysis from phylogenetic and
functional profiling to case–control metagenome-
wide association studies (MWAS). OMARU rigor-
ously controls the statistical significance of the anal-
ysis results, including correction of hidden con-
founding factors and application of multiple test-
ing comparisons. Furthermore, OMARU can eval-
uate pathway-level links between the metagenome
and the germline genome-wide association study
(i.e. MWAS-GWAS pathway interaction), as well as
links between taxa and genes in the metagenome.
OMARU is publicly available (https://github.com/
toshi-kishikawa/OMARU), with a flexible workflow
that can be customized by users. We applied OMARU
to publicly available type 2 diabetes (T2D) and
schizophrenia (SCZ) metagenomic data (n = 171
and 344, respectively), identifying disease biomark-
ers through comprehensive, multilateral, and unbi-
ased case–control comparisons of metagenome (e.g.
increased Streptococcus vestibularis in SCZ and
disrupted diversity in T2D). OMARU improves ac-
cessibility and reproducibility in the microbiome re-

search community. Robust and multifaceted results
of OMARU reflect the dynamics of the microbiome
authentically relevant to disease pathophysiology.

GRAPHICAL ABSTRACT

INTRODUCTION

Microbiome is one of the major research areas in human
diseases towards implementation of personalized medicine
based on multi-layer omics data. Recent interests are on
multidimensional integration of metagenome data with
other omics layers such as host genome and metabolome,
as well as deep analysis within the single metagenomic
layer (1,2). Analytical approaches of microbiome are shift-
ing from amplicon sequencing of 16S ribosomal RNA genes
to whole-genome shotgun sequencing. However, we face a
challenge of low reproducibility in findings of microbiome
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studies. Differences in physiological variables and lifestyles
of the samples also have been reported as a factor yielding
this problem (1,3). In addition, we still lack a gold standard
analytical pipeline which can overcome the problem of low
reproducibility (3,4).

Here, we introduce OMARU (Omnibus metagenome-
wide association study [MWAS] with robustness), a new
end-to-end metagenome analysis workflow (Figure 1).
Through implementation of rigorous quality control (QC)
of shotgun sequence reads, samples, clades, and genes,
OMARU constructs phylogenetic and functional profiling
of the metagenome, the two main analytical pipelines. Three
major components of the case–control association tests
of MWAS (i.e. phylogenetic, gene, and biological pathway
analyses) are subsequently conducted with rigorous han-
dling of false positives in statistical analysis (5–7). In ad-
dition to solving the low reproducibility of metagenomic
study, OMARU provides integrative analyses. As an ex-
ample, OMARU can evaluate pathway-level links between
the metagenome and the germline genome-wide associa-
tion studies (GWAS) of the host genome. Furthermore,
OMARU identifies the links between taxa and genes in the
metagenome utilizing the results of phylogenetic and gene
analyses. OMARU also visualizes attractive figures which
enable comprehensive summary of the association test re-
sults. The referenced databases, which substantially affect
the analytic results, is currently being rapidly expanded
(8,9). OMARU is a flexible and extensible workflow that can
be customized, such as adding an up-to-date database.

MATERIALS AND METHODS

Quality control

OMARU handles the shotgun sequencing data in the
FASTQ format as input (currently, 16S rRNA data is not
supported). QC of the sequencing reads is applied to maxi-
mize the quality of datasets as follows: (i) trimming of low-
quality bases using Trimmomatic (10), (ii) identification and
masking of human reads using bowtie2 (11) and BMTagger
(12) and (iii) removal of duplicated reads using PRINSEQ-
lite (13). As for QC of samples, there exist three factors
for selecting samples to be excluded as follows; (i) overall
quality of sequencing reads, (ii) status of phylogenetic abun-
dance and mapping rates, (iii) status of contigs and open
reading frames (ORFs) in assembly-based approach and
mapping rates in mapping-based approach, and (iv) prin-
cipal component analyses (PCA) in the phylogenetic data
and gene abundance data. OMARU sequentially outputs
graphical figures and tables representing statistical matrixes
of each procedure, helping users select samples to be ex-
cluded at each step (Figures 1 and 2A). Clades and genes
detected in less than the pre-defined threshold of the sam-
ples (e.g. 20%), or in no sample in either cases or controls,
are removed. Besides, clades with an average relative abun-
dance less than the pre-defined threshold of total abundance
are removed (default: 0.001%).

Case-control association test for phylogenetic data

OMARU adopts a mapping-based approach to utilize the
advantages of paired-end reads and reduce mapping errors.
Users can flexibly customize the reference data in a FASTA

format to the appropriate one: Default is modified DNA
sequences of the Unified Human Gastrointestinal Genome
(8). After read-mapping using bowtie2 (11), relative abun-
dance of each clade is quantified for each sample up to the
six taxonomic levels (L2: phyla, L3: classes, L4: orders, L5:
families, L6: genera and L7: species). Subsequently, the rel-
ative abundance profiles are normalized using log transfor-
mation. Case-control association tests are performed using
the lm function implemented in the R statistical software.
Users can incorporate covariates for adjustment, such as sex
and age. OMARU generally requires a sufficient number of
principal components as covariates to robustly adjust the
effect of hidden confounding factors and suppress P-value
inflation (Figure 2B).

Empirical null distributions of the minimum P-values
(= Pmin) are calculated based on a phenotype permutation
procedure (× 10,000 iterations) to control the type I error
rates (14). The empirical Bonferroni significance threshold
is defined at a significance level of 0.05, as the 95th per-
centile of Pmin (= Psig). The 95% confidence interval for
Pmin is calculated by a bootstrapping method of the Harrell-
Davis distribution-free quantile estimator (Figure 2C). In
addition to the standard figures to visualize distribution of
statistics such as quantile-quantile and volcano plots (Sup-
plementary Figure S1), OMARU illustrates a phylogenetic
tree indicating the case–control association results of mul-
tilayered taxonomic levels (Figure 2D).

Case–control association test for functional data (gene and
pathways)

Gene abundance data of metagenome are constructed by
the assembly-based approach as follows; (i) de novo assem-
bly of the sequencing reads into contigs using MEGAHIT
(15), (ii) prediction of open reading frames (ORFs) on the
contigs with Prokka (16), (iii) alignment of ORF against
an appropriate database (default: UniRef90 (17)) with DI-
AMOND (18) and (iv) quantification of gene abundance by
mapping the sequencing reads to the assembled contigs us-
ing bowtie2 (11). Normalization of gene abundance is con-
ducted by the two steps. First, the ORF abundance is de-
fined as the depth of each ORF’s region of the ORF catalog
according to the mapping result to avoid the bias of the gene
lengths. Second, the gene abundance is adjusted by the sum
of the ORF abundance for each sample to correct poten-
tial bias of heterogeneity in the total amount of sequence
reads among the samples. Next, a rank-based inverse nor-
mal transformation is applied to correct the heterogeneity
of each gene’s abundance and distribution. Association tests
are in the same way as phylogenetic analysis, including co-
variates and empirical threshold (Figure 3A).

As for the pathway analysis, OMARU adopts a gene set
enrichment analysis using the ranking of the genes by z-
values in case–control gene association tests. The pathway
database could be flexibly customized (Default is Gene On-
tology (19)).

Links between the microbe MWAS and the germline GWAS
of host

OMARU identifies disease-specific biological pathway links
between the microbe MWAS and the germline GWAS of
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Figure 1. OMARU workflow and details as bioinformatics pipelines for the metagenome-wide association study. OMARU workflow. Using shotgun
sequencing data, metagenome-wide association studies (phylogenetic, gene and pathway analyses) and additional analyses are performed, including com-
paring pathway analyses between genome-wide association studies (GWAS) and metagenome-wide association study (MWAS).

host (5–7). The result of pathway analysis using summary
statistics of GWAS for the target disease is required as in-
put. OMARU evaluates the overlap between the MWAS
and GWAS in the pathway enrichment by Fisher’s exact
test, based on the classification of pathways with P-value
threshold of 0.05 (Figure 3C).

Links between taxa and genes in the metagenome

Organisms of origin for each gene are an important factor
to understand microbiome biology. While gene databases
such as Kyoto Encyclopedia of Genes and Genomes
(KEGG) (20) and UniProt(21) collect organisms of origin,
such information are based on the specific link between the
registered gene and organisms, and may not reflect the real
link in the target metagenomic sample. By tracing back to
the level of sequencing reads, OMARU can directly estimate
organisms of the origin for each gene in the target data (Fig-
ure 3B, Supplementary Figure S2).

Case-control difference between �-diversity and �-diversity
of the metagenome

For calculating diversities, all samples should be down-
sampled at the appropriate same number of reads. OMARU
calculates �-diversity (within-sample diversity) as a Shan-
non index based on the gene abundance and the six lev-
els of phylogenetic relative abundance (L2–L7) for each

sample. Case–control comparison are performed with pre-
defined covariates and the effect size of disease state is
evaluated. To evaluate �-diversity, multidimensional scaling
(MDS) on the Bray-Curtis dissimilarity is used. For evalu-
ating case–control differences in the dissimilarity, OMARU
performs permutational multivariate analysis of variance
(PERMANOVA) (22) using the adonis() function in R
package vegan.

RESULTS

We adopted the two public fecal metagenomic data of
schizophrenia (SCZ; 90 SCZ patients and 81 healthy con-
trols) and type 2 diabetes (T2D; 170 T2D patients and 174
healthy controls) for a practical example of operation of
OMARU (23,24).

In sample QC of the SCZ data, we excluded one SCZ
sample that had singleton genes beyond four standard de-
viations and was an outlier of both phylogenetic and gene
abundance data (Figure 2A). We used a phylogenetic ref-
erence, which was constructed by integrating those regis-
tered by Nishijima et al. (25) and those newly identified
from the human gut bacteria projects (9,26,27), as previ-
ously described (5,6). We had 692 clades for the SCZ case–
control association test, including 10 phyla (L2), 23 classes
(L3), 34 orders (L4), 69 families (L5), 156 genera (L6) and
400 species (L7). We adopted sex, age, body mass index
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Figure 2. MWAS results of QC and phylogenetic analysis. (A) Principal component analysis (PCA) in phylogenetic and gene abundance of the schizophre-
nia (SCZ) data. The green dots represent the excluded sample as a result of quality control. (B) Quantile-quantile plots of the phylogenetic MWAS P-values
of the clades in the SCZ data. The x-axis indicates log-transformed empirically estimated median P. The y-axis indicates observed –log10(P). The diagonal
dashed line represents y = x, which corresponds to the null hypothesis. The left and right figures show the results of including 0 principal component (PC)
and 30 PCs as covariates, respectively, which indicates that PCs suppress the inflation of P-values. (C) A histogram of minimum P-values in the phenotype
permutation procedure in the SCZ data. Vertical lines of red and purple indicate an empirical Bonferroni significance threshold at a significance level of
0.05 and a standard Bonferroni significance threshold in multiple comparison procedure (0.05/692 = 7.23 × 10–5), respectively. (D) A phylogenetic tree.
Levels L2–L7 are from the inside layer to the outside layer in the SCZ data. The size and the color of the dots represent relative abundance and effect sizes,
respectively. The three clades with significant case–control associations (false discovery rate < 0.05) are outlined in red.
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Figure 3. MWAS results of functional analysis. (A) Results of functional association tests in schizophrenia (SCZ) and type 2 diabetes (T2D). Left figures are
quantile-quantile plots of the P-values in the gene association tests. The x-axes indicate empirically estimated median -log10(P). The y-axes indicate observed
-log10(P). The diagonal grey lines represent y = x, which correspond to the null hypothesis. The horizontal red lines indicate the empirical Bonferroni-
corrected threshold (α = 0.05), and the brown line indicates the empirically estimated FDR threshold (FDR = 0.05). Center figures are volcano plots.
The x-axes indicate effect sizes in linear regression. The y-axes, horizontal lines, and dot colors are the same as in the left quantile-quantile plots. Right
figures are quantile-quantile plots of the P-values in the pathway association tests. Genes and pathways with P-values less than the Bonferroni threshold
are plotted as red dots. Genes and pathways with FDR less than 0.05 are plotted as brown dots, and others are plotted as black dots. FDR; false discovery
rate. (B) Links in the metagenome data between taxa and Vpar 1847, one of the schizophrenia-associated genes. Stacked bar graphs indicate the species
of origin for each gene and their percentage, divided into cases and controls. The parentheses in each title represent the organism registered as the origin
of the genes in the database. (C) Comparison of P-values of GO analyses between the SCZ MWAS and GWAS data. The x-axis indicates the P-value in
the SCZ GWAS data. The y-axis indicates the P-value in the SCZ MWAS data. The horizontal and vertical black lines indicate P of 0.05. The overlap of
the GO enrichment was evaluated by classifying the GO terms based on the significance threshold of P < 0.05 or P ≥ 0.05 and using Fisher’s exact test.
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(BMI) and the top 30 principal components as covariates. In
multiple test correction, empirically estimated Bonferroni
threshold was lower than the standard Bonferroni threshold
(Figure 2C). It could reflect that microbiome composition
within an individual was not independent between clades.
We identified the three clades significantly increased in SCZ
(FDR < 0.05; Figure 2D, Supplementary Figure S3, Sup-
plementary Table S1). We had 789 clades for the T2D case–
control association test and identified no clades with signif-
icant association. In both diseases, the numbers of disease-
associated clades were considerably lower than those in
the reference papers and other metagenome studies(23,24).
Correction of hidden confounding factors mainly led to this
result. The quantile-quantile plots of P-values in the SCZ
data showed that the analysis without adopting no PCs as
covariates demonstrated severe inflation of P-values and a
large number of false positives (Figure 2B). Streptococcus
vestibularis, one of the three SCZ-associated clades identi-
fied by OMARU, was reported to induce deficits in social
behavior and alter neurotransmitter levels in peripheral tis-
sues in recipient mice(23). Thus, OMARU is featured by its
ability to specify robustly disease-associated clades by opti-
mally adjusting confounding factors.

We selected KEGG database (20) as references of gene
and biological pathway. After gene-level QC, we retained
185 663 and 104 487 genes for SCZ and T2D case–control
comparison, respectively. In functional association tests, we
obtained results with suppression of the inflation of P-
values by adjusting covariates in the same way as the phylo-
genetic analyses. We identified four SCZ-associated genes,
four SCZ-associated pathways, and four T2D-associated
pathways (FDR < 0.05; Figure 3A, Supplementary Table
S2 and S3). In the analysis of link between phylogenetic
and gene data, Vpar 1847, one of the four SCZ-associated
genes, was estimated to be derived from multiple Veillonella
spp. (Figure 3B, Supplementary Figure S2). These clades
were not significantly associated in our phylogenetic anal-
yses, while their increase in SCZ was highlighted in the
referenced paper (23). The cross-sectional assessment of
OMARU could suggest that this gene may be an essential
factor in the effect on the SCZ pathogenesis of Veillonella
spp.

As for the MWAS–GWAS interaction, we used PAS-
CAL with summary statistics from the SCZ GWAS (22,778
cases and 35 362 controls) (28) and the T2D GWAS (77
418 cases and 433 5440 controls) (29) in order to de-
termine GO term enrichment of the human genome. We
compared the P-values of the each GO term shared be-
tween the metagenome data and GWAS data. We found
significant overlaps between the pathways enriched in the
MWAS and GWAS (PFisher = 0.011 and 0.008 in SCZ and
T2D, respectively; Figure 3C). Our results suggested that
there was disease-specific links between human genome and
metagenome, namely MWAS- GWAS interaction, in the
pathology of SCZ and T2D.

We performed case–control comparison of �-diversity
and �-diversity in the phylogenetic data (L2–L7) and the
gene abundance data based on KEGG database. In SCZ,
no significant differences of �-diversity in the phylogenetic
data (P > 0.05/6 = 0.0083) and the gene abundance data
(P = 0.134) were observed, and neither was �-diversity

(Supplementary Table S4). In T2D, �-diversity in the tax-
onomic level of L3 and L4 (P < 8.3 × 10–3) and the gene
abundance data (P = 5.1 × 10–3) significantly increased,
while significant differences of �-diversity in the taxonomic
level of L5–L7 (P < 8.3 × 10–3) and the gene abundance
data (P < 1.0 × 10–4) were observed (Supplementary Fig-
ure S4, Supplementary Table S4).

DISCUSSION

While several bioinformatic tools for microbiome has been
developed recently (30–35), OMARU has a unique charac-
teristic as highlighted in case–control MWAS analysis us-
ing shotgun sequencing data. In contrast to several exist-
ing tools which are limited to a single part of the analysis,
such as phylogenetic or functional analysis, OMARU pro-
vides end-to-end analysis from the processing of sequencing
data, such as QC of reads and samples, to the three ma-
jor analyses and the assessment of diversities. It should be
meaningful to perform those analyses in a single pipeline
with integrative assessments of the results of each part of the
analysis, providing deep interpretation of case–control dif-
ferences in the microbiome. Further, evaluation of links be-
tween the metagenome and host genome is one of the novel
features of OMARU.

We demonstrated that OMARU yields robust and multi-
faceted results by using public metagenome data. OMARU
identified a sample in the SCZ data to be excluded. It’s quite
difficult to perform sample QC manually in metagenome
analyses and comprehensive decision based on multiple as-
sessments is required. OMARU can provide users with mul-
tifaceted data to help them make the decision. By statis-
tical processing in OMARU including reduction of false
positives, SCZ-associated clades were narrowed down to
the clade with functional support, which demonstrates the
robustness of OMARU in identifying crucial biomarkers.
While hidden confounding factors would better to be ad-
justed by integration of the covariates into a case–control
model, it is not currently implemented in OMARU and thus
considered to be one of the limitations.

In addition, integrative analyses with multifaceted eval-
uation, such as the MWAS-GWAS interaction and the
links between disease-associated genes and clades, pro-
vided a comprehensive understanding of the microbiome-
associated pathology. The metagenome of SCZ had lit-
tle difference of diversities while T2D had significant ones
compared to healthy controls. Diversity analysis provides
evidence of microbiome’s role in disease pathology from
a different aspect than other analyses. We note that the
metagenome analysis is still highly dependent on reference
databases and database development is a challenge for the
future.

In conclusion, OMARU, as a well-organized and user-
friendly workflow, can improve the accessibility and repro-
ducibility of MWAS in the microbiome research commu-
nity. Robust and multifaceted results of OMARU, includ-
ing the association with the host genome, reflect the dy-
namics of the microbiome authentically relevant to disease
pathophysiology, leading to the identification of potential
biomarkers.
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DATA AVAILABILITY

OMARU is publicly available at https://github.com/toshi-
kishikawa/OMARU and can be downloaded in the format
of a Conda package.
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Supplementary Data are available at NARGAB Online.
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