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SUMMARY
In living systems, a complex network of protein-protein interactions (PPIs) underlies most biochemical
events. The human protein-protein interactome has been surveyed using yeast two-hybrid (Y2H)- and
mass spectrometry (MS)-based approaches such as affinity purification coupled to MS (AP-MS). Despite de-
cades of systematic investigations and collaborativemulti-disciplinary efforts, there is no ‘‘gold standard’’ for
documenting PPIs. A surprisingly large fraction of the human interactome remains uncharted, which we refer
to as the ‘‘dark interactome.’’ In this review, we highlight the complexity of the human interactome and
discuss the current status of the human reference interactome maps. We discuss why a large proportion
of the human interactome has remained refractory to traditional approaches. We propose an experimental
model that can enable the identification of the dark interactome in a cell-type-specific manner. We also pro-
pose a framework to implement when embarking on studies designed to rigorously identify and characterize
protein interactions.
INTRODUCTION

A detailed understanding of biochemical processes is required

to dissect the pathogenesis of human diseases. Protein-protein

interactions (PPIs) underlying these biochemical processes can

be considered as the molecular language of life because biolog-

ical information is passed on via a myriad of protein interactions

throughout the cellular milieu. Thus, themore we understand this

molecular language, the more we will understand the molecular

basis of diseases. Comparisons of protein expression profiles

between healthy and diseased individuals can pave the way for

molecular therapies (Fathi et al., 2018; Wang et al., 2021; Xu

et al., 2020). International initiatives such as the chromosome-

centric human proteome project have generated a ‘‘parts list’’

of proteins across human tissues and cell lines (Adhikari et al.,

2020; Betancourt et al., 2021; Jangravi et al., 2013; Wilhelm

et al., 2014). However, documenting a list of tissue-specific or

differentially expressed proteins does not adequately account

for the nuances of biochemical processes involved in health

and disease. This is mainly because highly complex diseases

such as cancer do not follow the one-gene/one-function rule,

and system-level information is required (Beadle and Tatum,

1941; Sharifi Tabar et al., 2022a; Wagner and Zhang, 2011).

Affinity purification coupled to mass spectrometry (AP-MS)

and yeast two-hybrid (Y2H) approaches have been widely

used to map PPIs and have generated a wealth of information
Cell Rep
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(Hein et al., 2015; Huttlin et al., 2021; Low et al., 2020; Qin

et al., 2021; Schmidberger et al., 2016; Sharifi Tabar et al.,

2019; Torrado et al., 2017). Such datasets have been used to

generate large-scale reference protein interactome maps (Hut-

tlin et al., 2021; Luck et al., 2020). Despite these efforts, a sub-

stantial fraction of the human proteome remains uncharacter-

ized. Those missing interactions, which we refer to as the

‘‘dark interactome,’’ frequently include PPIs that are not identifi-

able using traditional techniques. Technical limitations as well as

a lack of appropriate experimental cell models have greatly

contributed to the existence of the dark interactome. These lim-

itations arise from the suitability of molecular tools, biochemical

reagents, and instrumentation currently being used to study

PPIs. For instance, many reports use the same biochemical re-

agents and buffer recipes in AP-MS-based PPI studies, which,

notably, are not appropriate for all proteins within the human

proteome.

Moreover, gene expression can be cell-type specific and vary

between different cell types in the same tissue (e.g., dopami-

nergic neurons versus oligodendrocytes in brain) or between

different tissues (Vakilian et al., 2015; Wang et al., 2020). There-

fore, immortalized cell lines, such as HEK293 and HeLa cells,

which have been widely used in interactome studies, are not

always appropriate models to identify tissue-specific and cell-

type-specific interactions. These standard cell models inherently

limit the capture of prey proteins that are absent, differentially
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Figure 1. Complexity increases from the

genome to the interactome in human cells

(A) Interactome complexity is generated at the

genome, transcriptome, and proteome levels,

with alternative splicing and post-translational

modifications (PTMs) among other features that

contribute to protein-protein interaction (PPI) di-

versity.

(B) Y2H and AP-MS have been used to define PPI

networks of human proteins. Tens of thousands of

interactions have been reported, but a large portion

of the human interactome has remained un-

characterized, known as the dark interactome,

which is depicted in dark gray. The table provides

the biological and cellular context and examples of

proteins within the dark interactome.
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located, or weakly expressed in these cells. Thus, new experi-

mental cell models and alternative MS-based approaches are

required to explore the dark interactome.

Proximity labeling coupled to MS (PL-MS) approaches such as

proximity-dependent biotin identification (BioID) have success-

fully been used tomap the interaction networks ofmembrane pro-

teins and intrinsically disordered proteins. Such PPIs have been

refractory to biochemical isolation and identification using stan-

dard methods (Huttlin et al., 2021). Unlike AP-MS, where protein

lysate is used as input material, PL-MS is implemented in situ

and thus is capable of identifying low-affinity and transient interac-

tions. This is exemplified in studying signaling pathways in

response to stimuli or host-pathogen interactions. PL-MS has

also successfully been used to study tissue-specific protein inter-

actions (Uezu et al., 2016). In this review, we discuss the chal-

lenges of currently used approaches and propose a PL-MS-

focused strategy in combination with a new experimental cell

model to facilitate identification of the dark interactome.

The complexity of the interactome
In biological systems, complexity increases from the genome,

through the transcriptome, to the proteome. The system be-

comes exponentially complex at the interactome level

(Figure 1A). The UniProt database contains more than 130,000

validated coding non-synonymous single-nucleotide polymor-
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phisms, which can provide a significant

additional source of variation at the

transcriptome and proteome levels (Uni-

Prot, 2021). However, in cancer, this

complexity becomes evenmore elaborate

due to alterations at the DNA, RNA, and

protein levels. The cancer genome often

contains many mutations that arise from

errors during protein translation and de-

fects in the DNA repair machinery. The

genomic landscape of over 3,000 tumor

samples has revealed nearly 300,000 mu-

tations in protein-coding regions (Vogel-

stein et al., 2013).

Compared with the genome, the tran-

scriptome is more diverse and complex,
containing coding (i.e., mRNA) and non-coding RNA species

(e.g., ribosomal RNA, tRNA, long non-coding RNA, and micro-

RNA). The majority (93%) of human protein-coding genes are

alternatively spliced, and many exhibit alternate transcription

start sites, which have been estimated to produce more than

83,000 functional isoforms (Aebersold et al., 2018; Wang et al.,

2008). In addition to alternative splicing, RNA modifications

such as 30 alternative polyadenylation, 50 capping, and chemical

modifications (e.g., m6A) can also lead to more complexity and

diverse functionality, all affecting mRNA processing and stability

(Figure 1A).

Biological complexity is further increased at the protein level

by post-translational modifications (PTMs), of which �400

different types have been identified and recorded within

UniProt (Bludau and Aebersold, 2020; UniProt, 2021). These

modifications can individually or in a combinatorial fashion

modulate many biological processes through influencing protein

stability, localization, and interactions. Collectively, these varia-

tions and modifications are estimated to generate more than

one million different proteoforms, which can consequently lead

to potentially millions of PPIs in both normal and disease states

(Bludau and Aebersold, 2020) (Figure 1A).

The interactome comprises both permanent and transient in-

teractions that occur at nanomolar and micromolar affinities,

respectively. The human interactome is predominantly transient,
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with stable complexes occurring less frequently (Hein et al.,

2015). Multi-subunit protein complexes such as transcriptional

and translational machinery are typically permanent interactions

with conserved stoichiometry across various cell types and spe-

cies. There are over 4,600 stable protein complexes character-

ized in the human proteome (Bludau and Aebersold, 2020; Uni-

Prot, 2021). The majority of proteins are involved in transient

interactions for adaptive responses to biochemical or environ-

mental stimuli. Transient interactions are mainly mediated by

transmembrane and cytoplasmic proteins and are key features

of signaling pathways and regulatory networks (Varnaite and

MacNeill, 2016).

The dark interactome
The human interactome has been rigorously subjected to stan-

dard biochemical characterization (Huttlin et al., 2021; Luck

et al., 2020). In 2020, the Human Reference Interactome, also

known as HuRI, reported the largest physical binary interaction

map for human proteins using a Y2H approach (Luck et al.,

2020). In this project, 17,500 bait and prey proteins each were

co-expressed and tested for interaction in a pairwise manner,

a total of approximately three billion individual tests. The resul-

tant dataset contained �53,000 high-confidence interactions

among �8,000 proteins (Figure 1B) (Luck et al., 2020); however,

it represented less than 11% of all human protein interactions.

The vast majority of the interactome remained undetected for

several reasons: (1) yeast are not optimal to examine all mamma-

lian proteins and generally lack human biomolecular co-factors;

(2) secretory pathways, membrane and highly disordered pro-

teins fail to express and fold properly by Y2H; (3) yeast exhibits

less fidelity in reproducing PTMs important for protein folding

and interaction of mammalian proteins; (4) proteins within

multi-subunit complexes often require the presence of that com-

plex to interact; (5) the presence of fusion tags can influence pro-

tein folding and interaction; and (6) some proteins only interact in

signaling pathways that are absent in yeast.

In parallel, a reference human interactome was generated for

the BioPlex project using AP-MS. Here, human genes were hem-

agglutinin (HA)- and FLAG-tagged on the C terminus and ex-

pressed in HEK293 cells, and associating protein complexes

were affinity purified from crude cell lysates and analyzed by

MS. Nearly 120,000 direct and indirect interactions were re-

ported (Huttlin et al., 2021) (Figure 1B). Accordingly, there are

several cellular and biological contexts in which PPIs fail to

be detected, and the examples provided highlight this (Fig-

ure 1B). In addition, AP-MS suffers from several limitations that

contribute to those missing interactions, as well as the detection

of false positive interactions. These include (1) mild cell lysis con-

ditions used to preserve protein complexes in their semi-native

conditions result in many nuclear, membrane, and cytosolic pro-

teins being poorly solubilized and remaining insoluble (Beck

et al., 2014; Varnaite and MacNeill, 2016); (2) protein interactions

with a weak binding affinity may not be identified; (3) some pro-

tein interactions are disrupted upon cell lysis because such inter-

actions occur only in a specific signaling pathway or within a

unique microenvironment within its correct location (e.g., Golgi);

and (4) some interactions are also lost during stringent washing

conditions.
Together, it is evident that there is scant interaction informa-

tion for a considerable portion of the human proteome. Method-

ological limitations and the lack of appropriate experimental

models are the main obstacles. In the following sections, we

discuss MS-based approaches for mapping PPIs and discuss

amodel experimental design that should greatly facilitate the illu-

mination of the dark interactome.
AP-MS is the method of choice to capture high-affinity
protein interactions
Two derivatives of AP-MS exist, which are based on similar prin-

ciples and are used interchangeably in the literature: immuno-

precipitation followed by MS (IP-MS) and pull-down followed

by MS (PD-MS). Advantages and disadvantages of either

approach exist (Table 1), which should be taken into consider-

ation during experimental design. In IP-MS, an IP-grade anti-

body is immobilized onto a solid phase (i.e., a bead) and mixed

with cell lysates to capture the target protein and its associated

protein complexes (Figure 2A). Whereas in PD-MS, the gene of

interest is fused to an epitope tag (e.g., FLAG, HA, cMyc) and

ectopically expressed in target cell types. Overexpression is

achieved either by transfection (mammalian expression vector)

or transduction (retroviral/lentiviral vector) depending on the

plasmid carrying the gene of interest (Figure 2A). Alternatively,

to achieve a more physiological level of expression, the epitope

tag can be inserted into the endogenous locus of the target gene

using CRISPR-Cas9-mediated gene editing. Some of the advan-

tages and disadvantages of IP-MS and PD-MS are explained in

more detail below.

(1) Depth. The depth of interactome data obtained for PD-

MS is greater than for IP-MS for a number of reasons.

Firstly, high-affinity monoclonal antibodies pre-conju-

gated to beads are commercially available to capture

epitope tags. Strong binding of these antibodies to

epitope tags enhances the purification of protein com-

plexes and, hence, identification of PPIs. Secondly, the

overexpression of the bait protein provides a molecular

interface to capture binding partners in abundance. In

contrast, IP-MS studies usually result in an incomplete

PPI map for two main reasons: the lack of an appropriate

high-affinity IP-grade antibody for most proteins, and

antibody interaction with the target protein can mask po-

tential PPI motifs or lead to protein conformation changes

and loss of PPIs (Al Qaraghuli et al., 2020; Wilson and

Stanfield, 1994).

(2) Time. In contrast to IP-MS, in ectopic PD-MS, there is

minimal requirement to optimize the antibody-antigen

binding, allowing parallel sample preparation for many

proteins with a common protocol (Gingras et al., 2007).

However, endogenous PD-MS experiments require

more time as they utilize CRISPR-Cas9-mediated gene

editing.

(3) Cost. Ectopic PD-MS is more cost effective compared

with endogenous PD-MS and IP-MS because it is less la-

bor intensive and can be done in a shorter time.

(4) Flexibility. If the PPI study requires examining a range of

cell types or cellular or biological contexts (see Figure 1B),
Cell Reports Methods 2, 100275, August 22, 2022 3



Table 1. Summary of advantages and disadvantages of different AP-MS-based approaches

IP-MS

PD-MS

Endogenous

Ectopic

Transduction Transfection

Depth low-medium high high high

Time weeks to months months days to weeks days to weeks

Cost high high low very low

Flexibility high low medium low

Domain-specific PPIs not feasible not feasible feasible
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then IP-MS is a more flexible approach, as it utilizes ly-

sates from native cells. PD-MS, however, usually requires

transfection or transduction of target cells, which may not

be optimal in all contexts.

(5) Domain-specific PPIs. A key advantage of ectopic PD-MS

is that domain-specific interactome studies can be readily

performed for the majority of proteins within the human

proteome. In addition, the impact of deletion mutants or

disease-associated missense mutations on PPIs can be

directly addressed.

PL-MS has the potential to uncover the dark
interactome
The main regulators of signaling pathways undergo transient in-

teractions with upstream and downstream effectors in response

to stimuli or stress conditions. PL-MS has greatly advanced the

identification of these interactions that were inaccessible using

AP-MS or Y2H approaches (Bosch et al., 2021; Go et al., 2021;

Qin et al., 2021; Samavarchi-Tehrani et al., 2020b). Briefly, PL-

MS has been designed to screen for transient and stable protein

interactions as well as neighboring proteins (within a 10 nm

radius) in a natural cellular environment. In this approach, the

protein of interest (POI) is fused to an engineered BirA enzyme,

a biotin ligase derived from E. coli. These enzymes utilize ATP

to release biotinoyl-AMP intermediates from biotin molecules,

which can attach to side-chain amines on lysine residues. In

the engineered BirA, arginine residue 118 has been replaced

with glycine, enabling efficient biotin labeling of transient interac-

tions in situ and often in a spatiotemporal manner (Figure 2B).

Typically, proteins more vicinal to the enzyme active site exhibit

higher labeling densities (Rhee et al., 2013).

The application, advantages, and disadvantages of various

PL-MS approaches has been reviewed elsewhere (Bosch

et al., 2021; Samavarchi-Tehrani et al., 2020b; Trinkle-Mulcahy,

2019). Importantly, PL-MS has been successfully used to identify

interactions in diverse cellular and biological contexts, including

enzyme-substrate interactions (Gingras et al., 2007) and host-

pathogen interactions (Laurent et al., 2020; Samavarchi-Tehrani

et al., 2020a). BioID, the most widely used PL method, has been

used to map the interactome of proteins with different subcellu-

lar localization in a variety of model systems including primary

and immortalized cancer cells, yeast, flies, mice, zebrafish,

worms, and plants (Qin et al., 2021). One of the main reasons

that BioID has been popular in identifying ‘‘dark’’ or refractory in-

teractions is the extraordinarily high binding affinity of biotin to
4 Cell Reports Methods 2, 100275, August 22, 2022
streptavidin (Kd of �10�14 mol/L) (Green, 1975). Such a strong

complex can withstand the presence of organic solvents,

extreme pH, temperature, and detergents and denaturing re-

agents such as urea, SDS, and Triton X-100 in the lysis and

wash buffers (Branon et al., 2018; Holmberg et al., 2005; Roux

et al., 2012, 2018).

To enhance the efficiency and speed of labeling while mini-

mizing toxicity, new classes of BirA enzymes have been engi-

neered, including TurboID and miniTurbo (Branon et al., 2018).

An innovative PL approach, so-called ‘‘off-the-shelf’’ proximity

biotinylation, has been introduced recently. Here, TurboID fused

to protein A is targeted to the bait protein using specific antibodies

with themethod successfully benchmarked on nuclear proteins in

both fixed and non-fixed cells (Santos-Barriopedro et al., 2021).

Future developments in this method might enable its application

to clinical samples and primary cells that are otherwise hard to

manipulate for PL-MS studies. Taken together, PL-MS offers

tremendous potential for the high-throughput identification of pre-

viously inaccessible PPIs within the dark interactome.

A cell-type-specific proteomics strategy to illuminate
the dark interactome
Cell-type-specific transcriptome and proteome studies have

consistently demonstrated that the cellular protein content varies

between different cell types (Alvarez-Castelao et al., 2019; Jiang

et al., 2020; Wang et al., 2019; Wilson and Nairn, 2018). Body-

wide quantitative proteomics of 12,000 proteins has recently re-

vealed that nearly half are tissue enriched or tissue specific (Jiang

et al., 2020). As an example, homeobox protein OTX2 is highly ex-

pressed in the brain tissue mainly in the neural progenitor cell,

while dopamine transporter 1 (DAT1) and glial fibrillary acidic pro-

tein (GFAP) are dominantly expressed in dopaminergic and astro-

cyte neurons, respectively (Maury et al., 2015). Therefore, protein

interaction networkswill bemarkedly different in various cell types

within the same tissue and between different tissues within hu-

mans. Proteome-wide AP-MS studies (e.g., BioPlex project)

have only employed transformed cell lines for mapping the human

interactome (Huttlin et al., 2021). Thus, current models are inade-

quate for generating comprehensivemaps, and there is a need for

new experimental pipelines to reveal dark interactions.

Here, we propose a cell-type-specific approach to shine a light

on the dark interactome (Figure 3). In this model, proteins are first

categorized based on their expression pattern in relevant

tissues and cell types. Freely accessible repositories such as

Human Protein Atlas (HPA), The Geno-type-Tissue Expression
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Figure 2. Schematic of AP-MS and PL-MS approaches

(A) AP-MS using an IP-grade antibody (IP-MS) or epitope tag (PD-MS). Epitope-tagged proteins of interest (yellow circle) are endogenously or ectopically ex-

pressed in target cells. After mild lysis, solubilized proteins are separated from insoluble proteins by centrifugation. Soluble proteins are mixed with beads

conjugated to specific antibodies against the epitope tag or POI to capture the associated proteins. After several stringent washes, direct and indirect interactions

(colored circles) are co-purified with the bait from the complex cell lysate.

(B) In PL-MS, BirA-fused proteins of interest (yellow circle and light green rectangle) are endogenously or ectopically expressed in target cells. Labeling is initiated

with the addition of biotin to cultured cells. BirA enzyme mediates the labeling of direct and indirect interactions as well as vicinal proteins within 10 nm distance

(represented by dotted circle). After labeling, cells are lysed using a harsh and denaturing lysis buffer to enhance solubilization of proteins. Biotinylated proteins

are immobilized on streptavidin beads and then are washed before proceeding to on-bead tryptic digestion.

(C) Peptides generated in (A) and (B) are desalted using C18 columns and then subjected to MS analysis. As depicted in the interaction network, PL-MS results in

increased detection of interactions and fewer missed interactions than AP-MS.
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(GTEx) portal, Gene Expression Atlas (GEA), and Proteomics

DataBank (ProteomicsDB) are very useful resources to investi-

gate the expression pattern of the gene of interest (Figure 3A).

After classification, the gene of interest is cloned into an appro-

priate mammalian expression vector for PL-MS analysis

(Figure 3A). As a complementary approach, BirA can be endog-

enously fused to the gene of interest using CRISPR-Cas9-medi-

ated gene editing, which will greatly reduce identification of false

positive hits due to bait protein overexpression. In the next step,

either primary or immortalized tissue-specific cells are trans-

fected or transduced. Examples of cell types can include stem

cells, their derivatives, and cancer-specific cell lines (Figure 3B).

Finally, cell-type-specific PPIs are identified and reported for

various cell types. This strategy will uncover genuine and func-
tional interacting partners of tissue-enriched and tissue-specific

proteins.

Cell-type-focused PPI studies are of crucial importance for

understanding host-pathogen interactions. Recently, several

studies have used either AP-MS or PL-MS approaches to inves-

tigate the interaction of severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) proteins with host cellular proteins for

drug discovery projects (Gordon et al., 2020a, 2020b; Laurent

et al., 2020; Samavarchi-Tehrani et al., 2020a). Comparison of

the data generated using the same proteomics approach, but

on different cell types, reveal that despite significant overlap,

many unique PPIs are reported in each study. The discrepancy

between datasets could potentially be due to the differences in

cell types being used or statistical analyses applied. In these
Cell Reports Methods 2, 100275, August 22, 2022 5
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Figure 3. Proposed strategy for uncovering cell-type-specific PPIs

(A) Prior to an interactome study, the expression pattern of the gene of interest (GOI) is investigated using data repositories such as the Human Protein Atlas

(HPA), Geno-type-Tissue Expression (GTEx), or Gene Expression Atlas (GEA). An appropriate mammalian expression viral vector is used to express the GOI in

frame with a BirA enzyme (e.g., TurboID) for PL-MS.

(B) Transfection or transduction is carried out using an immortalized tissue-specific cell type, tissue-specific or primary stem cell line such as embryonic stem

cells (ESCs) and mesenchymal stromal cells (MSCs), or their derivative cell types.

(C) Once MS-based interactome studies are conducted, cell-type-specific maps can be generated.
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types of studies, A549 alveolar basal epithelial cells would

be an appropriate model, as SARS-CoV-2 primarily infects

airway epithelial cells. Therefore, choosing an appropriate

model cell for host-pathogen protein interactions will provide

more meaningful data and shed more light on the dark

interactome.

General considerations for interactome studies
A successful interactomics workflow requires the integration of

proper experimental design, sample preparation, instrumenta-

tion, and bioinformatics analysis. Thus, it is important to under-

stand the objectives and hypotheses of the project and choose
6 Cell Reports Methods 2, 100275, August 22, 2022
the best sample preparation and quantitation approaches

accordingly. Important parameters required for successful PPI

studies are summarized in Table 2 but expanded upon further

below.

(1) Localization of the POI. Depending on the localization

of the target protein, the composition of the cell lysis

buffer can greatly affect the solubilization efficiency.

For example, in AP-MS experiments, including re-

agents such as digitonin and n-dodecyl-b-D-maltoside

(DDM) in the lysis buffer can efficiently solubilize

and enable the pull-down of proteins localized in the



Table 2. General considerations for protein-protein interactome studies

Consideration Problem Solution

Localization

d proteins of different organelles differ in their

solubility in standard lysis buffers used for PPI

studies (Orre et al., 2019; Peach et al., 2015)

d reagents such as digitonin and n-dodecyl-b-D-

maltoside (DDM) can be used

d subcellular fractionation to reduce any common

contaminants

d use the Human Protein Atlas and

SubCellBarcode portal to confirm the localiza-

tion of proteins

d variation in the pH, redox environment, and

nucleophile concentrations can affect the activ-

ity of BirA enzymes (Branon et al., 2018)

d choosing the right BirA enzyme; TurboID out-

performs BioID and miniTurbo in the mitochon-

drial matrix, nucleus, and ER lumen (Branon

et al., 2018)

Molecular weight

d large proteins (>200 kDa) are usually poorly sol-

ubilized and affinity purified

d divide the large protein into segments and ex-

press independently

Epitope tags or fusions

d may prevent some interactions

d may lead to protein misfolding and malfunction

d some tags lead to protein dimerization (Sharifi

Tabar et al., 2022b; Torrado et al., 2017)

d use small epitope tags such as FLAG and HA

combined with flexible linkers

d examine both N- and C-terminal tags and

compare the efficiency

Cell culture medium

d the presence of biotin in cell culture medium can

lead to autonomous protein biotinylation and

interfere with BioID results

d choose a cell line that can grow in media con-

taining minimal or no biotin

Controls

d inappropriate control(s) can lead to identification

of both false negative and false positive inter-

actions

d for IP-MS, a gene knockout cell line can be used

rather than using isotype control serum

d for PL-MS, use an empty vector carrying the BirA

protein

d for PD-MS, use an empty vector carrying the

same epitope tag

Quality of the beads

d variations in streptavidin beads or affinity resins

(agarose or magnetic) (St-Germain et al., 2020)

d store beads in appropriate conditions

d use the same batch of beads for the entire

experiment

Quantitation method

d label-free approaches suffer from low accuracy

and false positive hits

d label-based proteomic approaches (e.g., SILAC)

are expensive and time consuming (Taverna and

Gaspari, 2021)

d increase the number of control samples to

reduce the chance of false positives
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membrane of the cell and organelles, while for nuclear

proteins, it may be optional. In addition, subcellular

fractionation can enhance the chance of detecting

lowly abundant interactors and reducing any back-

ground contaminants. The HPA, and SubCellBarcode

repositories are very useful to check the localization

of proteins. For PL-MS studies, variations in the pH,

redox environment, and nucleophile concentrations

can affect the activity of BirA enzymes. For example,

TurboID outperforms BioID and miniTurbo in the mito-

chondrial matrix, nucleus, and endoplasmic reticulum

lumen (Branon et al., 2018). Therefore, it is important

to choose an enzyme that is active in the target subcel-

lular compartment.
(2) Molecular weight of the POI. Generally, large proteins

(>200 kDa) are difficult to pull-down efficiently compared

with smaller proteins, and thismay compromise the depth

and quality of the data. Smaller domains can be effectively

used to complement data obtained with the full-length

protein. Large proteins are also intractable to in vitro re-

combinant expression and purification unless domains

or sub-regions are used.

(3) Tissue specificity and choice of cell line. Proteins with

an enhanced or restricted expression in certain tissues

may consequently exhibit a tissue-specific interactome.

Therefore, not every laboratory cell line fulfills the pur-

pose. Performing a protein-protein interactome study in

a physiologically relevant cell line will reveal more genuine
Cell Reports Methods 2, 100275, August 22, 2022 7
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interactions. Of note, some proteins co-localize upon the

presence of specific stimuli or stress conditions; there-

fore, specific experimental design and parameters are

required to capture interactions while the protein is

behaving in its native context.

(4) Epitope tags. Epitope tagging can result in partial misfold-

ing of the tagged protein, consequently altering its inter-

action profile either by disrupting or introducing binding

artifacts (Wissmueller et al., 2011). For example, partial

misfolding and false positive interactions have been re-

ported with GST-tagged Kruppel-like factor 3 (KLF3)

(Wissmueller et al., 2011). In addition, N-terminally

FLAG-tagged histone deacetylase 1 (HDAC1) exhibits a

sharp reduction in enzymatic activity compared with

wild-type or C-terminally-tagged HDAC1 protein, indi-

cating the importance of the position of the tag. Further-

more, a recent study has confirmed the interaction of

the nucleosome remodeling and deacetylase (NuRD)

complex subunit, cyclin-dependent kinase 2-associated

protein 1 (CDK2AP1), with the nuclear receptor co-

repressor (NCOR) complex, when CDK2AP1 was FLAG

tagged (Sharifi Tabar et al., 2022b), However, previous

studies failed to show this when green fluorescent protein

(GFP) was used as a tag, possibly due to steric hindrance

(Spruijt et al., 2010). Taken together, the size and position

of the epitope tag may affect the PPI networks, and inser-

tion of the tag at either the C terminus or the N terminus

might need to be tested.

(5) Cell culture medium. During PL-MS experiments, it is

crucial to check the formulation of cell culture medium

as towhether it is supplementedwith biotin. The presence

of biotin can significantly skew results, especially when

exogenous biotin needs to be added at a specific time

point to explore temporal interactions such as the cell cy-

cle or host-pathogen interactions. An alternative medium

or biotin depletion should be used.

(6) Appropriate controls. Choosing an appropriate control is

extremely important in PPIs studies to distinguish POI-

mediated enriched proteins from non-specifically en-

riched proteins. Incubating the cell lysate with isotype an-

tibodies or unbound beads has widely been used as a

control in interactome studies. Ideally, the best control

would be a gene knockout (KO) cell line model, where

the target protein is absent, and non-specific binding of

the antibody can be clearly distinguished. However,

generating KO controls can be time consuming and tech-

nically demanding, which is further complicated by gene

essentiality. In case of PL-MS, suitable controls include

a construct carrying the target protein only, an ‘‘empty

vector’’ containing the BirA enzyme alone, or not adding

biotin into the media for detecting any promiscuous label-

ing of proximal proteins.

(7) Quality of the beads. Agarose or magnetic beads conju-

gated to streptavidin, protein A/G, or epitope tag anti-

bodies (e.g., FLAG, HA) are frequently used for affinity

capture of protein complexes from a complex cellular

milieu. However, it has been noted that they can introduce

substantial variation in the quality of interaction data (St-
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Germain et al., 2020). One reason could be batch-to-

batch variation or inappropriate storage conditions of

the affinity resins. Therefore, it is crucial to use validated

high-quality reagents and perform quality checks over

time to monitor performance.

(8) Quantitation method. Quantitative PPI studies can be la-

bel based or label free, which is comprehensively re-

viewed elsewhere (Anand et al., 2017; Neilson et al.,

2011). In the label-based quantification approaches,

MS-detectable specific chemical tags are added to the

proteins or peptides to enhance quantification accuracy

and signal-to-noise ratio. These mass tags can be intro-

duced into proteins via metabolic labeling of cells such

as stable isotope labeling of amino acids (SILAC) in cell

culture or into peptides by chemical means such as tan-

dem mass tag (Bantscheff et al., 2007; Ong and Mann,

2006). Label-free approaches are cost effective and faster

as no labeling is performed during sample preparation.

Hence, label-free approaches are widely used for quanti-

fication purposes. The quantification of label-free sam-

ples is generally measured by comparing either peptide

(precursor ion) intensity or number of spectral counts be-

tween different groups (Neilson et al., 2011).

Challenges in validation of direct interactions
The determination of direct PPIs is essential for a mechanistic

understanding of molecular events and for rational drug design.

MS-based approaches identify many novel PPIs but cannot

distinguish direct interactions from indirect interactions. In addi-

tion, false positive interactions are inevitably included. Thus,

discriminating between direct PPIs and false positive hits is chal-

lenging and needs careful experimental design. Numerous

computational algorithms have been developed that have

improved the quality and trustworthiness of PPI networks (Tya-

nova et al., 2016). However, it is nearly impossible to determine

direct interactions using scoring algorithms. Therefore, verifica-

tion of direct interactions using a robust experimental method

is required, for which two such approaches exist. First, cross-

referencematching, where the potential novel PPIs identified us-

ing MS-based approaches can sometimes be validated through

cross-referencing with several large PPI repositories that

frequently update their database (examples include The Biolog-

ical General Repository for Interaction Datasets [BioGrid]

[Oughtred et al., 2021], the International Molecular Exchange

Consortium [IMEx] (Orchard et al., 2012), and the Human Inte-

grated Protein-Protein Interaction reference [HIPPIE] (Alanis-Lo-

bato et al., 2017). Second, validating a list of highly enriched and

functionally relevant candidates using biochemical and biophys-

ical approaches, as it has been well established that not every

interaction documented in literature-curated PPI repositories is

reliable (Cusick et al., 2009; Mackay et al., 2007; Myers et al.,

2006). This is mainly because curated interaction information in

the databases is generated using machine-learning algorithms

that search for specific terms within the text of any publication.

This problem perpetuates when false positive and wrongly re-

ported direct interactions become embedded in the literature

due to subsequent citations and integration into databases.

For example, the direct interaction of GATA zinc finger domain
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containing 2A or B (GATAD2A/B) with retinoblastoma binding

protein 4 or 7 (RBBP4/7), HDAC1 or methyl-CpG-binding

domain protein (MBD3) was reported previously, which was

later disproven by several other studies (Low et al., 2020; Sharifi

Tabar et al., 2019, 2022b; Torrado et al., 2017). In an attempt to

validate �20 physical interactions previously in the literature,

Mackay et al. could only verify 50% of these interactions using

biophysical methods such as nuclear magnetic resonance

(NMR) (Mackay et al., 2007). This indicates that extra care

must be taken when either reporting or referring to direct PPIs.

Confirmatory studies in which PPIs are further supported by

robust biochemical and biophysical assays are recommended.

A fundamental question is how to choose the best experi-

mental method to characterize direct PPIs? Verification of direct

interactions is not straightforward due to the different biochem-

ical and biophysical properties of proteins. However, verification

can be undertaken in a stepwise manner to obtain high-confi-

dence direct interactions. First, a list of highly enriched prey pro-

teins should be selected from the list of the identified proteins.

Second, proteins that are functionally relevant and are localized

in the same compartment as the bait protein are selected. Third,

proteins ranking lowly in repositories of common contaminants

in AP-MS experiments (e.g., CRAPome [Mellacheruvu et al.,

2013]) are prioritized.

Next, the candidate prey proteins and the bait protein need to

be tagged and co-expressed in a model cell line (e.g., HEK293

cells) for a pairwise comparison using co-immunoprecipitation.

Initial results can be refined by using smaller fragments or do-

mains. Mutation or deletion of the minimal interaction domains

or motif can be used to further corroborate the data. Notably,

however, defining direct interactions between overexpressed

subunits of a multi-subunit complex in mammalian cells can be

compromised by the presence of endogenous complexes (Tor-

rado et al., 2017). Finally, a pairwise comparison using in vitro-

transcribed and -translated protein can reliably demonstrate

whether the interaction is direct. This approach has successfully

been used to characterize direct inter-subunit connections

within large protein complexes (Low et al., 2020; Schmidberger

et al., 2016; Sharifi Tabar et al., 2019, 2022b; Torrado et al.,

2017).

After confirming direct PPIs, high-resolution structural and

biochemical information is required to guide any drug discovery

or functional evaluation of the interactions. Powerful biophysical

methods including surface plasmon resonance (SPR), NMR,

isothermal titration calorimetry (ITC), X-ray crystallography, and

cryoelectron microscopy (cryo-EM) are the most frequently

used techniques and have been reviewed elsewhere (Walport

et al., 2021).

Deep learning and artificial intelligence may reveal the
dark interactome at scale
The use of artificial intelligence (AI) and deep learning (DL) has

revolutionized the field of in silico protein structure prediction.

Deep learning (DL)-based algorithms such as AlphaFold2 and

RoseTTAFold have claimed to predict protein structures as

accurately as X-ray crystallography (Baek et al., 2021; Jumper

et al., 2021). Using AlphaFold2, 58% of total human protein res-

idues have been confidently annotated structurally as opposed
to X-ray crystallography, which could only resolve up to 17%

of residues (Jumper et al., 2021). Furthermore, having a deep un-

derstanding of sequence-to-structure relationships and based

on the assumption that interacting proteins co-evolve, these

algorithms have also been implemented to predict PPIs.

For example, Humphreys et al. has screened more than 8

million PPIs in Saccharomyces cerevisiae and accurately pre-

dicted �1,500 PPIs (Humphreys et al., 2021). One such study

in human has predicted �3,000 confident PPIs out of a total of

more than 65,000 PPIs screened (Burke et al., 2021). In both

studies, hundreds of PPIs were reported for the first time. To

assist with PPI prediction and determination, AlphaFold Protein

Structure Database (AlphaFold DB) features proteomes from

21 model organisms, containing more than 360,000 predicted

structures, of which 23,391 are predicted for the human prote-

ome (Varadi et al., 2022).

The ability to screen proteome libraries to find novel interac-

tions between two or more candidates is very promising.

Furthermore, these methods can also be used as a quick tool

to confirm the effect of mutations on existing PPIs. There are

certain limitations though. First, the accuracy of the PPI predic-

tion relies on the presence of orthologs spanning other species.

Therefore, proteins that are evolving rapidly and have few ortho-

logs in phylogenetically restricted species may not be detected

by these methods. Second, prediction of PPIs in higher eukary-

otes may not uncover as many as in lower eukaryotes where

there is an increased number of genomes sequenced from

closely related species and, hence, a wider availability of ortho-

logs. Third, proteins that form multi-subunit or even higher order

complexes may not be represented accurately by binary PPIs

(Humphreys et al., 2021). Last, but most importantly, the compu-

tational infrastructure required to run AI- and DL-based algo-

rithms for prediction of PPIs is extensive. Even for the relatively

simple eukaryotic S. cerevisiae proteome, it would demand 0.1

to 1 million graphics processing unit (GPU) hours (Humphreys

et al., 2021), which may restrict the analysis of more complex

higher eukaryotic proteomes such as human.

Notwithstanding the above limitations, the future looks prom-

ising with the steady evolution of computational resources and

increasing accuracy of protein structure prediction algorithms.

Along with experimentally determined human protein structures,

computationally predicted pairwise PPIs will be imminently avail-

able in public PPI repositories. How these algorithms and re-

sources will be used to support and advance interactome-based

studies are the subject of ongoing exploration. Researchers will

be significantly empowered to find novel therapeutic targets for

many diseases and continue to bring the dark interactome into

the light.

Concluding remarks
One of the main objectives of molecular therapy is to target dis-

ease-specific proteins that contribute to the initiation or progres-

sion of diseases. Targeting disease-associated proteins is a

complex task because most of them also play an important

role in normal biological processes. However, it has been well

established that protein interaction partners of disease-associ-

ated proteins can vary between the normal and disease states,

especially in cancer following genomic alterations (Sharifi Tabar
Cell Reports Methods 2, 100275, August 22, 2022 9



Review
ll

OPEN ACCESS
et al., 2022a). This offers a unique opportunity to target disease-

specific protein interaction interfaces using small molecule

drugs. Therefore, construction of comprehensive reference pro-

tein interactome maps will pave the way for the identification of

disease-specific interactions and will provide solid foundations

for future therapeutics.

Methodological advances have enabled the differentiation of

embryonic and adult stem cells into specialized cell types or lin-

eages, and now production of a range of tissue-specific cell

types is feasible. In parallel, high-quality single-cell RNA

sequencing (RNA-seq) technology has provided a massive

amount of genomics data and enhanced our understanding of

the cell-type-specific expression of many genes. This means

that the identification of tissue-enriched or -specific PPIs is not

elusive anymore and can be performed for proteins whose inter-

actions are currently poorly characterized. The new generation

of PL enzymes has now enabled efficient in situ labeling of tran-

sient and dynamic interactions within minutes in nearly all com-

partments of living cells (Branon et al., 2018; Qin et al., 2021;

Roux et al., 2018). This technology will greatly enhance the iden-

tification of many PPIs that have been refractory to traditional

approaches.

High-resolution MS with improved speed and accuracy has

facilitated the proteome-scale identification of thousands of pro-

teins from a complex cellular milieu. Furthermore, a recent

breakthrough in predicting PPIs of protein complexes using

AlphaFold Multimer suggests that later versions would improve

further the prediction of protein interactions. Ultimately, the

consolidation of results from AP-MS, PL-MS, and Y2H studies,

as well as integration of DL-based methodologies, will all accel-

erate further exploration of the uncharted interactome. Together,

all these factors provide a unique opportunity to systematically

survey the human interactome and discover spatiotemporal

and cell-type-specific interactions that have not previously

been visible in the dark interactome. Cell-type-specific interac-

tomemaps will therefore provide a detailed view of complex bio-

logical processes and may explain tissue-specific gene expres-

sion and phenotype relationships in normal and disease states.
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