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Introduction: Disease recurrence and progression of ovarian cancer is common with the development of platinum-
resistant or refractory disease. This is due in large part to the presence of chemo-resistant cancer stem cells (CSCs)
that contribute to tumor propagation, maintenance, and treatment resistance. We developed a CSCs drug cytotoxicity
assay (ChemoID) to identify the most effective chemotherapy treatment from a panel of FDA approved chemother-
apies.
Methods: Ascites and pleural fluid samples were collected under physician order from 45 consecutive patients affected
by 3rd-5th relapsed ovarian cancer. Test results from the assay were used to treat patients with the highest cell kill
drugs, taking into consideration their health status and using dose reductions, as needed. A retrospective chart review
of CT and PET scans was used to determine patients' outcomes for tumor response, time to recurrence, progression-free
survival (PFS), and overall survival (OS).
Results:We observed that recurrent ovarian cancer patients treated with high-cell kill chemotherapy agents guided by
the CSCs drug response assay had an improvement in the median PFS corresponding to 5.4 months (3rd relapse),
3.6 months (4th relapse), and 3.9 months (5th relapse) when compared to historical data. Additionally, we observed
that ovarian cancer patients identified as non-responders by the CSC drug response assay had 30 times the hazard of
death compared to those women that were identified as responders with respective median survivals of 6 months vs.
13months.We also found that ChemoID treated patients on average had an incremental cost-effectiveness ratio (ICER)
between -$18,421 and $7,241 per life-year saved (LYS).
Conclusions: This study demonstrated improved PFS and OS for recurrent ovarian cancer patients treated with assay-
guided chemotherapies while decreasing the cost of treatment.
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Introduction

Cytoreductive surgery followed by platinum-based chemotherapy are
standard of care for new cases of epithelial ovarian cancer (EOC) [1]. Al-
though this regimen is initially effective in a high percentage of cases,
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unfortunately, most patients relapse. This is mostly attributed to the pres-
ence of ovarian cancer stem cells (CSCs), which are chemo-resistant and re-
sponsible for the recurrence of cancer [2]. CSCs account not only for the
primary tumor growth, the peritoneal spread and relapse of ovarian cancer,
but also for the development of chemoresistance, thus having profound
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implications for the treatment of this deadly disease [3]. Indeed, CSCs ac-
count for a very small subpopulation in the primary tumor that is enriched
in recurrent disease, both because of their expansion to fuel the relapse and
because of the possible selection of drug-resistant CSCs after the first-line
treatment.Malignant ascites is common in advanced EOC, both at initial di-
agnosis and upon recurrence, and contain CSCs which can survive and pro-
liferate even under non-adherent conditions, leading to self-organized
spheroids of ovarian cancer cells that, result in peritoneal seeding [4–7].

Recurrent EOC is associated with significant mortality and a median
survival of only 12–24 months [8]. The combination of platinum drugs
with a taxane is the standard of care for systemic treatment of EOC after pri-
mary cytoreductive surgery [9]. However, this treatment results in response
rate (RR) of ~70% in patients with suboptimally debulked disease, and of
~80% in patients with optimal cytoreductive surgery [10,11]. Disease re-
currence is common in these patients, and most of them eventually develop
platinum-resistant disease (defined as disease recurring within 6 months
after the last receipt of platinum-based chemotherapy) [12,13].

RRs and duration of response to second-line chemotherapy for patients
with recurrent platinum-resistant disease are significantly lower than those
with platinum-sensitive disease. In women with platinum-resistant disease,
RRs range from 10%–15%, and duration of response is typically
<6months, with PFS (3–4 months), and OS (~12 months) to chemothera-
peutic agents such as pegylated liposomal doxorubicin (PLD), topotecan,
taxanes, etoposide, and gemcitabine [14]. In comparison, the RRs are usu-
ally >30% and/or duration of response >8 months in women with
platinum-sensitive disease [15,16].

While treatment guidelines for the primary occurrence of advanced
stage EOC recommend numerous platinum-based combination therapies,
an even greater number of treatment regimens are recommended for recur-
rent disease. Nearly 10 different platinum-based therapies are recom-
mended for treatment of patients experiencing recurrence following
>6 months from first-line treatment (platinum-sensitive recurrent disease),
and over 20 different therapies (mostly single agents) for treatment of pa-
tients experiencing recurrence within 6 months following first-line treat-
ment (platinum-resistant recurrent disease) [17], with little to no
guidance on how to select among the treatment options. Thus, in the ab-
sence of specific directives beyond the primary setting, treatment choices
for recurrent EOC patients are made empirically [18]. Regimens to treat re-
current EOC are normally informed by responses to first-line therapies and
vary significantly; therefore, choice of which agent to use is usually based
on toxicity profile, the previous toxicities experienced by the patient, and
patient preference. Several clinical trials, many supported by the National
Cancer Institute's consortium the Gynecologic Oncology Group (GOG),
have investigated chemotherapy drugs, regimens, and reductive surgery
methods in search of effective strategies to prevent EOC recurrence. Re-
cently, the AURELIA, OCEANS, and GOG-0213 phase-3 randomized trials
have assessed combination therapy with a targeted agent such as
bevacizumab for recurrent platinum-resistant and –sensitive ovarian cancer
[19–23] and found that in patients receiving bevacizumab/chemotherapy,
the primary endpoint of PFS was significantly prolonged (6.8 months ver-
sus 3.4 months, hazard ratio (HR) 0.48, 95% confidence interval (CI)
0.38–0.60, p < 0.001) compared to patients treated with chemotherapy
alone. In these studies, the median overall survival was 16.6 months for
the bevacizumab/chemotherapy combination versus 13.3 months for che-
motherapy alone; however, the difference was not statistically significant
(HR 0.85, 95% CI, 0.66–1.08, p < 0.174).

Nonetheless, none of these trials have addressed or explored the idea of
reducing the burden of cancer stem cells in recurrent EOC to enable a
greater and more durable response to therapy. Despite results demonstrat-
ing treatment advances, regimens for platinum-resistant recurrent EOC are
unfortunately not curative. Thus, there is an urgent need for the develop-
ment of alternative strategies given the poor response of platinum-
resistant recurrent ovarian epithelial malignant disease.

Individual patient responses to standardized treatments vary signifi-
cantly. Oncologists point to patient race/ethnicity, age, and co-
morbidities, as well as nuances in how EOC lesions are graded as challenges
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to standardization [24]. Toxicity profiles are extensive for most chemother-
apy drugs with no guarantee of success at the patient level. As such, there is
an urgent need for ways to tailor chemotherapy regimens to patients based
on their individual tumor characteristics.

We have developed a cytotoxicity assay (ChemoID), a CLIA (Clinical
Laboratory Improvement Amendments) and CAP (College of American Pa-
thologists) certified test, performed by an independent Hospital Pathology
laboratory to help physicians' select appropriate chemotherapies for indi-
vidual patients based on the cytotoxicity profile of CSCs and bulk of
tumor cells response to FDA approved chemotherapies.

The drug response assay measures the effect of clinical doses of
standard-of-care chemotherapies on CSCs and bulk of tumor cells with a
prioritized list of effective and ineffective chemotherapies. The goal of the
assay is to find the most efficacious agents that would reduce CSC-burden
in ovarian cancer, thereby limiting metastatic and recurrent disease poten-
tial to help improve outcomes and to reduce health care costs. Previous eco-
nomic analyses showed cost savings in cohorts of patients treated with
therapies guided by a cytotoxic assay [25,26], thuswarranting an economic
analysis of the ChemoID assay based on patient clinical outcomes.

We report here for the first time the clinical benefit we observed from
the chart review of a cohort of consecutive recurrent ovarian cancer pa-
tients who were treated using the ChemoID drug response assay. The cur-
rent analysis sought also to investigate the relative cost-effectiveness of
assay-guided treatment regimen relative to the assay-uninformed, empiric
standard of care, assuming the payer's perspective. Additionally, the sur-
vival analysis of the patients treated with assay-guided regimens was used
to inform the power analysis calculations for randomized multi-
institutional clinical trials that are currently being conducted in the USA.

Material and methods

Patients

We have retrospectively reviewed the charts of 45 consecutive female
18 years and older, clinically diagnosed with poor-prognosis recurrent
EOC (3rd–5th relapse), who were prospectively treated with the highest
cell kill drugs as identified by the ChemoID drug response assay, according
to their overall functional status and ability to tolerate the recommended
treatment and using dose reductions, as needed. Sample collections were
acquired from standard-of-care therapeutic paracentesis, or thoracentesis
to manage their symptoms after obtaining patients' written informed con-
sent under the ethical standards of the Helsinki Declaration (1964,
amended most recently in 2008) of the World Medical Association. Any in-
formation, including radiological imaging, was blinded. Marshall Univer-
sity Institutional Review Board (IRB) has approved this research under
protocol #326290. Participants provided their written consent on an IRB
approved informed consent form to participate in this study after being ed-
ucated about the research protocol. Ethics committees at Marshall Univer-
sity approved the consent procedure of the study. Fresh fluid collections
were sent to the Pathology lab for confirmation of diagnosis and a portion
of the biopsy specimen was sent for ChemoID drug response assay by phy-
sician order. Radiological datawere collected at baseline before tofluid col-
lection and after chemotherapy with a computed tomography (CT) scan
and/or positron emission tomography (PET) with follow-up every 2–-
3 months. Repeated measures of drug response were not obtained, and
therefore each woman's data appears once. Supportive care was allowed
at the discretion of the treating physician. Response to treatment was
assessed by radiologic examination (CT scan as the primary imaging
method) and measurements using the RECIST 1.1 criteria.

ChemoID assay

Details regarding the CSCs cytotoxicity assay (ChemoID) procedure
have been described elsewhere [27–33]. In brief, primary cancer cell cul-
tures were initiated frommalignant cells present in the ascites or pleural as-
pirates. CSCs were enriched from the primary cancer cell cultures (bulk of
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tumor cells) as described previously [27–33] using a novel cell culture bio-
reactor with a membrane that allows for gas exchange. Cells were counted
and a range of 1×106–1×107 cells were cultured for 7–10 days. The cells
were maintained in RPMI 1640 medium in the rotating vessel at 25 rpm
with airflow constantly set at 20%, 5% CO2 at 37 °C. Cells were removed
and their viability and cell number were confirmed. The cells were also in-
cubated with florescent antibodies for phenotypic characterization.

For the ChemoID assay, the bulk of tumor cells and CSCs were counted
using trypan blue exclusion to determine cellular viability and cell number
before chemosensitivity testing. Percent of cell survival was assessed using
an MTT assay on 1 × 103 cells plated in 5 replicas into 96-well plates. An
equal number of the bulk of tumor cells and CSCs were seeded in 96-well
dishes and incubated at 37 °C for 24-h. Three concentrations of each che-
motherapy treatment were prepared (dose 1: clinically equivalent dose to
serum CMax reported after 1 h from an infusion of a drug; dose 2: a double
dose of serum CMax; dose 3: 1/2 dose of serum CMax).

Clinical grade chemotherapy drugs were used in the assay provided by
the Hospital Pharmacy. The in vitro concentration equivalent to clinical
dose was calculated taking into account the molecular weight (MW) of
the drug, the average body surface area of female individuals, and the
stockmolarity concentration of the clinical grade drugs. Each concentration
was added tofive replicatewells on themicrotiter plate. Additionally, three
replicatewells (control 1=no treatment) and three replicatewells (control
2 = equal amount of solvent) were associated with each treatment. Only
clinically equivalent dose to serum CMax is reported by the clinical lab as
per CLIA laboratory guidelines for testing. The cells were challenged for a
1-h pulse with the panel of anticancer drugs (Table 1). MTT assay was per-
formed 48-h following chemotherapy treatment to assess cell survival as
previously described [27,28,30,32–34]. Inhibition of bulk of tumor cells
and CSCs survival was measured for each concentration (average counts
in five replicates ± SE) of a given treatment (15–18 different treatments
per patient). Survival of tumor cells at each concentration was calculated
as compared to control-2 and overall percent of the bulk of tumor cells
and CSCs killedwere calculated for each treatment as the primarymeasures
of potential therapy efficacy.
Table 1
List of single and combined chemotherapeutic agents used to treat recurrent epithe-
lial ovarian carcinoma.

Regimen# Single or combination drug(s) clinical dose tested

1 Liposomal Doxorubicin (30 or 60 mg/m2)
2 Docetaxel (75 mg/m2)
3 Paclitaxel (80 or 175 mg/m2)
4 Carboplatin (400 mg/m2)
5 Cisplatin (60 or 100 mg/m2)
6 Gemcitabine (800 or 1000 mg/m2)
7 Topotecan (1.25 mg/m2)
8 Etoposide (100 mg/m2)
9 Oxaliplatin (85 mg/m2)
10 Vinorelbine (30 mg/m2)
11 Vinblastine (3.75 mg/m2)
12 Carboplatin (400 mg/m2) +

Gemcitabine (800 or 1000 mg/m2)
13 Cisplatin (50 mg/m2) +

Gemcitabine (800 or 1000 mg/m2)
14 Carboplatin (400 mg/m2) +

Liposomal Doxorubicin (30 mg/m2)
15 Carboplatin (400 mg/m2) +

Paclitaxel (175 mg/m2)
16 Carboplatin (400 mg/m2) +

Docetaxel (75 mg/m2)
17 Gemcitabine (1000 mg/m2) +

Paclitaxel (80 or 175 mg/m2)
18 Gemcitabine (1000 mg/m2) +

Docetaxel (75 mg/m2)
19 Paclitaxel (175 mg/m2) +

Cisplatin (80 mg/m2)
20 Etoposide (100 mg/m2) +

Cisplatin (80 mg/m2)
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Transplantation assay in immunodeficient animals

Female nu/nu mice (nude; Jackson Labs) were used for in vivo
transplantation studies. Prepared cell suspensions were injected intra-
peritoneally using 1 mL syringes with a 25 G needle into 8-week-old
mice (n = 6 or 10). Tumors were assessed by necroscopy and sizes
were recorded by measuring the length and width of the tumors in
two dimensions using a caliper. The tumor volume (TV) was calcu-
lated using the formula volume = 1/2 × length (mm) × (width
[mm])2. Engraftment was determined according to progressive nodule
growth at the injection site. The tumorigenicity of ovarian cancer cells
was evaluated by measuring tumor-forming capacity following im-
plantation of 1 × 101, 1 × 102, 1 × 103, and 1 × 104, 1 × 105, and
1 × 106 cells in the abdomen the nude mice. Tumor initiating proper-
ties of cultured CSCs were verified by injecting them in limited dilu-
tion in nude mice and observing after 30 days their tumor formation
capacity at necropsy. Fig. 1 illustrates the tumor-forming capacity of
1 × 102 ovarian CSCs enriched with the ChemoID culture method
compared to an equal number of CSCs sorted by a column (Milteny
Biotech, Auburn, CA) using a specific antibody following intraperito-
neal injection in nude mice, compared to 1 × 106 bulk ovarian cancer
cells derived from a patient of our cohort. Column sorted and enriched
CSCs were also phenotypically characterized by flow cytometry using
fluorescent antibodies as previously described [27]. In brief, cells
were analyzed by the antigenic criteria using anti-CD44 (BD Biosci-
ence, Sparks, MD), -CD117 (Milteny Biotech, Auburn, CA), and
-CD133/2 (prominin1) (Milteny Biotech, Auburn, CA). Briefly, cells
were detached using 0.02% EDTA in PBS and pelleted (10 min at
1000 rpm), washed in 0.1% BSA in 1× PBS at 4C, and incubated in a
solution of 1 mg antibody + 9 mL 0.1% BSA in 1× PBS. Cells were
washed in the same solution once and were analyzed using a C6 Accuri
flow cytometer (BD Biosciences, San Jose, CA).

Statistical analysis

Two different responder categories were defined: the bulk of tumor re-
sponders were those women who received a treatment identified by the
drug response assay as 55% or above cell kill for the bulk of tumor and
CSC responders were those women who received a drug in which the test
identified as 40% or above cell kill of CSCs. These cell kill values were de-
rived from previous research and validated in this sample via Youden indi-
ces. Summary statistics were calculated where appropriate and all relevant
graphs were constructed. Sensitivity, specificity, positive predictive value,
and negative predictive value were calculated according to standard ap-
proaches. Kaplan-Meier graphs were constructed and hazard ratios were
calculated from Cox models adjusted for the number of relapses and age.
Model assumptions were graphically checked and tested via Schoenfeld re-
siduals and were found to be satisfactory. All statistical analyses were com-
pleted using Stata v15.1 (StataCorp LP, College Station, TX).

Cost calculation

The major costs associated with the treatment of recurrent EOC are the
cost of the drug response assay, cost of surgery, cost of paracentesis/
thoracentesis, cost of chemotherapy, cost of adverse events and toxicities,
and cost of end of life care. It was assumed that all our patients incurred
the same cost per surgery, paracentesis/thoracentesis, and end of life care
and treatment of toxicities; therefore, we did not include these costs in
our analysis. For our analysis, we considered only the cost of chemother-
apies. The main source for the cost data in this analysis reflects current
Medicare pricing.

Cost of chemotherapy

All patients in the current model were prospectively treated with a che-
motherapy regimen appropriate to their ovarian cancer at the time of their



Fig. 1. Limiting dilution transplantation assay in immunodeficient animals. A-C)Necroscopic examination of intraperitoneal tumor nodules observed following injections of 1
× 102 CD44, CD133, or CD117 positive ovarian CSCs, respectively. Arrows point at tumor nodules D) Necroscopic examination of intraperitoneal tumor nodules observed
following injections of 1 × 102 ChemoID enriched ovarian CSCs. Arrows point at the several tumor nodules formed. E) Necroscopic examination of intraperitoneal tumor
nodules observed following injections of 1 × 106 bulk of tumor ovarian cancer cells. Only one tumor was observed in the control bulk of tumor injected mice.
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recurrence. The costs associated with 6 cycles of each chemotherapy regi-
men, as well as the associated administration costs (in the physician office
setting), were estimated using the current Medicare physician fee schedule
for administration payments and drug pricing database for chemotherapy
agents [35,36]. Doses were calculated assuming a body surface area of
1.8 m2, serum creatinine of 0.9 mg/dL, the weight of 170 lb., the height
of 62 in., and the age of 63 years. To estimate the cost of the second-line
chemotherapy, the distribution of administered therapies in our cohort,
and the costs calculated for the historical cohort were used (Supplementary
Tables 1 and 2). Thus, the average cost of six cycles of salvage chemother-
apy in the historical cohort was estimated at $20,311 in current dollars. The
cost of the second-line chemotherapy in the assay treated cohort was esti-
mated by the average cost of all therapies in the highest category of assay
sensitivity for each patient; this cost was $20,528 in current dollars.
Cost-effectiveness and sensitivity analysis

The relative cost-effectiveness of the intervention is expressed by the in-
cremental cost-effectiveness ratio per life-year saved (ICER/LYS), which is
the ratio of the difference in the average costs per patient to the difference
in themean overall survivals. The standard threshold for a healthcare inter-
vention to be deemed cost-effective is an expenditure of between $50,000
and $100,000 per additional year of life saved [37]. Keeping the costs for
surgery, chemoresponse assay, end of life care, and adverse event treatment
constant between our cohort and historical data, the model results are af-
fected only by the cost of chemotherapies and by survival outcomes. To ac-
count for the uncertainty in the hazard ratio (HR) estimates associated with
the assay and its impact on the ICER/LYS, the range in the ICER/LYS was
estimated by 1000 bootstrap samples for the assay. Several stratified anal-
yses for the reference model are also reported. To assess the sensitivity of
the model due to the cost of chemotherapy, the scenario when the oncolo-
gist chooses the least expensive treatment within the highest category of
sensitivity for each patient in the assay consistent cohort was also
investigated.
4

Results

In vivo tumor formation by CSCs derived from primary recurrent ovarian cancer

The existence of CSCs and their ability to initiate a tumor was first dem-
onstrated by injecting in immunodeficient animal populations of CSC
marker-positive cells using a limiting dilution assay (LDA). Populations of
CSCmarker-positive cells that give rise to transplantable tumors, which his-
tologically recapitulate the cellular heterogeneity of the parental tumors
can be classified as CSCs, whereas populations of CSC marker-negative
cells with no or limited tumor-propagating activity can be excluded from
the CSC candidates [38–40]. We measured tumor forming capacity of
CSCs enriched from patients' derived ovarian cancer primary cell lines
using our culture method and compared it to that of CSCs that were column
sorted cells using specific antibodies against CD133, CD44, and CD117
using an LDA assay. The tumor-initiating properties of patient-derived pri-
mary ovarian cancer cells was evaluated by measuring at necroscopy their
tumor-forming capacity following implantation of 1×101–1×106 cells in
the abdomen the nudemice after 30 days from an injection. Fig. 1 illustrates
the tumor-forming capacity of 1 × 102 ovarian CSCs enriched with the
ChemoID culture method compared to an equal number of CSCs sorted by
a column using a specific antibody following intraperitoneal injection in
nude mice, compared to 1 × 106 bulk ovarian cancer cells derived from a
patient of our cohort.
Assay guided clinical outcomes

Fresh tissue samples were prospectively collected from forty-five con-
secutive recurrent EOC patients (3rd–5th relapse) (Table 2) from a thera-
peutic peritoneal/pleural aspiration, as per physician order. The sample
was sent to the Hospital Pathology lab for confirmation of diagnosis and,
at the same time, for the ChemoID CSC cytotoxicity assay. Patients were
treated with assay-guided chemotherapy according to their overall func-
tional status and ability to tolerate the recommended treatment.



Table 2
Patient characteristics (n = 45).

Characteristics No patients %

Age (median 60)
Range (28–77)

<50 6 (13.5)
50–59 14 (31)
60–69 19 (42)
≥70 6 (13.5)

Tumor relapse
3rd 31 (68.8)
4th 6 (13.5)
5th 8 (17.7)

ECOG
0 22 (49)
1 15 (33)
2 5 (11)
3 3 (7)

Tumor site
Ovarian 39 (87)
Peritoneal 5 (11)
Fallopian tube 1 (2)

Histology
Serous 40 (89)
Endometrioid 3 (7)
Clear cell 1 (2)
Mucinous 1 (2)
Unknown 0 (0)

Tumor grade
1 0 (0)
2 3 (7)
3 42 (93)

Stage
III 40 (89)
IV 5 (11)

Fig. 2. Quadrant diagram of the relationship between CSC assay results (%-cell kill
on the y-axis) and bulk tumor assay results (%-cell kill on the x-axis) characterized
by 6-months recurrence outcomes.
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Two years after the last patient was treated, we performed a retrospec-
tive chart review of recurrent EOC patients treated using the test results of
the ChemoID assay. The mean age of the patients was 59.4 years (SD =
9.99). The majority of the women (31) were on their 3rd relapse (69%),
while 6 (13%) were on their 4th, and 8 (18%) were on their 5th relapse.
The CSC cytotoxicity assay identified 28 (62%) women as expected re-
sponders based upon bulk tumor and 34 (76%) as expected responders
based upon CSCs test. Historical data reports that patients affected by 3rd,
4th, and 5th relapse have a median PFS of 5.6, 4.4, and 4.1 months, respec-
tively [8]. The median PFS observed in our recurrent patients treated with
sensitive drugs as indicated by the CSC cytotoxicity assay for 3rd, 4th, and
5th relapsewas 11, 8, and 8months, respectively (Table 3). This potentially
demonstrates a marked advantage of treating patients with assay-guided
therapy.

Fig. 2 illustrates the relationship between the CSC assay results (%-cell
kill on the y-axis) and bulk tumor assay results (%-cell kill on the x-axis)
characterized by recurrence outcomes at 6 month, with blue solid circles
representing treatment responders (non-recurrence at 6 months) and red
open circles representing patients with recurrence within 6 months from
treatment start. Referent lines are drawn at thresholds of 40% for CSC,
and 55% cell kill for the bulk of tumor. In the upper-right quadrant are rep-
resented patients treatedwith high-cell kill chemotherapy for both CSC and
bulk tumor assays, who were non-recurrent at 6 months. In the lower-left
quadrant are represented patients treated with low-cell kill chemotherapy
Table 3
Comparison of historical median PFS and ChemoID-guided treated poor prognosis
ovarian cancer patients.

Relapse Historical
Median PFS (months)

ChemoID
Median PFS (months)

Difference
Median PFS (months)

3rd 5.6 11.0 (8.5–12.0) 5.4
4th 4.4 8.0 (7.0-NA) 3.6
5th 4.1 8.0 (2.0-NA) 3.9
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for both CSC and bulk tumor assays, who had a recurrence in <6 months.
We chose to analyze the recurrence outcome at 6months because historical
data shows that patients affected by 3rd, 4th, and 5th relapse have amedian
PFS of <6 months [8].

The CSC test demonstrated 97% sensitivity, 77% specificity, 91% posi-
tive predictive value (PPV), and 90% negative predictive value (NPG). The
bulk test demonstrated 84% sensitivity, 92% specificity, 96% PPV, and
71% NPG for the 6-month response.

Figs. 3 and 4 show Kaplan-Meier plots of progression-free and overall
survival across the study period stratified by dichotomized test results on
bulk of tumor test or CSC test, respectively. In the CSCmodel for overall sur-
vival (Fig. 3B), the ovarian cancer patients that the test identified as non-
responders had over 30 times the hazard of death compared to those
women that were identified by the test as responders (p<0.001), with re-
spectivemedian survivals of 6months vs. 13months (p<0.001). Likewise,
in the CSC model for progression-free survival (Fig. 4B), the ovarian cancer
patients that the test identified as non-responders had over 60 times the
hazard of progression compared to those women that were identified by
the test as responders (p < 0.001), with respective median survivals of
3months vs. 9months (p<0.001).Moremodest but highly predictive haz-
ards were observed based on the bulk of tumor models. Moreover, we ob-
served that adding the bulk of tumor and CSC test response to a Cox
model containing only relapse number and age increased Harrell's C statis-
tics from 0.63 to 0.79 for overall survival and from 0.62 to 0.84 for PFS.

Fig. 5 shows the baseline CT images of an ovarian cancer patient in her
third recurrence (Fig. 5A–C), the ChemoID drug response assay results
(Fig. 5D), and the subsequent CT images (Fig. 5E–G) following treatment
with ChemoID-guided therapy. Ascites was aspirated in November 2016
and a concomitant samplewas sent to the pathology lab to confirm the pres-
ence of malignant ovarian cancer cells and to the ChemoID lab for func-
tional chemoresponse testing.

Pattern of assay response

Fig. 5 shows in the baseline CT imaging the presence of large ascites
(panel A), ovarian mass measuring 9.3 × 5.4 cm (panel B), and peritoneal
carcinomatosis measuring 3.5 × 5.1 cm (panel C). Fig. 5D shows the
ChemoID test results with several high suppression chemotherapy drugs.
Based on the patient clinical status (kidney disorder) and prior use of che-
motherapy regimens, the patient was treated with a full course of single
chemotherapy agent (Doxorubicin) that showed a high percentage of cell
kill for both Bulk of Tumor (75.2% cell kill) and CSC (66.4% cell kill) by
the ChemoID assay. Other high cell kill drugs indicated by the assay were
not administered due their known side effects (kidney toxicity) which
were contraindicated by the specific health status of the patient.



Fig. 3. Kaplan-Meier plots of overall survival across the study period. Overall survival is shown stratified by dichotomized test results for (A) bulk test >55% cell kill -
responder or <55% cell kill – non-responder and (B) CSC test >40% cell kill - responder or <40% cell kill – non-responder; Hazard ratios are from Cox proportional
hazard models adjusting for number of previous relapses and age.
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Images in February of 2017 showed a dramatic reduction of ascites
(panel E), smaller ovarianmassmeasuring 5.8×3 cm (panel F), and reduc-
tion in peritoneal carcinomatosis measuring 3.4 × 3 cm (panel G).

Assay guided cost of treatment

To better understand the health care benefit and the economical impact
of the use of the drug response assay, we compared the health benefit ob-
served and the cost of therapies used in our patients' cohort to the historical
data of patients treated empirically with chemotherapies, similarly to previ-
ously published investigations [26].

Themean cost of therapies administered to the 45 patients was $20,311
(Table 4). If the therapy with the minimum cost from the top three
ChemoID recommended therapies was administered, the average patient
would have saved $7,956/regimen. This difference was highly statistically
supported (p < 0.001).

We also compared the cost of PARPi (4 cycles) or Avastin therapies (4–-
22 cycles) (Supplementary Table 3) to 4 cycles of the administered drugs,
ChemoID's first three recommendations, and the therapy with the mini-
mum cost of the first three choices (Table 5). Cost savings ranged from a
minimum of $31,689 to $273,644 (all p < 0.001). Interestingly, of the 45
patients, 33 (73%) could have received therapy either as effective or
more effective than the administered therapy for a reduction of the cost.

Table 6 illustrates the incremental cost-effectiveness ratio per life-year
saved (ICER/LYS), which is the ratio of the difference in the average costs
per patient to the difference in the mean overall survival. For the ChemoID
Fig. 4. Kaplan-Meier plots of progression-free survival across the study period. Progres
>55% cell kill - responder or <55% cell kill – non-responder and (B) CSC test >40% c
proportional hazard models adjusting for number of previous relapses and age.
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study, the reference model yielded an ICER of $860–$32,473, $1,100–
$48,890, and $0–$46,154 per LYS of 3rd, 4th, and 5th relapse patients, re-
spectively (Table 6). We also found that ChemoID treated patients on aver-
age had an incremental cost-effectiveness ratio (ICER) between -$18,421
and $7,241 per life-year saved (LYS).

Results for the model using the least expensive chemotherapy within
the patient's highest category of sensitivity in the assay consistent cohort
showed that the range in the ICER/LYS estimated by 1000 bootstrap sam-
ples for the assay was -$5,590 (Supplementary Table 4).

When choosing the least expensive therapywithin the test three highest
category of sensitivity, the average cost saving of six cycles of chemother-
apy becomes $7,955 in the assay consistent cohort vs. historical control (p
< 0.001). This change alone in the model makes the chemoresponse
assay a positively dominant intervention that greatly changes the health
care cost.

Discussion

This study for the first time shows the utility of a new cancer stem cell
cytotoxicity assay for the management of poor prognosis recurrent ovarian
cancer patients. The current study also served to inform the power calcula-
tions for an ongoing larger follow-up randomized clinical trial on the use of
the CSCs assay to guide individualized chemotherapy choices and to im-
prove recurrent ovarian cancer patient outcomes. The test is a functional
assay that uses patient's live tumor cells and CSCs isolated by tumor biop-
sies ormalignantfluid aspirates (peritoneal and/or pleuralfluid) to indicate
sion -free survival is shown stratified by dichotomized test results for (A) bulk test
ell kill - responder or <40% cell kill – non-responder; Hazard ratios are from Cox



Fig. 5. CT Images and comparative analysis of ChemoID test results on Bulk of Tumor and Cancer StemCells of a patient affected by third recurrence of an ovarian cancer. A)
Baseline CT images show presence of large amount of ascites in December of 2016, with B) ovarian mass measuring 9.3 × 5.4 cm, and C) peritoneal carcinomatosis
measuring 3.5 × 5.1 cm. D) Comparative ChemoID analysis on Bulk of Tumor and Cancer Stem Cells obtained from fresh ascites aspirate. E) Control CT images in
November of 2017 following a Doxorubicin regimen showing regression of ascites, F) smaller ovarian mass measuring 5.8 × 3 cm, and G) smaller peritoneal
carcinomatosis measuring 3.4 × 3 cm.
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which chemotherapy agent (or “combinations”) are more effective.
Targeting of CSCs alongside the bulk of other cancer cells is a newparadigm
in cancer treatment [41].

The current study evaluated the correlation of CSCs and bulk of tumor
cells chemoresponse assay results of recurrent EOC patients to treatment
Table 4
Cost comparison of administered drugs vs. ChemoID recommended drugs.

Actual drug cost Vs. cost of ChemoID 1st choice Vs. cost of ChemoID 2nd choi

$20,311.11 $18,356.56
(−$1,955.56)
p = 0.121

$18,533.33
(−$1,777.78)
p = 0.159
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outcomes independently of other biomarkers. All patients were treated
with a chemotherapy regimen that was chosen among those with the
highest cell kill guided by the CSCs drug response assay, taking into consid-
eration their health status and using dose reductions, as needed. CT and
PET scans were used to prospectively monitor patients for tumor response,
ce Vs. cost of ChemoID 3rd choice Vs. min of ChemoID first three choices

$17,555.56
(−$2,755.56)
p = 0.029

$12,355.56
(−$7955.56)
p < 0.001



Table 5
Cost comparison of ChemoID recommended drugs vs. PARP Inhibitor (PARPi) or Bevacizumab (Avastin).

Vs. PARPi
(4 cycles)
$72,000

Vs. Avastin
(4 cycles)
$52,000

Vs. Avastin
(22 cycles)
$286,000

Actual drug cost −$51,689
p < 0.001

−$31,689
p < 0.001

−$265,689
p < 0.001

Vs. cost of ChemoID 1st choice −$53,644
p < 0.001

−$33,644
p < 0.001

−$267,644
p < 0.001

Vs. cost of ChemoID 2nd choice −$53,467
p < 0.001

−$33,467
p < 0.001

−$267,467
p < 0.001

Vs. cost of ChemoID 3rd choice −$54,444
p < 0.001

−$34,444
p < 0.001

−$268,444
p < 0.001

Vs. min of ChemoID First three choices −$59,644
p < 0.001

−$39,644
p < 0.001

−$273,644
p < 0.001
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time to recurrence, progression-free survival (PFS), and overall survival
(OS). This is the first-in-human case study to demonstrate that prospective
use of the CSCs drug response assay to select treatment for 45 patients af-
fected by poor prognosis (3rd–5th relapse) recurrent ovarian cancer re-
sulted in significantly better PFS (median PFS of 11 months – 3rd relapse;
8 months – 4th relapse; and 8 months -5th relapse, respectively), compared
to historical data (5.6 months – 3rd relapse; 4.4 months – 4th relapse; and
4.1 months -5th relapse, respectively) (Table 3). We observed that in the
CSC model, the ovarian cancer patients that assay identified as non-
responders had over 30 times the hazard of death compared to those
women that were identified by the assay as responders (p<0.001) with re-
spective median survivals of 6 months vs. 13 months (p < 0.001) (Fig. 3).

Medical management of newly diagnosed epithelial ovarian carcinoma
(EOC) is typically a multimodal treatment plan constituted by surgical re-
section (when possible), followed by platinum-based chemotherapy [11].
Disease recurrence is common in these patients, and most of them eventu-
ally develop the platinum-resistant disease (defined as disease recurring
within 6 months after the last receipt of platinum-based chemotherapy)
[12,13]. Recurrent EOC is associated with significant mortality and a me-
dian survival of only 12–24 months that becomes progressively worse
with each additional recurrence [8]. Regimens to treat recurrent EOC are
normally informed by responses to first-line therapies and vary signifi-
cantly; therefore, choice of which agent to use is usually based on toxicity
profile, the previous toxicities experienced by the patient, and patient pref-
erence (3). Additionally, the aggressiveness of recurrent EOC is mostly at-
tributed to the presence of ovarian cancer stem cells (CSCs), which are
chemo-resistant and responsible for the recurrence of cancer [42–45]. Indi-
vidual patient responses to standardized treatments greatly vary and unfor-
tunately, toxicity profiles are extensive for most chemotherapy drugs with
no guarantee of success at the patient level. As such, there is an urgent
need for ways to tailor chemotherapy regimens based on patients' individ-
ual tumor profiles to identify treatments that may lead to improvement in
PFS and OS.

Prospective and retrospective investigations conducted in the past years
have shown that in this era of personalized medicine, patients with recur-
rent ovarian cancer deserve better than the 25% response rate that is asso-
ciated with drugs selected based on clinical information alone [46].
Previous studies, which were conducted using cytotoxicity assays against
the bulk of tumor only reported improved clinical outcomes for ovarian
cancer patients treated with sensitive chemotherapies as indicated by a
chemoresponse assay, compared with those patients treated with non-
Table 6
ICER/LYS Comparison of ChemoID recommended drugs for 3rd–5th relapse of recurren

Historical median PFS

3rd relapse- average cost per patient
Median OS

~$20,000–$35,000
5.6 months

4th relapse - average cost per patient
Median OS

$20,000–$35,000
4.4 months

5th relapse - average cost per patient
Median OS

~$20,000–$35,000
4.1 months
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sensitive therapies [46–50]. An analysis of survival from patients cohorts
in the control arm of phase-III randomized clinical trials indicated that
the various treatment regimens had similar efficacy when therapies were
randomly assigned [50]. Therefore, in the comparative analysis, even
though therapies from the same set of approved and recommended treat-
ment options were administered to participants, patients whose treatment
was assay-informed had improved survival when compared to patients
whose treatment was randomly assigned.

In our study, the ChemoID cytotoxicity assay identified high-
suppression drugs against CSCs and the bulk of tumor cells contributing
to a durable clinical response in a statistically significant manner. This
study reveals that patients who were treated with a chemotherapy-
sensitive regimen against CSCs had an improvement in their time to pro-
gression and overall survival compared to patients who could not receive
assay sensitive regimens. In the CSC model for overall survival (Fig. 3B),
the ovarian cancer patients that assay identified as non-responders had
over 30 times the hazard of death compared to those women that were
identified by the assay as responders (p < 0.001), with respective median
survivals of 6 months vs. 13 months (p < 0.001). In the CSC model for
progression-free survival (Fig. 4B), ovarian cancer patients that the assay
identified as non-responders had over 60 times the hazard of progression
compared to those women that were identified by the assay as responders
(p < 0.001), with respective median survivals of 3 months vs. 9 months
(p < 0.001). More modest but highly predictive hazards were observed
based on the bulk of tumormodels, demonstrating the superiority of predic-
tion based on the CSCs model. Moreover, we observed that adding the bulk
tumor and CSC assay response to a Coxmodel containing only relapse num-
ber and women age increased Harrell's C statistics from 0.63 to 0.79 for
overall survival and from 0.62 to 0.84 for PFS. Overall, this data demon-
strates the importance of determining the response of CSCs to chemother-
apy and their role in patients' tumor response following chemotherapy.
This method of determining the response of CSCs to available FDA ap-
proved chemotherapies for the treatment of ovarian cancer, as well as
other cancers, may provide critical information about an individual
patient's likelihood to achieve a durable tumor response before
implementing the patient's treatment plan.

Although this study was conducted on a limited cohort of consecutive
patients affected by poor prognosis EOC, results indicate that a drug cyto-
toxicity assay that targets CSCs may be a useful tool for optimizing treat-
ment selection when first-line therapy fails, and when there are multiple
clinically-acceptable and -equivalent treatments available. These results
t EOC.

Assay-guided cohort ICER/LYS (range)

$20,387
11 months

$860–(−$32,473)

$20,333
8 months

$1110–(−$48,890)

$20,000
8 months

$0–(−$46,154)
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further suggest that the CSCs drug response assays may provide more treat-
ment options for improved outcomes than currently achieved by empiric
population-based treatment in recurrent ovarian cancer. This concept is es-
pecially valuable and important with emerging value-based healthcare
models where outcomes-based contracts linked to payment for the indica-
tion of specific anticancer-drug prices raise concerns about the accessibility
and affordability for treatment of recurrent EOC patients. The power of pre-
cision medicine lies in its ability to guide health care decisions toward the
most effective treatment for a given patient, and thus, improve care quality
while reducing the use of ineffective therapies. In a recent retrospective
study involving metastatic cancer patients, researchers at the University
of Utah compared data from patients who received precision medicine
targeted therapy with data from patients who received standard chemo-
therapy or best supportive care [51]. It was observed that patients receiving
targeted treatment after precision oncology had doubled median overall
survival compared to patients receiving chemotherapy or supportive care.
Moreover, it was found that the average costs per week over the study pe-
riod were almost half for patients receiving targeted therapy compared to
those receiving chemotherapy or supportive care indicating that precision
health and directed therapies have the potential to lower health care costs.

The current study compares the cost of treatment decisions that adhere
to chemo response assay results at the time of second-line therapy in pa-
tients with recurrent EOC with those that are made empirically, in the ab-
sence of chemoresponse testing, such as the historical control.

The cost-effective benefit of a healthcare intervention such as a drug re-
sponse assay is realized if the comprehensive cost of its use is less than
$100,000 per additional life-year saved [37]. In the current study, the use
of and adherence to chemoresponse assay results yield an ICER of $5,200
per additional life-year saved, suggesting that the assay intervention is
cost-effective even at a conservative $50,000 threshold. Furthermore, in
analyses of patients with an assay-sensitive result for at least one therapy,
the ICER dropped to -$5,590 per LYS in our cohort of platinum-resistant pa-
tients, where the need for decision support tools is greater due to poorer
prognosis than platinum-sensitive patients. While the current study exam-
ines cost-effectiveness in the recurrent EOC setting, future studies are
planned which will evaluate the cost-effectiveness of this chemoresponse
assay across the entire treatment duration of patients with advanced EOC,
accounting for its influence in both the primary and recurrent settings. Ad-
ditionally, the use of a chemoresponse assay in making treatment decisions
may potentially reduce toxicities and their associated costs, as well as im-
prove the patients' overall quality of life, by reducing the number of ineffec-
tive treatment rounds. Therefore, healthcare cost-effectiveness of the assay
may be further enhanced when accounting for these differences.

More clinical studies with a larger number of patients are needed to de-
termine the clinical and economic implications of the CSCs cytotoxicity
assay. Although the current study represents a small sample cohort and
lacks randomization, nevertheless our results clearly showed that women
affected by poor-prognosis ovarian cancer treated with assay-guided regi-
mens against CSCs had an improvement in their time to progression and
overall survival compared to patients treated empirically. Our study pro-
vides proof of concept for CSCs drug response assay in personalizing treat-
ment strategies to increase survival time for recurrent EOC patients andwas
useful in developing a larger multi-center randomized trial on the use of
this assay to guide therapy in recurrent ovarian cancer. We are conducting
a multi-institutional prospectively treated, randomized, blinded, controlled
trial on the use of the CSC cytotoxicity assay to guide therapy vs. physician's
choice chemotherapy in patients with platinum-resistant recurrent ovarian
cancer (NCT03949283), with the intent to determine the clinical impact of
CSC assay-directed therapy for recurrent ovarian cancer.

Conclusions

Our results indicate that the prediction of response to high cell kill ther-
apy against CSC was consistent with expected better patients' response
rates. Eliminating more effectively the CSC load from the recurrent ovarian
tumor improved OS and PFS of women treated with high cell kill
9

chemotherapies against CSCs as indicated by the assay. More importantly,
the prediction of tumor responses to chemotherapy treatment in vitro was
directly associated with the OS and PFS of the treated patients. Interest-
ingly, the data also suggests that the CSCs assay may identify alternate
treatments when tested in vitro that may be more effective in the subset
of patients whose tumors have relapsed and that have been classified clini-
cally non-responsive to platinum agents. Together, this information sug-
gests that the CSCs drug response assay has the potential to help to guide
individualized chemotherapy choices to benefit patients by allowing the
physician to consider alternate regimens earlier in the treatment plan for
improving outcomes in recurrent ovarian cancer.
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