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Abstract: The purpose of the present study was to measure and compare the insertion torque, removal
torque, and the implant stability quotient by resonance frequency analysis in different polyurethane
block densities of two implant macrogeometries. Four different polyurethane synthetic bone blocks
were used with three cortical thickness: Bone 1 with a cortical thickness of 1 mm, Bone 2 with a
cortical thickness of 2 mm, Bone 3 with a cortical thickness of 3 mm, and Bone 4, which was totally
cortical. Four groups were created in accordance with the implant macrogeometry (n = 10 per
group) and surface treatment: G1—regular implant design without surface treatment; G2—regular
implant design with surface treatment; G3—new implant design without surface treatment; G4—new
implant design with surface treatment. All implants used were 4 mm in diameter and 10 mm in
length and manufactured in commercially pure titanium (grade IV) by Implacil De Bortoli (São Paulo,
Brazil). The implants were installed using a computed torque machine, and following installation
of the implant, the stability quotient (implant stability quotient, ISQ) values were measured in two
directions using Osstell devices. The data were analyzed by considering the 5% level of significance.
All implant groups showed similar mean ISQ values without statistical differences (p > 0.05), for the
same synthetic bone block: for Bone 1, the value was 57.7 ± 3.0; for Bone 2, it was 58.6 ± 2.2; for
Bone 3, it was 60.6 ± 2.3; and for Bone 4, it was 68.5 ± 2.8. However, the insertion torque showed
similar higher values for the regular macrogeometry (G1 and G2 groups) in comparison with the new
implant macrogeometry (G3 and G4 groups). The analysis of the results found that primary stability
does not simply depend on the insertion torque but also on the bone quality. In comparison with
the regular implant macrogeometry, the new implant macrogeometry decreased the insertion torque
without affecting the implant stability quotient values.

Keywords: bone density; dental implants; healing chambers; initial stability; insertion torque; new
implant macrogeometry

1. Introduction

The initial implant stability is a fundamental requisite to obtain osseointegration [1,2]. The main
parameters that are involved are the bone condition (quality and quantity), the implant macrogeometry
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(design of the body and surface roughness), the osteotomy design, and the precise fit in the bone
(friction coefficient) [3]. Thus, to achieve adequate osseointegration of the implant, it is of fundamental
importance that a good primary stability of the implant is achieved after its installation into the bed
prepared in the bone tissue. This is crucial for the long-term success of the implant [4,5].

The force for insertion of the implant into the bone tissue is related to the quality of the bone
(density) and to the osteotomy performed (orifice size), generating compressive stresses at this contact
interface between bone tissue and implant [6]. These obtained levels of compression determine the
initial stability of the implant; sufficiently high values result in local ischemia of the bone and necrosis
at the implant–tissue interface [7–9]. In this sense, several studies have proposed that approaching
the diameter of the drilling (during the osteotomy) with the diameter of the implant that will be
inserted into the bone can facilitate and improve osseointegration through a decrease in the bone
compression [10,11]. Jimbo et al. (2014) showed, in a study using a dog model, that in the implants
placed with high torque, the samples presented a certain amount of necrotic bone inside the implants
threads, whereas in the samples where a larger amount of drilling was used, the samples presented
substantial formation of new bone [11]. The free space created inside the implant threads, resulting
from the drill–implant diameter ratio, was called healing chambers. Obviously, that procedure to
create this healing chambers (over-drilling protocol) generate a sensible decrease of the final insertion
torque level in the implant.

A low initial stability may allow micromovement of the implant during the healing period, and
fibrous tissue may form at the interface between the bone and the implant and lead to failure [12].
However, when the implants have good primary stability values, the healing time may be shorter, as
when the implants present low values of primary stability, they require longer waiting times to obtain
adequate bone healing and consequent secondary stability [13]. This acquired information about the
stability of the implants can help in determining the waiting time to obtain the healing of bone tissue
around the implant for each case and in an individualized way, increasing the safety of the treatments,
the effectiveness, and, in some cases, decreasing the time taken to complete the treatment [14].

In this sense, a new macrogeometry was developed with these concepts and the idea of “no bone
compression” during the implant insertion without the loss of initial stability after implant installation.
Healing chambers for the bone decompression were created in the implant thread body, generating
spaces to deposit the bone during the implant insertion. However, the concept of higher insertion
torque (IT), which translates into greater primary stability, cannot always be applied because bone
quantity and quality vary significantly between patients [13].

Continuous monitoring in an objective and quantitative manner is important to determine the
status of implant stability. Historically, the gold standard method used to evaluate the degree of
osseointegration was microscopic or histologic analysis. However, due to the invasiveness of this
method and related ethical issues, various other methods of analysis have been proposed: Radiographs,
cutting torque resistance, reverse torque, modal analysis, and resonance frequency analysis [15,16].
Thus, the purpose of the present study was to measure and compare the insertion torque, removal
torque, and the implant stability quotient by resonance frequency analysis in different polyurethane
block densities of two implant macrogeometries. Moreover, we analyze the effect of the threads
passage of both implant models during their insertion and after removed into the polyurethane block
totally cortical.

2. Materials and Methods

2.1. Synthetic Bone Characteristics

Synthetic bone blocks of polyurethane (Nacional Ossos, São Paulo, Brazil) with cortical and
medullar portions were used. The cortical portion was fabricated in a density of 40 pounds per cubic
foot (PCF) or 0.64 g/cm3, and the cancellous bone portion of all blocks presented a density of 15 PCF or
0.24 g/cm3 (Figure 1). In humans, the mean bone mineral density of the posterior maxilla is 0.31 g/cm3
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and that of the anterior maxilla is 0.55 g/cm3 [17]. The block configurations used presented a height of
2 cm, a width of 2 cm, a length of 13 cm, and four different cortical thicknesses at 1, 2, and 3 mm and
totally cortical (Figure 2). Polyurethane blocks were used at different densities to simulate bone in an
in vitro setting. Polyurethane is considered to be the standard material for performing mechanical
tests on orthopedic implants [18–21].
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2.2. Implant Characteristics and Group Distribution

The conical regular design shows progressive trapezoidal threads, a cervical portion with 1 mm
of plane configuration in the final cervical area, and a Morse taper connection, whereas the new
conical implant design shows progressive trapezoidal threads, a cervical portion with 1 mm of plane
configuration in the final cervical area, healing chambers in the threads, and a Morse taper connection.
Figure 3 show a schematic image of both implant designs.
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macrogeometry, respectively.

Both models were tested with a surface treated with a blasting process plus acid conditioning and
an untreated (machined) surface. The surface-treated implants were blasted with 50 to 100 µm of TiO2

microparticles, cleaned ultrasonically with alkaline solution, washed in distilled water, and conditioned
with maleic acid (HO2CCHCHCO2H). After these treatments, three implants from each group were
used to determine the roughness parameters using scanning electron microscopy (SEM) and atomic
force microscopy (AFM). The surface morphology of the samples in both groups was examined under
SEM (JEOL, model JSM 6490-LV, Tokyo, Japan) using the secondary electron (SE) detection mode with
an acceleration of 20 kV and a spot size of 4.0. For a direct comparison of the surface morphology, the
same magnification (1000×) was selected for all samples. Then, the samples were used to generate
a series of 3D images using a scanning probe microscope (AFM) (Bruker, Santa Barbara, CA, USA).
To measure the surface roughness parameters, an optical laser profilometer (Perthometer S2, Mahr
GmbH, Göttingen, Germany) was used, where Ra is the absolute value of all profile points, and Rz is
the value of the absolute heights of the five highest peaks and the depths of the five deepest valleys.

Four groups (n = 10 per group) were formed according to the implant design (Figure 2): Group 1
(G1)—regular conical design without surface treatment; group 2 (G2)—regular conical design with
surface treatment; group 3 (G3)—new conical design without surface treatment; and group 4 (G4)—new
conical design with surface treatment. The dimension of all implants used were 4 mm in diameter and
10 mm in length. The implants were manufactured by Implacil De Bortoli (São Paulo, Brazil).

2.3. Implant Management and Biomechanical Analysis

The drilling was done in accordance with the manufacturer’s designation for each implant model.
All osteotomies were prepared using a bench drill with 20 N of force using a surgical drill at a rotational
speed of 1200 rpm under intense external irrigation with saline solution, using a predeterminate
drilling sequence of the implant system (Figure 4): initially a Ø2 mm drill, Ø3.5 mm conical drill, and
Ø4.0 mm conical drill.

The implant installation was done using a computed torquimeter machine (Torque BioPDI, São
Paulo, Brazil), as shown in Figure 5.
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Figure 5. Image of the torque machine used to install and remove the implants into the synthetic
bone blocks.

All implants were installed at the bone level. The maximal insertion torque value was recorded
for each sample, and then the implants were removed, and the maximal removal torque was recorded.
To analyze and compare the viscoelastic properties of each bone model, an equation (the rule of three)
was used which used these data (insertion and removal torque values) to calculate the torque reduction
(TR) as a percentage:

Torque reduction =
insertion torque
removal torque

=
100%

X
(1)

Following each installation, the implant stability quotient (ISQ) was measured using the Osstell
Mentor device (Osstell, Göteborg, Sweden). The smart peg was screwed in the implant, and a torque of
10 N·cm was applied [22]. The ISQ values were represented on a scale from 1 to 100. The measurement
was performed in 2 directions for each sample (Figure 6), and an average value was determined for
each implant.
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2.4. Analysis of the Effect of the Threads Passage

The effect promoted by the threads passage in the polyurethane block of both implant models
(regular and new macrogeometry) was evaluated and described using photographic images obtained
after the implant insertion and removal in a fully cortical block model (Bone 4). This model was selected,
since it is among all, which is more evident the effect (scars) promoted during the implant passage.

2.5. Statistical Analysis

The IT and ISQ values were summarized using means and standard deviations. One-way analysis
of variance was used to compare the mean IT and ISQ values. The Shapiro–Wilk test was used to test
the normality. The Pearson’s correlation coefficient was used to evaluate the correlation between the IT
and the ISQ at implant placement. All analyses were done using GraphPad Prism version 5.01 for
Windows (GraphPad Software, San Diego, CA, USA). When the p-value was <0.05, the differences
were considered significant.

3. Results

No morphological and roughness differences were observed between samples from groups G1
and G3 and between groups G2 and G4. The images shown in Figure 7 represent the smooth surface
groups (G1 and G3 groups), and the images in Figure 8 represent the rough surface groups (G2 and G4
groups). The profilometer analysis showed the means and standard deviations of the absolute values
of all profile points (Ra): 0.11 ± 0.05 µm for the smooth surface implants and 0.85 ± 0.13 µm for the
rough surface implants. The root-mean-square of the values of all points (Rq) was 0.22 ± 0.09 µm for
the smooth surface implants and 1.14 ± 0.09 µm for the rough surface implants, and the average value
of the absolute heights of the five highest peaks and the depths of the five deepest valleys (Rz) was
1.12 ± 0.18 µm for the smooth surface implants and 5.11 ± 0.54 µm for the rough surface implants.
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The ISQ values showed similar values for both implant macrogeometries with the same treatment.
However, the G2 and G4 groups, in which the implants received surface treatment (rough surface),
showed values slightly higher than those of the G1 and G3 groups (without treatment on the implant
surface) in all bone models. The data values (mean and standard deviation) and statistical comparison
are summarized in Table 1 and demonstrated in the line graph shown in Figure 9.

Table 1. Mean, standard deviation, and statistical analysis of the measured values of ISQ for each
group in the different synthetic bone blocks.

Parameter Group G1 Group G2 Group G3 Group G4 p-Value

Bone 1 56.2 ± 3.71 58.5 ± 2.17 57.0 ± 3.79 59.2 ± 2.32 0.4093
Bone 2 57.2 ± 1.60 59.5 ± 1.87 58.0 ± 2.28 59.5 ± 2.88 0.4842
Bone 3 59.3 ± 2.34 60.7 ± 2.17 60.2 ± 2.48 62.0 ± 2.10 0.2105
Bone 4 66.8 ± 3.25 69.2 ± 2.79 68.7 ± 2.42 69.3 ± 2.66 0.2551
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The torque caused by the insertion and removal of the implants presented similar values for the
same macrogeometry; however, different values were shown between the two macrogeometries, where
the regular macrogeometry showed superior values (a mean of ~17% higher) for both groups (G1 and
G2 group) in comparison with the G3 and G4 groups, independent of the bone density. The data values
(mean and standard deviation) are summarized in Table 2.

Table 2. Means and standard deviations of the measured values of insertion torque for each group in
the different synthetic bone blocks.

Parameter Group G1 Group G2 Group G3 Group G4

Bone 1 13.4 ± 2.04 13.8 ± 2.55 11.0 ± 2.06 11.2 ± 2.19

Bone 2 16.0 ± 1.93 16.4 ± 1.98 13.1 ± 2.58 13.8 ± 2.03

Bone 3 19.5 ± 2.39 20.2 ± 2.89 15.7 ± 3.99 16.2 ± 3.36

Bone 4 29.6 ± 2.33 30.4 ± 2.85 25.8 ± 3.89 26.2 ± 3.32

The insertion torque values obtained from the groups with the same macrogeometry were
compared statistically to determine possible differences (G1 and G2 versus G3 and G4) considering
that the surface treatment did not change the torque values in this test for the samples evaluated in our
study. The bar graph in Figure 10 show the comparative values of the insertion torques of the two
macrogeometries tested and the statistical analysis, which showed statistical differences between both
implant macrogeometries (p < 0.05).
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implant macrogeometries in each synthetic bone block model.

Regarding the overall mean of the bone models, the values of removal torque were 44.6% smaller
than the insertion torque for the groups with regular macrogeometry (G1 and G2 groups) and 39.4%
for the groups with the new implant macrogeometry (G3 and G4 groups). The data collected on the
removal torque of all bone models and groups are summarized in Table 3.

Table 3. Means and standard deviations of the measured values of removal torque for each group in
the different synthetic bone blocks.

Parameter Group G1 Group G2 Group G3 Group G4

Bone 1 6.72 ± 1.43 6.92 ± 1.44 6.50 ± 1.52 6.94 ± 1.32
Bone 2 7.46 ± 1.52 7.84 ± 1.46 7.10 ± 1.57 7.48 ± 1.54
Bone 3 8.46 ± 1.50 9.78 ± 1.70 8.34 ± 1.97 8.58 ± 1.72
Bone 4 20.22 ± 1.86 20.78 ± 2.05 17.14 ± 1.85 18.38 ± 1.40

Overall, the calculated reduction torque was 50% for the G1 and G2 groups and 39% for G3 and
G4 groups in Bone 1; for the Bone 2, the reduction torque was 53% in the G1 and G2 groups and 45% in
the G3 and G4; for the Bone 3, it was 55% for the G1 and G2 groups and 47% for the G3 and G4 groups;
and for the Bone 4, the mean value was 32% for all groups.

No correlation was detected between the insertion torque and stability (ISQ) values for the groups.
The correlation analysis between the insertion torque and initial stability quotient is shown in Table 4.

Table 4. Pearson correlation analysis and p values of the insertion torque and initial stability quotient
of all groups in all bone models.

Group Bone 1 Bone 2 Bone 3 Bone 4

G1 r = 0.334/p = 0.497 r = −0.395/p = 0.419 r = −0.348/p = 0.497 r = −0.486/p = 0.053

G2 r = 0.358/p = 0.497 r = 0.086/p = 0.919 r = −0.717/p = 0.136 r = −0.152/p = 0.803

G3 r = 0.029/p = 1.000 r = −0.541/p = 0.058 r = −0.429/p = 0.419 r = 0.435/p = 0.419

G4 r = 0.086/p = 0.919 r = 0.486/p = 0.356 r = −0.058/p = 0.919 r = −0.395/p = 0.419

r = correlation coefficient; p = value of the statistical difference.

By analyzing the effect of the threads passage of both implant models during their insertion into the
polyurethane blocks, it was possible to observe that the samples with regular macrogeometry (groups
G1 and G2) promoted a few cuts of the bone during the passage of the threads, while in the model with
the new macrogeometry, we observed that the bone tissue was cut and carried by the threads, as shown



J. Funct. Biomater. 2019, 10, 47 9 of 14

in the images of Figure 11. Moreover, the quantity of bone particles that was observed to be deposited
on the surface of the new macrogeometry was higher than that on the regular macrogeometry. After
removing the implant, we observed that the bone of the new macrogeometry site showed a greater
marking produced by the passage of the threads in comparison with the regular macrogeometry.
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Figure 11. Representative image of the effect (scars promoted) of threads passage of the two
implant macrogeometries used. The atop image sequence shows the regular macrogeometry, and the
bottom image sequence shows the new macrogeometry during the implant insertion and after the
implant removal.

4. Discussion

The present study evaluated the insertion and removal torque of two implants with different
macrogeometries (regular and a new design), with and without surface treatment. We also measured
the primary stability through a resonance frequency analysis in different bone densities. The primary
stability of the implants during installation was determined by the bone quality, bone quantity, implant
geometry, and installation technique. Several authors have shown the importance of primary stability
in obtaining osseointegration of dental implants [23–25], and failure to obtain efficient primary stability
can lead to early implant loss [26]. In addition to these factors, it has been demonstrated in other
studies that treatment of the implant surface can influence the results of primary stability [23–25].

The implants of groups G3 and G4 with the new macrogeometry were developed to improve and
accelerate osseointegration based on the hypothesis that no bone compression would occur during
installation [27]. This concept has been demonstrated in several recent studies [11,27], which tested an
undersized osteotomy to decrease the bone compression during the implant insertion. The histological
results showed that the maneuver improves and accelerates the osseointegration of the implants.
However, the authors stated that the technique can promote a decrease in the initial stability of the
implants. In this sense, the idea of a new macrogeometry with healing chambers incorporated into the
implant body does not alter the size of the osteotomy but generates spaces to make the bone decompress.
Then, we proposed a comparison of this new macrogeometry with a regular macrogeometry to evaluate
the relationship between less bone compression during the implant installation with the obtention of
the insertion torque and the initial stability. The results show that, in comparison with the regular
macrogeometry, the insertion torque of the new macrogeometry was less than 16% (overall of the
mean), while the initial stability was not affected.
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In all groups the torque removal was significatively less than the insertion torque. However, the
implant groups with the new macrogeometry (G3 and G4 groups) showed a smaller reduction torque
change than the implant groups with the regular macrogeometry (G1 and G2 groups), except for the
fully cortical bone model (Bone 4), where the reduction torque was equal for both tested implant
macrogeometries. The lower values of reduction torque suggest that the presence of decompression
chambers decreased the stresses over the bone where the implants were inserted. According to Ahn
et al. [28], the difference between insertion torque and removal torque is due to the restricted viscoelastic
properties of the surrounding artificial bone, which results in less resistance during removal. Bone
3 (with a cortical thickness of 3 mm) showed a higher reduction in torque, which presented more
viscosity in relation to the other bone models tested, whereas Bone 4 showed less viscosity.

Regarding the synthetic bone blocks used for in vitro analysis, the rigid polyurethane foam with
homogeneous and good characteristics is considered an ideal material and is in accordance with the
ASTM standard F1839-08 (1997) [29]. Thus, we used a polyurethane foam density of 0.48 g/cm3 in the
cortical portion, considering that the mean of cortical bone density in human maxilla is 0.31 g/cm3 for
the posterior area and 0.45 g/cm3 for the anterior area [29]. The densities of polyurethane foam used
in the present study was of 15 pounds per cubic foot (pcf), corresponding to a density of 0.24 g/cm3

(similar to the D3 bone type by Mish [30,31]); and 40 pcf, corresponding to 0.55 g/cm3 (similar to D1
bone by Mish [30,31]). Cancellous bone receives and dissipates the forces generated by mastication
after implant osseointegration more efficiently; however, to obtain the initial stability, cortical bone is
more important because it has high density and resistance (~40% more) in comparison to medullary
bone [10].

Resonance frequency analysis (RFA) measurement using Osstell Mentor is frequently used to
evaluate the implant stability in preclinical and clinical studies [32–34]. This technique has been widely
used because it is not invasive and does not require extra procedures to obtain the data. However,
this method revealed the absence of mobility of the installed implant and not the bone quantity at
the implant–bone interface [35,36]. The determination of good osseointegration is directly related to
the absence of movement at the bone–implant interface in the different types of bone density [31].
Therefore, the lack of micromovement determined by a rigid primary stability and healing period free
from external stimuli is originally a prerequisite for obtaining a satisfactory clinical result [37]. However,
for implants placed in low density bone, the stability indices (RFA) at the end of the osseointegration
process will be similar to those of medium- and high-density bone implants [38]. Different from this
result, we did not find a correlation between the values of the RFA at the moment of implant installation
and the torque in the fixation of the implants, which was also reported in another study [39]. These
results indicate that we must use greater caution when conferring the analysis of frequency of dental
implants, because the limits of height and width of the implants, as well as factors of bone density, can
influence its result.

The results showed that the insertion torque increased in accordance to the bone density increase,
whereas the implant stability (ISQ) showed no variation in Bone 1–3 models. The results found in
our study showed that there is no correlation between the two parameters tested. Therefore, the only
factors that showed a positive correlation between the IT and the ISQ value were the bone density and
thickness of the cortical bone. This result is in accordance with other publications [12,40]. Moreover,
Lages et al. reported that the clinician should choose only one of the methods to determine the primary
stability of implants, as these are independent and incomparable methods [12].

The interaction between the implant and the adjacent bone immediately after its insertion
depends mainly on the macrogeometry of the implant and the topography of its surface [41,42].
However, some studies in the literature still question the influence of surface treatment on the primary
stability [12,43–46] corroborated the results obtained in the present study, where the two implant
designs did not present a statistical difference in the insertion torque values between the treated and
non-treated surfaces.
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Several authors evaluated the strength and stiffness of the shear bone–implant interface
through resonance frequency analysis to search for information about the degree of contact in
this interface [2,3,6,47,48]. In the present study, when evaluating the initial stability of the implants
inserted in the synthetic cortical bone (40 PCF), it was verified that all implants obtained the highest
values. However, the implants with regular macrogeometry showed superior values due to having
greater contact and friction surface between the screw and the material [43,49].

In the resonance frequency analysis, larger values were observed in implants that underwent
surface treatment (G2 and G3 groups) compared to the machined ones (G1 and G3 groups), corroborating
findings described by other authors [50]. Despite these data, the presence of surface treatment was
not associated with a significant difference between machined and treated implants on all substrates.
These results corroborate with studies in the literature [43,51] and suggest that RFA is not sensitive
enough to detect minor alterations, such as the surface treatment of the implants.

Some studies have shown that, due to lateral cortical compression of low quality bone sites,
conical implants have a higher IT than cylindrical implants [52–55]. These studies show that the conical
implants present higher IT values when compared to cylindrical ones when inserted in the swine
bone and artificial polyurethane bone of 15 PCF, suggesting that the use of this type of screw in low
density bones is appropriate [53]. The conical implant design was selected and used in the present
study because it presents a higher insertion torque when compared to a cylindrical implant design,
as shown in other studies [26,53–56].

The absence of correlation between RFA and IT has been reported in several studies [39,41,57].
However, an important finding was the reduction in the insertion torque values found, especially in
the groups of the regular implant macrogeometry (G1 and G2), which can be considered as a loss of
primary stability, even in the presence of high ISQ values. As previously described, the higher bone
density values generate a greater the possibility of reducing the initial torque measured by the viscosity
of this tissue. Certainly, new studies that evaluate and corroborate these findings should be performed.

Regarding the limitations of the present study, we can report that only the mechanical aspects
of the effect of surface format and treatment were evaluated, that is, biological factors such as bone
response, individual characteristics, local variations in human bone, and the surgical technique, which
also influence primary stability in a clinical situation. Regarding the material (synthetic bone blocks)
used, inhomogeneity due to the presence of fat, bone marrow, and blood inside the real human bone is
challenging to model in a foam model. It was assumed that the contributions of these components
are negligible. The current results apply to the implants of dimensions as described. Hence, caution
should be exercised while extrapolating the results to other implant types. However, it has been
demonstrated that the surface treatment, shape, and difference in implant threads depends on the
correlation between shape and bone density in order to promote an optimal biomechanical condition
for osseointegration. Another important observation is that, in our study, the foam was destroyed by
the threads. However, we compared implants on the basis that the bone would be damaged in the
same way as foam. Therefore, it is important to note that a bone of the same density may be much
more or less resistant to the cut, and the result of the thread crossing may be completely different.

5. Conclusions

Within the limitations of the present in vitro study, it can be concluded that, in comparison with
the regular implant macrogeometry, the new implant macrogeometry presented low insertion torque
values without affecting the implant stability quotient (ISQ) values. In addition, the insertion torque
and ISQ values did not differ in relation to the surface treatment of the tested implants. Finally,
no correlation was found between the insertion torque and ISQ values measured by the Osstell device.
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2. Matys, J.; Świder, K.; Grzech-Leśniak, K.; Dominiak, M.; Romeo, U. Photobiomodulation by a 635nm Diode
Laser on Peri-Implant Bone: Primary and Secondary Stability and Bone Density Analysis-A Randomized
Clinical Trial. Biomed. Res. Int. 2019, 2019. [CrossRef] [PubMed]
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