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ABSTRACT: The accurate prediction of fertilizer crushing force
could reduce the crushing rate in the process of transportation and
utilization and ensure the efficient utilization of the fertilizer so as
to realize the sustainable and clean production of crops. To achieve
this goal, a fertilizer crushing force prediction model based on the
shape characteristics was proposed in this paper using the Pearson
correlation coefficient, differential evolution algorithm, and the
support vector machine (P-DE-SVM). First, the shape character-
istics and crushing force of fertilizers were measured by an
independently developed agricultural material shape analyzer and
digital pressure gauge, and the shape characteristics related to the
fertilizer crushing force were proposed based on the Pearson
correlation coefficient. Second, a fertilizer crushing force prediction model based on a support vector machine was constructed, in
which the optimal kernel function was the radial basis function. Finally, a differential evolution algorithm was proposed to optimize
the internal parameters of the fertilizer-crushing force prediction model, and at the same time, a fertilizer granularity inspection range
was calculated. The experimental results showed that the maximum error rate of the fertilizer crushing force prediction model was
between −10.4 and 10.9%, and the fertilizer granularity inspection range was reasonable. The proposed prediction model in this
paper could lay a solid foundation for fertilizer production and quality inspection, which would help reduce fertilizer crushing and
improve fertilizer utilization to realize the sustainable and clean production of crops.

1. INTRODUCTION

As one of the most important basic substances in agricultural
production, fertilizers play an important role in ensuring the
safety of food production and the high yield of agriculture.1

China is the world’s major fertilizer production and
application country. In 2018, the total output of agricultural
fertilizers reached 54.18 million tons, and the application
amount of agricultural fertilizers reached 56.534 million tons,
accounting for around 1/3 of the world’s total.2 Fertilizers are
easily broken during transportation and utilization, causing
fertilizer to cake, affecting the diffusion of fertilizer nutrients,
and resulting in low fertilizer utilization.3,4 Therefore,
accurate prediction of fertilizer crushing force is of great
significance for reducing fertilizer waste and improving
fertilizer utilization.
The particle shape affects the mechanical and flow behavior

of the granular material.5,6 For example, corner sand tends to
have high shear strength, stress concentration at the contact,
resistance to flow, and liquefaction.7 Besides, particle
morphology also affects the interaction of particles with
fluid and air, such as drag coefficient and mineral floatability.8

Therefore, shape characteristic is an important parameter for
predicting and controlling the properties of granular
materials. Fertilizer is an important kind of agricultural

granule. Its shape characteristics affect the appearance quality,
strength, fluidity, and the effect of machine-seeded fertilizer
and have important significance for the design and research
of agricultural machinery.9,10

Kan et al.11 found that the higher the sphericity of the
fertilizer, the denser the fertilizers, the higher the strength of
the fertilizer; the higher the roundness of the fertilizer, the
smoother and more uniform the fertilizer, the greater the
porosity of the fertilizer, and the faster the heat dissipation,
the better the fluidity. Research by Hofstee and Huisman12

found that the five physical properties that affect fertilizer
movement are fertilizer granularity, strength, friction co-
efficient, recovery coefficient, and aerodynamic resistance.
Among them, the strength of the fertilizer indirectly affects its
movement, and fertilizers with low strength will rupture
during movement, resulting in changes in the size of
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fertilizers, affecting the distribution of particle nutrients. Cao
et al.13 found through research that the shape of the fertilizer
and the pore structure formed by fertilizer accumulation
affect the diffusion of fertilizer salt ions, which in turn affects
fertilizer performance. Basu and Kumar14 and Terry15 found
through research that the granularity of fertilizer affects the
separation and release time of fertilizer nutrients. Through
model tests, Hoffmeister, Watkins, and Silverberg16 found
that the difference in fertilizer granularity, shape, and density
affects the changing trend of nutrient separation during the
transportation and spread of blended fertilizers.
Fertilizers are irregularly shaped particles, and it is difficult

to accurately measure their shape characteristics manually.
With the rapid development of computer and software
technology, it is possible to measure particle shape with the
help of computer technology. Fernlund17 measured the axial
length of the long axis, the middle axis, and the short axis of
the coarse aggregate through the 3D image analysis method,
and the result showed that the measurement result of this
method has a good correlation with the measurement result
of the Danish box. Zhang, Ye, Chen, and Li18 used digital
image technology to measure and evaluate the shape of gravel
particles.
In recent years, artificial intelligence and machine learning

theories have been widely studied and applied. Machine
learning methods based on statistical theory, such as neural
networks, decision trees, and support vector machines, show
excellent performance when dealing with classification and
prediction problems.19 Compared with the neural network,
the support vector machine is constructed according to the
structural risk minimization criterion, which can reduce the
probability of model overfitting and make up for the
shortcomings of the neural network. The insensitive area in
the structure can absorb the small-scale random fluctuations
that appear in the random response, so it still has a good
predictive ability in the case of a small amount of data.20

Support vectors have developed rapidly in various fields, such
as small samples, nonlinearity, and pattern recognition, and
can be extended to other practical problems such as function
fitting.21

Stevens, Nocita, Tot́h, Montanarella, and van Wesemael22

used support vector machines and Cubist to predict organic
carbon. Lu, Zhang, Wu, Ma, Liao, and Hu23 built a
prediction model for the cutting speed, feed rate, depth of
cut, and surface roughness in the milling of vermicular
graphite cast iron based on support vector machines and
verified the validity of the prediction model. Li, Gui, and
Zhu24 used convolutional neural networks to extract the
features of foam images and built a fault diagnosis model in
the flotation process based on support vector machines.
Based on the above research studies, it is found that the

shape characteristics affect fertilizer crushing force. Fertilizers
with low crushing force are more likely to be crushed during
transportation and utilization. Crushed fertilizers affect
nutrient diffusion, reduce fertilizer utilization, and pollute
the environment, which is not conducive to the sustainable
production of crops. So far, there are few studies on support
vector machines in fertilizer crushing force prediction models.
To predict the fertilizer crushing force and reduce the
fertilizer crushing rate, the triaxial characteristics, roundness,
sphericity, granularity, and crushing force of the fertilizer
were measured by an agricultural material shape analyzer and
digital pressure gauge. Based on the Pearson correlation

coefficient, the support vector machine, and the improved
differential evolution algorithm (P-DE-SVM), a fertilizer
crushing force prediction model was constructed, and the
fertilizer granularity inspection range was calculated.

2. MATERIALS AND METHODS
2.1. Description Method of Fertilizer Shape Charac-

teristics. 2.1.1. Triaxial Characteristics. The macroscopic
outline of particles is usually represented by three mutually
perpendicular axes, namely, the long axis, the middle axis, and
the short axis, which are equivalent to the dimensions of the
length, width, and thickness of the particle. In a natural and
stable state, the length of the particles refers to the largest
dimension in the plane projection graph, the width refers to
the linear dimension perpendicular to the length direction,
and the thickness refers to the linear dimension perpendicular
to the length and width directions. The relationship between
the three axes of particles can be expressed by the equiaxed
rate and flake rate25

=k b a/ (1)

λ = c b/ (2)

where k is the particle equiaxed rate, λ is the particle flake
rate, a is the particle length, b is the particle width, and c is
the particle thickness.

2.1.2. Roundness. The roundness (σ) reflects the sharp-
ness of the edges and corners of the particles. The particle
roundness is defined as26

σ π= A L4 / 2 (3)

where L is the particle projection contour circumference, and
A is the particle projection area.

2.1.3. Sphericity. Sphericity (φ) reflects how close the
particle is to the sphere. The particle sphericity is defined
as27

φ = v v/ s
3 (4)

According to the definition of the particle sphericity, if the
particle is equated as an ellipsoid, the equivalent volume v of
the particle is28

π=v abc( /6) (5)

Substituting formula 4 can obtain the calculation formula
of particle sphericity

φ π π= = =v v abc a bc a/ ( /6) /( /6) /s
3 23 3 3

(6)

where v is the equivalent volume, and vs is the volume of the
smallest sphere circumscribed by the particle (a sphere whose
diameter is length a).

2.1.4. Granularity. Granularity (d) is used to indicate the
size of the particles, which can be expressed as the single size
of a single particle or the average granularity of a group of
particles. The granularity d of a single spheroid is29

π= =d v abc6 /3 3 (7)

where d is the granularity.
2.2. Measurement Method of Fertilizer Shape

Characteristics. 2.2.1. Measurement of Fertilizer Shape
Characteristics. We use the agricultural material shape
analyzer independently developed to obtain the fertilizer
shape parameters. The structure of the machine is shown in
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Figure 1. It is mainly composed of the base, the objective
stage, the stepping motor, the top camera, the top lens, the
side camera, the side lens, the power supply, the upper
computer, and the lower microcomputer. Among them, the
stepping motor is an 86BYG250H two-phase motor produced
by Pfide Electric Co., Ltd., with a step angle of 1.8°. The top
camera and the side camera are both FL-U3-13S2C-CS
industrial cameras produced by Point Grey, and the
resolution is 1328 × 1048. The top lens and the side lens
are both FL-CC3516-2M fixed-focus lenses produced by
Pentax, with a focal length of 35 mm.
The agricultural material shape analyzer uses intermittent

static collection mode to automatically collect the top and
side images of a single fertilizer. The objective stage is
engraved with a cross calibration, and the fertilizer to be
tested is first placed at the center of cross calibration. The
objective stage is connected to the stepping motor through a
half-circle key, and the lower microcomputer controls the
rotation of the stepping motor to drive the stage to achieve
the rotation of the fertilizer to be tested. The stepping motor
stops after the set angle is rotated, the lower microcomputer
sends a rotation completion command to the upper computer
through the serial port, and the upper computer controls the
top and side cameras to collect the top and side images of
the fertilizer to be tested. After the acquisition is completed,
the upper computer sends an image acquisition completion
command to the lower microcomputer through the serial
port, and the lower microcomputer controls the stepping
motor to rotate again. We repeat this process until the top
and side images of the target number are obtained. The
collection process is shown in Figure 1.
To establish the relationship between the actual size of the

fertilizer and the pixels, the image information of the
calibration target (10 mm × 10 mm black square) is
collected, and the grayscale and binarization process is
performed. The process is shown in Figure 2. In the
threshold image, the target area is black and the threshold
value is 0. The threshold image is traversed by pointer
scanning, and the number of rows of all pixels that meet the
defined threshold is counted N0 = 550. According to formula
8, the actual length represented by a single pixel (L0) is 0.018
mm. After the length calibration and the images of the single
fertilizer are all collected, the upper computer analyzes the
top and side images to obtain the basic parameters of the

fertilizer, as shown in Figure 3. The specific process is as
follows:

(1) The top and side images are grayscale and Gamma-
corrected, and the edge detection is performed on the
top and side grayscale images of the fertilizer using the
Canny operator to obtain the top and side contour
images of the fertilizer.

(2) In the top contour image of the fertilizer, the
parameters such as the perimeter L, area A, and the
minimum circumscribed rectangle of the top contour of
the fertilizer are obtained. Because the length of the
minimum circumscribed rectangle of the fertilizer
contour represents the maximum size of the particle
in the top view projection, the width of the minimum
circumscribed rectangle represents the minimum size of
the fertilizer in the top-view projection. Therefore, the
length and width of the minimum circumscribed
rectangle are, respectively, equivalent to the length a
and width b of the fertilizers, and then, the fertilizer
equiaxed ratio k and roundness σ are calculated
according to eqs 1 and 3

(3) In each side image of the fertilizer, the minimum
circumscribed rectangle parameters of the side contour
are obtained. The width of the minimum circumscribed
rectangle represents the straight-line size of the
fertilizer perpendicular to the length and width
direction. To reduce the error, the average value of
the minimum circumscribed rectangle width of all side
contours is equivalent to the particle thickness c, and
then, the fertilizer flake rate λ, sphericity φ, and
granularity d are calculated according to formulas 2, 6,
and 7

Figure 1. Three-dimensional structure of the machine and fertilizer collection process. 1. Upper computer 2. Base 3. Adjusting foot 4. Lower
microcomputer 5. Driver 6. Stepper motor 7. Power conversion module 8. Power supply 9. Objective stage 10. Fertilizer to be tested 11. Side
lens 12. Side camera 13. Side notch 14. Data transmission line 15. Top lens 16. Camera adjustment frame 17. Top notch 18. Top camera.

Figure 2. Length calibration. Note: a, b, and c refer to the length,
width, and thickness of fertilizers, respectively.
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=L N10/0 0 (8)

where L0 is the actual length value represented by a single
pixel, and N0 is the number of rows of all pixels that meet the
defined threshold.
2.2.2. Measurement of Fertilizer Crushing Force. The

crushing force of the fertilizer is obtained by the SGW-J
digital pressure gauge produced by Shanghai Siwei Instru-
ment Manufacturing Co., Ltd. The structure of the machine
is shown in Figure 4. It is mainly composed of the digital
operation interface, the objective stage, the pressure head, the
hand wheel, the column, the adapter plate, and the base.
Among them, the force sensitivity is 0.1 N, the relative

velocity of the pressure head is about 0.25 mm/s, and the
diameter of the objective stage is 17.5 mm.
First, the fertilizer was randomly placed on the objective

stage, and the peak value measurement mode was selected.
Second, the hand wheel was turned to move the objective
stage upward slowly, and the fertilizer touched the pressure
head. At this time, the digital display interface showed the
pressure is 0 N. Third, the hand wheel was continued to be
turned, the fertilizer was pressed by the pressure head, and
the digital display interface showed the pressure value
increase process in real time. Finally, the hand wheel was
continued to be turned until the fertilizer was completely
crushed, the pressure was no longer increased, and the digital
display interface showed the maximum pressure value in the
whole process.

2.3. Construction of the Crushing Force Prediction
Model. This paper uses an agricultural material shape
analyzer and a digital pressure gauge to measure the shape
characteristics and crushing force of different fertilizers. The
prediction model of the fertilizer crushing force (P-DE-SVM)
is constructed through a support vector machine combined
with the Pearson correlation coefficient and the differential
evolution algorithm. The model of the overall process is
shown in Figure 5.

3. RESULTS AND DISCUSSION

3.1. Data Acquisition and Preprocessing. According
to the different nutrients in fertilizers, fertilizers can be
divided into NF (N fertilizer), PF (P fertilizer), KF (K

Figure 3. Extraction process of particle shape parameters.

Figure 4. Structure of the digital pressure gauge. 1. Digital operation
interface 2. Pressure head 3. Objective stage 4. Hand wheel 5.
Adapter plate 6. Column 7. Base.
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fertilizer), CF (compound fertilizer), and OF (organic
fertilizer).30 Among the NF produced by Sinofert Holding
Limited, PF produced by Yuntianhua Group Co., Ltd., KF
produced by Luxi Chemical Group Co., Ltd., CF produced
by Stanley Agricultural Group Co., Ltd., and OF produced by
Xinyangfeng Agricultural Technology Co., Ltd., 100 particles
of each fertilizer were collected by random sampling from the
same production batch, and a total of 500 particles were used
as test samples. In the experiment, taking this sample as the
research object, the shape parameters and crushing force were
immediately measured by the agricultural material shape
analyzer and digital pressure gauge. At the same time, other
fertilizers in the same batch were dried to measure the
density and moisture content. Among the same kind of
fertilizers, the moisture, density, and other physical

parameters were the same, except for the shape character-
istics.
The densities of NF, PF, KF, CF, and OF were 1268,

1283, 1279, 1300, and 1155 kg/m3, respectively. The
moisture contents were 2.32, 2.19, 2.25, 1.14, and 5.25%,
respectively. The distribution of length, width, thickness,
granularity, and crushing force is shown in Figure 6. To verify
the accuracy of the measurement, the statistical calculations
were first performed on the test data, and the maximum,
minimum, average, range, and standard deviation of each
parameter of the fertilizer to be tested were obtained. The
results are shown in Table 1. Among them, the average and
standard deviation are

Figure 5. Construction process of the prediction model.

Figure 6. Shape characteristics and crushing force distribution of different fertilizers.
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where xi is the sample value, n is the total number of
samples, x̅ is the sample average, and S is the sample standard
deviation.
It can be seen from Figure 6 and Table 1 that the

distribution of length, width, thickness, granularity, and
crushing force of NF, PF, CF, and OF is close to the bell-
shaped distribution with the middle thickness and narrow
sides; the granularity distribution is 2.723−4.740, 3.009−
4.730, 3.316−5.341, and 3.306−5.040 mm, the crushing force
is between 8.500 and 37.300 N, 57.700 and 132.650 N,
33.750 and 109.550 N, 17.900 and 50.500 N; and the
distribution of length, width, granularity, and crushing force
of KF is close to the middle thickness and narrow bell-shaped
distribution on both sides. Its granularity distribution is

between 3.031 and 5.828 mm, and the crushing force
distribution is between 32.350 and 232.450 N.
To eliminate the abnormal data caused by negligent error,

this study uses the Grubbs test method to test the discrete
value of the directly measured raw data. First, the test data
are sorted from small to large to obtain the average value and
standard deviation of the data. Second, the statistic Ti is
calculated according to formula 11, and the maximum value
TMax is obtained, and the results are shown in Table 2.
Finally, the statistic TMax is compared with the critical value
Tα,n in the Grubbs test table (α is the significance level, and n
is the sample size). If TMax ≥ Tα,n, it means that xi is a
discrete value and must be discarded; otherwise, it should be
retained.

= ̅ − =T
x x

S
i( 1, 2, 3, ..., 100)i

i
(11)

where Ti is the statistic value.
We query the Grubbs test value table, take α = 0.05, n =

100, and T0.05,100 = 3.207, and compare the maximum value
TMax under each factor in Table 2 with T0.05,100. We find that

Table 1. Different Fertilizer Parameters

item
length
a/mm

width
b/mm

thickness
c/mm

granularity
d/mm

equiaxed
rate k

flake
rate λ roundness σ sphericity φ

crushing force
s/N

NF maximum 5.590 5.020 4.310 4.740 0.985 0.988 0.984 0.984 37.300
minimum 2.950 2.670 2.320 2.723 0.615 0.683 0.681 0.670 8.500
average 4.081 3.615 3.255 3.630 0.889 0.901 0.893 0.892 23.078
range 2.640 2.350 1.990 2.017 0.370 0.304 0.303 0.315 28.800
standard
deviation

0.550 0.493 0.487 0.471 0.068 0.063 0.052 0.054 6.476

PF maximum 5.870 4.970 4.210 4.730 0.972 0.972 0.955 0.955 132.650
minimum 3.360 2.830 2.180 3.009 0.665 0.587 0.716 0.715 57.700
average 4.565 3.842 3.167 3.807 0.844 0.830 0.839 0.837 92.599
range 2.510 2.140 2.030 1.721 0.307 0.385 0.239 0.240 74.950
standard
deviation

0.493 0.445 0.386 0.358 0.072 0.098 0.053 0.054 16.883

KF maximum 9.780 6.500 4.370 5.828 0.992 0.994 0.918 0.920 232.450
minimum 4.410 3.040 1.250 3.031 0.442 0.303 0.430 0.431 32.350
average 6.879 4.784 3.279 4.721 0.709 0.696 0.704 0.697 108.549
range 5.370 3.460 3.120 2.796 0.550 0.691 0.488 0.489 200.100
standard
deviation

1.190 0.742 0.641 0.580 0.130 0.148 0.091 0.092 41.938

CF maximum 5.480 5.440 5.110 5.341 0.998 0.998 0.997 0.997 109.550
minimum 3.470 3.400 3.090 3.316 0.770 0.785 0.804 0.804 33.750
average 4.263 4.091 3.914 4.085 0.961 0.957 0.960 0.960 70.166
range 2.010 2.040 2.020 2.025 0.228 0.212 0.194 0.193 75.800
standard
deviation

0.442 0.396 0.397 0.386 0.043 0.040 0.037 0.037 15.182

OF maximum 7.250 5.810 4.450 2.670 0.992 0.996 0.978 0.978 50.500
minimum 3.440 3.020 2.580 0.320 0.590 0.863 0.676 0.660 17.900
average 5.142 4.208 3.478 1.007 0.828 0.970 0.830 0.826 30.931
range 3.810 2.790 1.870 2.350 0.402 0.133 0.302 0.318 32.600
standard
deviation

0.779 0.531 0.419 0.478 0.103 0.027 0.070 0.073 6.413

Table 2. Results of the Grubbs Test

index length a width b thickness c circumference L area A crushing force s

TMax NF 2.745 2.853 2.167 2.622 2.256 2.358
PF 2.646 2.535 2.705 3.012 2.891 2.580
KF 2.437 2.350 3.167 2.234 2.287 2.912
CF 2.751 3.003 3.010 2.479 2.658 3.205
OF 2.113 2.128 2.255 2.473 2.183 1.994
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the data in each group are all less than T0.05,100, so the
original data in the group has no discrete value, which proves
that the data is valid and accurate.
3.2. Pearson Correlation Coefficient. The Pearson

correlation coefficient is a statistical method that accurately
measures the closeness of the relationship between two
variables.31,32 It can reflect the strength of the linear
correlation between the two variables. For variables M =
[m1, m2, ..., mn]

T and N = [n1, n2, ..., nn]
T, the calculation

formula of the Pearson correlation coefficient is:

=
∑ − ̅ − ̅
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In formula 12, mi and ni are variable values and m̅ and n̅
are average values.
The value range of the correlation coefficient r is −1 ≤ r ≤

1. The closer |r| is to 1, the higher the correlation between m
and n. If r = −1, it means that there is a completely negative
linear correlation between m and n; if r = 1, it means that
there is a completely positive linear correlation between m
and n; if r = 0, it means that there is no linear correlation
between m and n. In general, when |r| ≥ 0.8, it can be
regarded as high correlation; when 0.5 ≤ |r| < 0.8, it can be
regarded as moderate correlation; when 0.3 ≤ |r| < 0.5, it can
be regarded as low correlation; when |r| < 0.3, it indicates
that the linear correlation between the two variables is
extremely weak and can be regarded as a nonlinear
correlation.
To accurately measure the correlation between fertilizer

shape characteristics and crushing force, the Pearson
correlation coefficients of the shape characteristics and
crushing force of NF, PF, KF, CF, and OF were calculated,
and through a two-tailed T test with a significance level of
0.05, the reliability of the correlation coefficient r is
examined, and the results are shown in Figure 7.
It can be seen from Figure 7 that the length, width,

thickness, and granularity of NF, KF, PF, CF, and OF are
positively correlated with the crushing force, while the
equiaxed rate, flake rate, roundness, and sphericity have no
significant correlation with crushing force. Among all the
shape characteristics that affect the crushing force of
fertilizers, the granularity of the fertilizer has the most
significant effect on the crushing force.

3.3. Support Vector Machine Regression. Because of
the random volatility of the fertilizer characteristic detection
process, a support vector machine regression model with
certain advantages in fitting small samples and nonlinear
problems is used to construct a prediction model of fertilizer
characteristics and crushing force.33,34 In the process of
fertilizer shape feature detection, the input variable xi and
output (fertilizer crushing force) si of each set of experiments
are used to construct a sample space {(xi, si), i = 1, 2, 3, ...,
n}. si can be expressed as a nonlinear function model, as
shown in eq 13

ω φ= +f x x b( ) ( )s
T

(13)

where φ(x) is the nonlinear mapping of the input space x,
ωT is the coefficient of the independent variable function, and
b is the offset.
To minimize the empirical risk of training errors, ωT and b

are evaluated by the model shown in eq 14
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where R( f) is the generalized optimal classification surface
function considering the least misclassified samples, C is the
penalty factor, and L is the loss function.
Subsequently, the insensitive loss function ε is introduced

to evaluate the structural risk minimization. ξi and ξi* are
defined as slack variables, and the optimization objective can
be changed into the following form
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We introduce the Lagrange equation

Figure 7. Correlation between shape characteristics and crushing force.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c05120
ACS Omega 2021, 6, 3612−3624

3618

https://pubs.acs.org/doi/10.1021/acsomega.0c05120?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05120?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05120?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05120?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c05120?ref=pdf


∑

∑

∑

∑

ω ξ ξ

α ε ξ ω φ

α ε ξ ω φ

ηξ η ξ

= + + *

− + * − + +

− * + * − + +

− + * + *

=

=

=

=

L C

y x b

y x b

:
1
2

( )

( ( ) )

( ( ) )

( )

i

n

i i

i

n

i i i i

i

n

i i i i

i

n

i i i i

1

1

T

1

T

1 (16)

where αi, αi*, ξi, ξi* ≥ 0 are Lagrange multipliers.
We use the Lagrange equation to find the partial derivative

of (ω, b, ξi, ξi*), substitute it into eq 16, transform it into a
dual optimization problem, and solve to obtain the regression
function of the support vector regression machine, as shown
in eq 17

∑ α α= − * ⟨ ⟩ + =
=

f x K x x b j n( ) ( ) , ( 1, 2, 3, ..., )s
i

n

i i i j
1

(17)

where K⟨xi, xj⟩ = φ(xi)φ(xj) is the kernel function.
3.4. Optimal Kernel Function Selection. To determine

the optimal kernel function of the fertilizer crushing force
prediction model, this paper uses LK (Linear Kernel), PK
(Polynomial Kernel), RBF (Radial Basis Function), and SK
(Sigmoid Kernel) as the kernel functions to construct the
prediction model of fertilizer shape characteristics and
crushing force and set the MAPE (Mean Absolute Percentage
Error), RMSE (root-mean-square error), and R2 to
quantitatively evaluate the prediction performance of the
model. The results of each evaluation index for different
fertilizers are shown in Table 3. Among them, the evaluation
indicators are
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where yi is the actual value of crushing force, ys is the
predicted value of crushing force, and ys is the average value
of the predicted value of the crushing force.
RMSE is a good measure of prediction accuracy, MAPE

can effectively evaluate the volatility between data, R2

represents the ratio of the explained change to the total
change, which is one of the indicators that measure the
effectiveness of the established model. Among them, the
smaller the value of RMSE and MAPE, the larger the value of
R2, which indicates that the prediction performance of the
model is better. According to the data comparison in Table 3,
when the kernel function is RBF, the crushing force
prediction models of NF, PF KF, CF, and OF have the
smallest MAPE and RMSE and the largest R2, indicating that
the model has the highest prediction accuracy, the smallest
prediction fluctuation, and the best prediction performance.
Therefore, this paper chooses RBF as the kernel function.

3.5. Parameter Optimization of the Prediction
Model. In the SVM model with the kernel function of
RBF, the penalty parameter C balances the complexity of the
model and the degree of approximation error. Its value affects
the learning ability of the model. The kernel width σ relates
to the radial range of the function, and the parameter ε of the
loss function controls the width of the insensitive area of the
regression function to the data sample and affects the
learning accuracy and generalization ability of the algorithm.
It can be seen that the internal parameters of the model
affect the predictive performance of the model. To obtain
more satisfactory internal parameters of the support vector
machine, the parameters C, ε, and σ are optimized by the
differential evolution algorithm. The whole optimization
process includes three parts: the range determination of
optimization parameters, the selection of fitness function, and
the algorithm flow.
In the process of optimizing, a larger parameter range will

generate more search space and often get better parameter
combinations, but it will take more search time. To reduce
the search time, this paper calculates the search range of the
three optimization parameters to determine the effective
search space. We calculate the value ranges of the parameters
C, ε, and σ by formulas 21, 22, and 23, respectively. The
calculation results are shown in Table 4.

σ σ= [| ̅ − | | ̅ + |]C y y3 , 3t t (21)

σ = [ ]0.1 , 0.5z z1/ 1/ (22)

Table 3. Evaluation Indexes of Different Fertilizers

NF PF KF CF OF

Kernel
function MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE R2

RBF 0.065 1.863 0.916 0.080 8.544 0.758 0.170 24.827 0.652 0.090 7.387 0.761 0.073 3.155 0.757
PK 0.135 3.533 0.700 0.095 11.005 0.571 0.222 30.102 0.496 0.101 8.706 0.668 0.079 3.618 0.682
SK 0.191 4.647 0.532 0.100 11.772 0.510 0.527 36.571 0.403 0.181 9.748 0.407 0.116 5.757 0.432
LK 0.069 1.896 0.914 0.096 9.846 0.678 0.179 25.950 0.619 0.094 8.704 0.670 0.078 3.510 0.670

Table 4. Parameter Selection Range of the Support Vector Machine

parameters NF PF KF CF OF

C 46.156−92.312 185.198−370.396 217.098−434.196 140.332−280.664 61.862−123.724
σ 0.562−0.841 0.562−0.841 0.562−0.841 0.562−0.841 0.562−0.841
ε 0.0562−0.0841 0.0562−0.0841 0.0562−0.0841 0.0562−0.0841 0.0562−0.0841
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ε σ=
n (23)

where y̅ is the average value of crushing force, σt is the
standard deviation of crushing force, and z is the number of
parameters that affect fertilizer crushing force.
Considering the possibility that SVM can reduce the

generalization error of the model, this paper selects MSE as
the fitness function. The minimized MSE of the model
output is the goal of optimizing C, ε, and σ, as shown in eq
24
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The DE-SVM model is used to train 100 sets of data and
iteratively obtain the combination of C, ε, and σ that meet
the requirements of the fitness function (minimum MSE).
When the predefined maximum number of iterations M is
exceeded, the optimization ends. The process of searching for
the best internal parameters is as follows:
First we define a population of size NP, {Xi|Xi,j

L ≤ Xi,j, i = 1,
2, ..., NP; j = 1, 2, ..., D}, where Xi is the i-th individual and j
represents the j-th dimension; D = 3, Xi,1, Xi,2, Xi,3 correspond
to Ci, εi and σi, respectively, and the individuals in the
population are randomly initialized according to formula 25

= +x x x xrand(0, 1)( , )i j i j i j i j, ,
L

,
U

,
L

(25)

where Xi,j
U
j, and Xi,j

L
j are the upper and lower bounds of the j-

th dimension, respectively.
Then, two individuals are randomly selected (the

individuals are different from each other); the selected
individual vector difference is scaled, and the vector is
synthesized with the individual Xi(g) to be mutated to
complete the mutation process, as shown in eq 26

+ − + −V g X g F X g X g( 1) ( ) ( ( ) ( ))i I r r1 1 (26)

where r1 and r2 are random numbers that are not equal to
each other and not equal to i in the interval [1, NP], F is the
scaling factor, and g represents the g-th generation in the
population change process.
Then, between the individual offspring obtained by the

mutation and the corresponding parent, the individual is
randomly selected according to formula 27 to realize the
crossover of the individual.
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where CR is the crossover probability.
Finally, based on the greedy algorithm, we compare the

MSE value of the individual and select the individual with a
smaller MSE as the new individual, as shown in eq 28
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We traverse NP individuals in the population and perform
the abovementioned mutation, crossover, and selection
operations in a loop to complete the first iteration. Then,
we continue to iterate to M times to obtain the
corresponding C, ε, and σ values when the minimum MSE
value is generated. The model parameters before and after
optimization are shown in Table 5. We substituting the
optimized C, ε, and σ values into the fertilizer crushing force
prediction model and compare with the prediction model
before optimization; the result is shown in Figure 8.
It can be seen from Figure 8 that the models before and

after the optimization of different fertilizers can better capture
the trends that are in line with actual measurements. Among
them, the predicted curve obtained by the optimized model is
closer to the actual curve, indicating that the fitting effect of
the optimized fertilizer crushing force prediction model is
better than that before the optimization.
The normal distribution test was performed on the

predicted crushing force of different fertilizers, and it was
found that the distribution of the crushing force of the
fertilizer belongs to the normal distribution, and the result is
shown in Figure 9. Among all fertilizer shape characteristics,
fertilizer granularity has the greatest positive correlation with
crushing force, and fertilizer granularity can be determined
through a standard sieve. Therefore, in the selected fertilizer
samples, we first find NF, PF, KF, CF, and OF particles that
meet the crushing force distribution range according to
formula 29 and then find their granularity distribution range
as the inspection range for optimized fertilizer processing.
The granularity distribution range of each fertilizer is 4.03−
4.74, 3.90−4.73, 4.83−5.83, 4.28−5.34, and 4.33−5.04 mm,
respectively.

σ≥ ̅ +y y t (29)

3.6. Experimental Verification. In June 2020, the
verification test was carried out at the Key Laboratory of
Gardening Machinery and Equipment of Shandong Province.
We first pass the standard sieve to select the particles that
meet the granularity distribution range from the N fertilizer
produced by Sinofert Holding Limited, P fertilizer produced
by Yuntianhua Group Co., Ltd., K fertilizer produced by Luxi
Chemical Group Co., Ltd., compound fertilizer produced by
Stanley Agricultural Group Co., Ltd., and organic fertilizer
produced by Xinyangfeng Agricultural Technology Co., Ltd.,
and then randomly sample 20 particles from each fertilizer as
verification samples; the actual crushing force of the fertilizer
is obtained through experiments, and the P-DE-SVM model
is used to predict the crushing force of the fertilizer. The
error rate is calculated according to formula 30, and the

Table 5. Optimal Parameters of the Support Vector Machine

model parameter NF PF KF CF OF

C before optimization 10.500 10.500 10.500 10.500 10.500
after optimization 48.166 307.250 234.033 158.634 121.000

σ before optimization 0.500 0.500 0.500 0.500 0.500
after optimization 0.576 0.669 0.593 0.826 0.732

ε before optimization 0.050 0.050 0.050 0.050 0.050
after optimization 0.0588 0.0674 0.569 0.0840 0.0749
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Figure 8. Comparison of prediction models before and after optimization of different fertilizers.
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accuracy of the fertilizer crushing force model is evaluated
using the error rate. The test results are shown in Table 6.
The crushing force and error rate distributions of different
fertilizers are shown in Figure 10.

=
−

×e
s s

s
( )

100%2 1

1 (30)

where s1 is the actual measured crushing force, s2 is the
predicted crushing force, and e is the error rate.
The results showed that the maximum error rate of the

predicted crushing force of NF, PF, KF, CF, and OF is
between −10.401 and 10.900%, indicating the predicted value
of the model and the test result are consistent, which verifies
the accuracy of the built P-DE-SVM model. After screening
through the standard sieve, the average crushing force of NF,
PF, KF, CF, and OF were 31.083, 102.058, 133.758, 84.463,
and 36.535 N, which were all higher than those of the
fertilizers in the test sample without screening. The mean

value of force verifies the rationality of the set granularity
inspection range.

4. CONCLUSIONS

(1) The shape characteristics of different fertilizers were
nondestructively measured by the machine vision
method, and the shape characteristics related to the
fertilizer crushing force were proposed based on the
Pearson correlation coefficient. The experiment results
showed that the shape characteristics that affect the
crushing force were length, width, thickness, and
granularity.

(2) The crushing force prediction model of different
fertilizers was constructed based on a support vector
machine in which the optimal kernel function was a
radial basis function. The experiment results showed
that the maximum error rate of the prediction model
was between −10.401 and 10.900%, indicating that the

Figure 9. Normal distribution of crushing force of different fertilizers.

Table 6. Verification Test Results

item
length
a/mm

width
b/mm

thickness
c/mm

granularity
d/mm

actual crushing force
s1/N

predicted crushing force
s2/N

error rate
e/%

NF maximum 5.590 5.020 4.270 4.740 37.300 35.570 8.085
minimum 4.100 3.960 3.500 4.027 25.050 26.582 −8.198
average 4.673 4.240 3.858 4.240 31.083 30.588 1.188
range 1.490 1.060 0.770 0.713 12.250 8.988 16.283
standard
deviation

0.372 0.269 0.178 0.193 3.303 2.322 5.284

PF maximum 5.660 4.590 3.990 4.438 120.000 109.178 9.352
minimum 4.110 3.760 2.970 3.903 86.650 90.049 −7.173
average 4.870 4.163 3.445 4.109 102.058 99.815 1.722
range 1.550 0.830 1.020 0.535 33.350 19.129 16.525
standard
deviation

0.376 0.265 0.310 0.160 10.310 5.862 5.752

KF maximum 9.490 5.710 4.370 5.669 189.150 169.472 10.900
minimum 5.710 4.400 2.570 4.826 84.650 91.960 −10.401
average 7.404 5.089 3.621 5.122 133.758 128.609 2.489
range 3.780 1.310 1.800 0.844 104.500 77.512 21.301
standard
deviation

0.930 0.437 0.416 0.232 31.793 24.093 7.346

CF maximum 5.450 5.110 4.580 4.936 103.700 99.823 9.846
minimum 4.370 4.260 3.480 4.313 61.400 67.124 −9.322
average 4.709 4.495 4.291 4.491 84.460 81.693 2.920
range 1.080 0.850 1.100 0.624 42.300 32.699 19.168
standard
deviation

0.305 0.207 0.254 0.159 10.627 8.796 5.274

OF maximum 5.160 4.980 4.870 4.979 50.500 48.408 8.628
minimum 4.410 4.330 4.140 4.326 29.450 28.672 −8.879
average 4.738 4.597 4.466 4.598 36.535 35.748 1.752
range 0.750 0.650 0.730 0.653 21.050 19.736 17.507
standard
deviation

0.244 0.216 0.209 0.205 5.833 4.889 4.678
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fertilizer crushing force prediction model was accurate
and reliable, which provided a theoretical basis for
fertilizer production and quality inspection.

(3) The differential evolution algorithm was proposed to
optimize the internal parameters of the fertilizer
crushing force prediction model, and at the same
time, a fertilizer granularity inspection range was
calculated. The experimental results exhibited that the
average strength of screened samples within the
granularity inspection range was higher than the
average strength of unscreened samples, indicating the
granularity inspection range was reasonable. It would
help reduce fertilizer crushing and improve fertilizer
utilization to realize the sustainable and clean
production of crops.
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Figure 10. Crushing force and error rate distribution of different fertilizers.
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