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Abstract

Background: Most organisms cannot be cultivated, as they live in unique ecological
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deciphering genome functionality based only on the genomic sequences with no
other experimental measurements are needed.

Results: In this study, we describe a novel algorithm that infers gene networks that
we name Common Substring Network (CSN). The algorithm enables inferring novel
regulatory relations among genes based only on the genomic sequence of a given
organism and partial homolog/ortholog-based functional annotation. It can
specifically infer the functional annotation of genes with unknown homology.

This approach is based on the assumption that related genes, not necessarily
homologs, tend to share sub-sequences, which may be related to common
regulatory mechanisms, similar functionality of encoded proteins, common
evolutionary history, and more.

We demonstrate that CSNs, which are based on S. cerevisiae and E. coli genomes,
have properties similar to ‘traditional’ biological networks inferred from experiments.
Highly expressed genes tend to have higher degree nodes in the CSN, genes with
similar protein functionality tend to be closer, and the CSN graph exhibits a power-
law degree distribution. Also, we show how the CSN can be used for predicting
gene interactions and functions.

Conclusions: The reported results suggest that ‘silent’ code inside the transcript can
help to predict central features of biological networks and gene function. This
approach can help researchers to understand the genome of novel microorganisms,
analyze metagenomic data, and can help to decipher new gene functions.

Availability: Our MATLAB implementation of CSN is available at https://www.cs.tau.
ac.il/~tamirtul/CSN-Autogen
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Background

In recent years, technologies and tools for new organisms genomes sequencing
are improving at an exponential rate [1, 2]. Today, there are over 150K full ge-
nomes [3] from the Zika virus [4] to Giraffe [5], including various sets of metage-
nomics data [6]. Various biological and computational approaches have been
developed for determining the coding regions [7-9]. Deciphering the function of
genes, interactions between genes, relations between genotype and phenotype, and
genome complexity. However, it is still a very challenging mission with only partial
success (see, for example, [10-17]. Only in a small number of well-studied model
organisms, various experimental tools such as gene expression measurements [18,
19], protein-protein interactions [PPI] measurements [20-22], genetic interaction
measurements [23-25], and others, have been combined to decipher the function-
ality of genes and the way they work together. Even for those model organisms
there are still many open questions regarding the exact functionality of genes [16,
26-28], and for most organisms, these data is still limited (see, for example, [29—
32]. This fact makes the research in related topics very challenging [33-37]. Some
computational tools have been tried to solve the protein function prediction chal-
lenge by integrating high-end algorithms and annotated data [38, 39]. The conven-
tional approach is based on the homology of proteins, but it cannot be
implemented for deciphering the functionality of novel genes with no well-studied
homologs.

In this study, we propose a generic approach that generates comprehensive networks
of interactions/similarity among genes based only on the organism’s genome. This
method can help to predict gene functions, the interaction between genes, and gene ex-
pression levels. The approach is based, among others, on a measure that exploits in an
unsupervised manner various gene expression codes which are interleaved in the cod-
ing region or the promoter, in addition to the protein functionality which is encoded in
proteins’ amino acid content [16, 40—46].

By implementing our algorithm on all S. cerevisiae and E. coli genes, and generating
the complete genomic map, which is based solely on its Deoxyribonucleic Acid [DNA]
sequence, we demonstrate that our approach gives meaningful predictions. Moreover,
we show that those predictions are comparables to the ones provided by experimental-
based biological networks. We also show how our approach can be used for analyzing
metagenomic samples. The results for the tested cases show that the CSN can reveal
information regardless of the source domain of the genes, genome size, or sequences

length.

Results

Developing a comprehensive sequence-based network - the CSN

The CSN network is constructed by calculating the resemblance scores between all
pairs of genes based on their nucleotide sequences (Fig. 1a, box (i). All details appear in
the Methods section). The CSN algorithm input is a set of sequences (Fig. 1a, box 2);
in the first step, a unique distance measure which is called Normalized chimera Aver-
age Repetitive Substring (chimeraARS) is calculated for all pairs of genes (Fig.1a, box 3;
Fig. 1b, step 1).
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Fig. 1 The framework of the Common Substring Network algorithm. a Flow diagram of the research,
including the data, algorithms, and analyses. Box 1 & box 15: input data. Box 14: randomization method.
Frame i: Algorithm's steps. Box 13 & box 16: output networks. Frame ii: Analysis methods. See more details
in the main text. b Graphical illustration of the CSN algorithm’s major steps - (details in the main text). ¢
The different types of sequences in the S. cerevisiae genome. Promoter sequence (orange) and CDS
sequence (blue) are treated separately and for that are organized in two different sets. d Different
randomization methods for CDS and UTRs. A different randomization method was performed for each part
of the gene: In the case of CDS, each set of synonymous codons was shuffled among all analyzed
sequences (left). In the case of promoter sequences, we permuted the nucleotide order of each sequence
(right). @ Normalized chimeraARS score calculation example

All these scores are organized in a symmetric similarity matrix (Fig.1a, box 4; Fig. 1b,
step 2). In the second step, correlations coefficients between rows in the matrix men-
tioned above are calculated (Fig. la, box 5; Fig. 1b, step 3), and arranged in a new,
correlation-based, similarity matrix (Fig. la, box 6): each entry is related to a pair of
genes, and higher values are related to higher similarity. From this similarity matrix, an
undirected-weighted graph can be induced. In this graph, genes with higher similarity
are connected by an edge with higher weight. By filtering out low weights’ edges related
to low similarities (Fig. 1a, boxes 7 & 8; Fig. 1b, step 4), and by adding a minimal num-
ber of edges (Fig. la, boxes 9 & 10; Fig. 1b, step 5), we make sure that the graph re-
mains connected. A force-directed network layout algorithm (Fig. la, box 11; Fig. 1b,
step 6) is applied to get the two dimensional (2D) network we call CSN (Fig. 1a, box 12);
thus, the CSN can be easily visualized with a network visualization tool (Fig. 1a, box 11;
Fig. 1b, step 7).

We aimed at evaluating the CSN’s ability to “capture” and exploit complex regulatory
information, which is encoded in the ‘silent’ aspects of genes, and to assess the import-
ance of this type of information. Specifically, most of the previous methods in the field
for functionality estimation consider only the amino acid content of proteins; thus, we
estimating the amount of information they may miss. To this end, we took the same
initial set of sequences as the CSN; but in this CSN input, we shuffled the nucleotide
sequence in a way that preserves the encoded protein but changes the codons’ order
(Fig. 1a, box 14). By applying the same pipeline for generating the CSN but on these
randomized sequences, we created a CSN analogous network that we called ppCSN -
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protein preserving Common Substring Network (Fig. 1a, box 16). The ppCSN is based
on “randomized” sequences (Fig. 1la, box 15) which maintain the amino acid sequence
of the input to the CSN’s sequences. Moreover, all the main gene features (e.g., the fre-
quencies of nucleotides and codons, and GC content) are also preserved. Thus, the
exact DNA sequences (see Methods section Randomization & Validation to more de-
tails) are modified.

Inferring the CSN of S. cerevisiae and E. coli

Our aim in the rest of this study was to show that the CSN can be used to exploit
meaningful information related to gene function, gene interactions, and gene expres-
sion, which is compatible with the information provided by networks generated based
on experiments. Thus, to evaluate our approach, we applied it on highly studied organ-
isms from two different life domains: the baker’s yeast (S. cerevisiae), as a representative
of eukaryotes (Fig. 1a, box 1) and E. coli as a prokaryotic representative; we also applied
our algorithm on metagenomic sample MGYA00382686 as an example. We carried out
a thorough examination of the resultant full gene set CSN graphs (Fig. 1a, box 13) and
its properties (see Fig. la. box (ii)). First, we examined CSN ability to predict protein
abundance [PA], based on the CSN nodes’ centrality (Fig. 1a, boxes 17-19). The results
were compared to ppCSN (Fig. 1A, box 16) and to others, well-establish biological net-
works, which are based on experimental data. Next, we compared the edges in CSN to
interactions that appear in biological networks based on experiments (Fig. la, boxes
20-21) to determine its ability to predict various interactions between genes and their
products (Fig. 1a, box 22). Finally, based on the functional annotation of genes (Fig. 1a,
box 23), we performed a novel clustering procedure on the CSN nodes (Fig. 1a, box 24)
to show that the CSN’s nodes are arranged according to their functionality (Fig. 1la,
box 25). Figure 2a displays the CSN for S. cerevisiae ‘s genome.

CSN degree distribution enable protein expression prediction

We found that the CSN nodes’ degrees are presenting power-law distribution, which is
known as a fundamental feature of biological networks [16, 47, 48]. Specifically, it has
been suggested that the distribution of degree in biological networks tends to be scale-
free with a linear relation in a log-log graph for nodes’ degree distributiont [16, 48].
Examining CSN’s nodes’ degree distribution in linear fit shows indeed a significant
negative correlation between node degree and frequency (Pearson: rho = - 0.167; p =
8.78*10" %; Spearman: rho = — 0.838; p = 2.90*10" '**) which is stronger than the correl-
ation obtained for the ppCSN graph (Pearson: rho —0.129; p =1.05*10" %; Spearman:
rho = - 0.759; p = 1.97*10~ '*') (Fig. 2b). The analysis has yielded significant correlations
on the E. coli CSN’s graph (Pearson: rho = — 0.363; p = 3.41*10" '%; Spearman: rho = -
0.913 p =2.26*10" *) and for its ppCSN (Pearson: rho = — 0.408; p = 3.64*10" '%; Spear-
man: rho = - 0.897 p = 1.65*10" **") (Fig. S12E).

The node centrality of biological networks can correlate with various fundamental
measures of gene/protein [47, 49, 50]. In many cases, hubs, which are usually central
genes, tend to hold an important regulatory role, be essential to the cell or show high
expression level [51, 52] (Fig. S10). The Spearman correlation between CSN nodes’ de-
grees and their PA [53], is significant but not very high (Pearson: rho=0.219 p =
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Fig. 2 CSN Basic Properties. a The Common Substring Network of S. cerevisiae. This network represents
5972 genes and 237,237 edges. b The distribution of node degrees. Dot plot describing the distribution of
nodes’ degrees in a log-log scale for the CSN's nodes (blue) and the ppCSN's nodes (orange). The dashed
line represents the regression lines between node degree and number of times it appears in the graph.
[Pearson: CSN tho =—0.167 p =8.78%10" >, ppCSN rho = —0.129 p = 1.05*10~>; Spearman: CSN rho = —
0838, p =2.90%10"'**, ppCSN rho=—0.759 p = 1.97*10" '*"] ¢ Spearman correlation between node degree
and PA. Dot plot describing the linear regression relationship between gene degrees and their PA for CSN
(blue) and the ppCSN (orange). [Spearman: CSN rho = 0.177; p = 1.02*10" *, ppCSN rho = 0.088; p =
15910~ '™ Pearson: CSN tho=0.219; p = 1.51*10~ %, ppCSN rho =—0.027; p = 4.08*10" %] d Comparison of
PA and degree correlation. Between CSN (blue), ppCSN (orange), and other biological networks (see the
supplementary section, Reference networks, yellow) PA and degree correlation

1.51*10™ ®% Spearman: rho = 0.177; p = 10~ *?), this supports the conjecture that there is

a weak monotone relation between the two variables (Fig. 2c). The same analysis was
conduct on E. coli’s CSN/ppCSN graphs (Pearson: rho =0.023; p =0.134; Spearman:
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rho = 0.151; p =3.01*10" *?), here also, the correlation is stronger than the correlation
obtained for the ppCSN graph (Pearson: rho = 0.011; p = 0.498; Spearman: rho = 0.094;
p =1.99*10"°) (Fig. S12G).

Since the ppCSN node degrees correlation with their PA ‘s is significantly lower than
the CSN’s correlation on both organisms; (Spearman: rho = 0.088; p = 1.59*10 '*; Pear-
son: rho = — 0.027 p =4.08*10"?) for S. cerevisiae CSN, and (Spearman: rho = 0.094; p =
1.99*10~%; Pearson: rho = 0.011; p =0.4.98) for E. coli’s ppCSN, we conclude that this
association is mainly related to complex ‘silent’” aspects of the genes and not only to its
amino acid content (Fig. 2c), or the transcript’s basic features such as codon frequen-
cies and GC content.

Interestingly, we were able to improve the PA predictive power of CAI a feature that
is usually used as protein abundance predictor [54], by adding the CSN degree as an
additional feature. Specifically, the correlation with PA of a regressor, which is based
on CAI and the CSN node’s degree, is higher than the correlation between PA and CAI
(Supplementary, Fig. S14). When comparing the expression prediction by degree
against six different existing genetic networks assembly methods, some of them aggre-
gate many techniques and a data source such as STRING [20], CSN exhibits the best
correlation between nodes degree and PA (Fig. 2d). The comparison here is carefully
considering the common gene list and the general network density to make sure that
the degree correlations are not biased (see supplementary Data Preprocessing section).

CSN has predictive power of gene interactions

If the sequence-based network that we present here is related to real biological interac-
tions/relations, we expect to see a significant overlap between CSN edges and measured
biological interactions between genes or proteins. Thus, we compared CSN edges with
experiments-based networks’ interactions (Fig. 3a and Data Source section). The ana-
lysis demonstrates that, indeed, the CSN edges overlap with various such measured in-
teractions. The success rate of ppCSN is significantly lower in all cases, suggesting
again that the relevant CSN functional information is partly encoded in complex genes’
silent aspects (Fig. 3a and Supplemental Fig. S7).

The co-complex membership associations network [55] is the most compatible net-
work to the CSN among the seven examined networks. CSN predicted 18.55% co-
complex interactions, while the ppCSN graph showed a minimal match with the co-
complex network interactions (only 1.83% interactions were predicted) (Fig. 3b). The
Receiver Operating Characteristic curve [ROC] is based on different edge densities of
CSN and ppCSN (Fig. 3c). The ROC curve shows that CSN is more accurate as a pre-
dictor of co-complex interactions than ppCSN with AUC (i.e., Area Under Curve) of
0.712 for CSN and AUC 0.608 for ppCSN.

A similar analysis for E. coli also demonstrated the advantage of CSN over ppCSN re-
garding interaction prediction (Fig. S12H).

CSN is organized based on gene function

To show how CSN enables the prediction of gene annotations, we used a network clus-
tering technique called SAFE [56, 57]. SAFE inputs are Gene Ontology [GO] table and
a genetic network. The algorithm divides the network’s projection on two dimensions
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(2D) into ‘regions’ (corresponding to sub-networks) that are enriched with genes that
tend to have specific functionality (see more details in the Methods section). Analyzing
CSN with SAFE demonstrated that similarly to other biological networks (e.g., genetic
interaction networks [25]), the nodes in the CSN are organized by their functionality
groups - genes with similar annotations tend to be closer in the CSN graph. Specific-
ally, SAFE identified 132 functional attributes as enriched in 11 specific regions in CSN
(see supplementary section, eq. 5, step 5). Those 11 specific regions hold 798 genes. All
the genes that were found as scientifically related to the functional attribute in a spe-
cific region are color-coded by the functional attribute’s color. Functional attributes
with similar genes landscape are grouped as one color (see suplementary eq. 5, step 6,
and Fig. 4a).

To make a more accurate assessment of CSN’s nodes tendency to be grouped accord-
ing to their functionality, we re-analyzed the CSN based on the ‘GO slim’ table. ‘GO
slim’” contains 166 main S. cerevisiae GO terms, in comparison to the 4373 terms in the
‘full GO’ table. In this analysis, SAFE detected 50 terms in the CSN graph that are
enriched within a specific region in the graph 2D projection. Performing false discovery
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rate [FDR] correction [58] on the SAFE p-values output, discovered that CSN has 8574
annotations (term-gene interactions) with significant p-values, and ppCSN have only
1687 annotations with significant p-values. We detected 1396 annotations with p-
values < 2.22*1073% in CSN, while ppCSN have only 17 such significant annotations.
As a comparison, a similar analysis of the established genetic interaction network of
Costanzo et al. [25], which is based on a vast amount of experiments revealed 68 sig-
nificant regions with 892 genes from a total of 2838 genes in the network (Fig. 4b).
Similar conclusions were obtained for E. coli: 9 regions were found in CSN and zero re-
gions for ppCSN (Supplemental Fig. S12I and S12)).

This result reinforces our claim that the information related to the functionality of
genes is also encoded in gene’s “silent”/synonymous aspects and not only in its amino-
acid content and that our approach can detect some of this information. The CSN has
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a functional prediction success rate (i.e., Sensitivity Score) of 41.73% for S. cerevisiae’s
genes and 63.16% for E. coli’s genes (Fig. S12K). In other words, 41.73% annotations
that SAFE predicted, based on CSN’s genes’ neighborhood enrichment score, are
already known to science and appear in the GO table, supporting the suggestion that
the CSN is a useful model for gene function inferences. For comparison, Costanzo experi-
mental network success rate is close to CSN'’s success rate (47.97%), while the sensitivity
score of the ppCSN graph is lower than the CSN sensitivity score (37.04%, Fig. 4c). Other
prediction metrics, such as Specificity and Accuracy, are less relevant due to a large num-
ber of cases of ‘no associations’ between pairs of genes and annotation (for more details
see Supplemental Table S9).

This result shows that the CSN graph is comparable to the Costanzo graph regarding
nodes organization with functional regions.

Based on our inferred network, we suggested an approach for predicting novel func-
tional annotations (see details in the Methods section). When we implemented this pre-
dictive algorithm on S. cerevisiae, E. coli, and the Metagenomic sample, we predicted
13,157, 392, and 693 new annotations, respectively (see supplementary Table S13).

Exploring novel genomes using the CSN algorithm

The CSN algorithm can be applied to any life domains and can help researchers to get
an initial indication for the functionality of genes even when annotation data is sparse.
To demonstrate this claim, we picked a recently submitted metagenomic sample from
the MGnify database [59]. MGYA00382686, a shotgun metagenomics sample from a
human gut microbiome (Sapienza Universita’ di Roma, 2019). After preprocessing the
metagenomic data, we generated a CSN graph based on all processed reads with pre-
dicted CDSs [pCDS].

The MGYA00382686 sample network holds 1685 sequences with 136,996 edges
(Fig. 5a). We employed the approach on the coding sequences of the first 99 nucleo-
tides (See supplementary section Determine Sequence Range), inferred from the sample
based on nucleotide triplets (see Fig. 1d). Examining CSN’s nodes’ degree distribution in

10°

y~ x5t

10"

Number of Genes

10° 10! 10%

Gene Degree
Fig. 5 Exploring novel genomes using the CSN algorithm. a The Common Substring Network of
Metagenomic sample MGYA00382686. This network include 1685 nodes (sequences) and 136,996 edges. b
Node degree distribution. Dot plot describing the distribution of node degrees in a log-log scale for CSN's
nodes. Dashed lines represent the regression lines between degree and number of times it appears in the
graph. [Spearman: rho=—0512, p = 3.89%10" *%; Pearson: rho = — 0.204 p = 2.05*10" *] ¢ Metagenomic
sample SAFE analysis. 11 terms are found to be enriched in a certain region: r2 - IPR002932, r3- IPRO06860,
r4- IPRO00209 IPRO11991, r5- IPRO04358, r6-IPRO10930, IPRO16156, r7-IPRO00795, IPROT0559, IPRO15883,
IPRO35684 (see Table S15 for more details about the functions and their definitions)
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linear fit shows a significant negative correlation between node degree and fre-
quency [Spearman: rho=-0.512; p =3.89*10" %, Pearson: rho=-0204 p =
2.05*10" *] (see Fig. 1b).

To test the network ability to predict functionality on a limited annotation data, we
created a partial GO table by reading the annotations of the pCDS with the predicted
proteins. Then, we ran a SAFE analysis with the partial GO table and obtained the re-
sults that appear in Fig. 5c. From 1685 sequences in the sample set, only 905 sequences
(53.71%.) had single known functional terms attributed. With this incomplete annota-
tion information, CSN predicted additional annotations for 1132 sequences (67.18% of
the sequences). Note that many of the sequences have more than one predicted term
(see details in the supplementary Table. S13).

Discussion

In this article, we present a novel unsupervised approach for understanding the ge-
nomes of new organisms. Our new method’s main output is a generated network
named the Common Substring Network. The network represents similarities among an
organism’s set of genes and enables inferring novel information related to the genes’
functionality and expression levels. This 2D network can also be analyzed with various
network analysis tools. When evaluating our reported results it is important to remem-
ber that gene interaction networks are very noisy [60]. Specifically, even if you compare
two experimental based protein-protein interaction networks, the error rate is 0.179
(see details in the supplementary section Biological Networks Alignments), similar
to the one reported here for the CSN. Thus, many features should be combined
for such network predictions and the CSN can be one of them.

To demonstrate the approach, we apply it to the model organisms S. cerevisiae and E.
coli’s full gene sets and on a metagenome sample. Results confirm that the CSN
method can easily be applied to other organisms from different life domains (See Sup-
plemental Fig. S12 for E. coli analysis and Results section for S. cerevisiae analysis). We
show that the CSN can be used for predicting protein levels (Supplementary Fig. S14)
and gene functionality (Supplementary Table S13) and that in many cases the CSN’s
performances are comparable to that of biological networks based on expensive and
time-consuming biological experiments.

It is essential to emphasize the fact that our measure is not based on conventional
homology (e.g., pairwise alignment of complete proteins) and performed well for genes
that do not have homologs. It is also based both on information that appears in the
coding region and information encoded in the untranslated region.

The CSN considers both the amino acid content of a gene (but also silent aspects
encoded in the promoter/UTR and in the coding region). To better understand the in-
formation encoded in the CSN, we compared CSN results to ppCSN performances.
ppCSN, a network that based on a similar gene set as CSN with a different order of co-
dons or nucleotides that maintains the original network’s encoded proteins sequence,
GC content, and codon frequencies. In all cases, CSN significantly outperformed the
ppCSN, demonstrating that there is essential information captured by the CSN that
does not appear in the amino acid content of proteins or simple genic features such as
GC content or codon frequencies.
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We believe that our approach or a version of it can be used to study a novel or non-
annotated organism when no other experimental information is available except the
gene sequences (possibly when combined with additional types of data and algorithms).
As we demonstrated here, based on partial information on the gene function (which
can be gained, for example, based on the alignment of some of the genes to the ortho-
logs in well-studied model organisms), our CSN can provide additional crucial func-
tional information.

In addition, the CSN can be used to study the complicated gene expression process:
we specifically showed that the node degree in the CSN is a feature that can improve
the prediction of protein levels when adding it to a more conventional feature like CAI

This study aimed to demonstrate the general idea behind the CSN. The pipeline de-
scribed here can be easily improved and generalized in various dimensions and direc-
tions. For example, a CSNs that are based on different genome’s parts (e.g., introns,
promoters, 3° UTR) can be inferred separately; these parts can be combined or
weighted together to get one network. On the other hand, a researcher can generate a
network for each sequence type separately and then compares the different networks.
The CSN can also be combined with other types of information or data, including ex-
perimental data, to provide accurate predictions, such as gene functionality prediction,
expression, and evolution. Also, the CSN can be used for analyzing viruses and micro-
organisms separately, and as a community. For example, CSN pipeline input may be
metagenomics data, where the genes we examine are related to various organisms,
within the same ecological niche, that interact with each other.

Similarly, it may be used to analyze together the genes of a host and its parasite (e.g.,
a virus) or a set of symbionts to understand the way they co-evolve. Combining ge-
nomes from several organisms to one CSN may also reveal evolutionary conservation
between sets of genes. One of the ways one can use the CSN algorithm is as follow:
First, pick a set of genes from any gene sample. Then, find partial annotation of these
genes based, for example, on BLAST or any other method for detecting protein similar-
ity (i.e, comparison to annotated orthologs). Finally, run the algorithm on the gene set
(as demonstrated now with the metagenomics example) to generate the CSN. Adding
additional predicted functional annotations to the annotation list can be done by using
SAFE in the way it presented in the article, as demonstrated with the metagenomics
example.

Methods

Algorithm description

This subsection gives an in-depth look at the different steps that generate the CSN
graph efficiently (see Fig. 1v and supplementary section Running time and Space com-
plexity). For a given set of genomic sequences, the algorithm first calculates the
common-chimeraARS scores for all pairs of genomic sequences. Then it summarized
the scores in a matrix (score matrix). This matrix is then transformed into a correlation
matrix (which based on correlations between rows in the scores matrix). The correla-
tions matrix represents an undirected weighted graph where an edge weight corre-
sponds to a score in the correlation matrix. In this graph, edges with low values
(related to low similarity) are removed to make sure that the edges represent high
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similarity scores and thus are meaningful ones. Next, we greedily added a minimal
number of edges to the graph between connected components to make the graph con-
nected. Finally, the sequence-based graph was embedded in a two-dimensional layout
and was displayed as the sequence’s Common Substring Network.

Calculating normalized chimeraARS score

A unique sequence similarity measurement called Chimera Average Repetitive Sub-
string (ChimeraARS) [45] gives a more significant impact to long substrings that are
shared between pairs of sequences. It was shown that a version of this measure could
be used for ranking different regions of genes according to their expression levels, sug-
gesting that this measure may capture regulatory signals and signals related to the
gene’s functionality, which are encoded in different parts of the genes [45].

Genes with similar functionality and similar protein expression are likely to share sub-
sequences, and thus will have a higher chimeraARS score. In this study, the chimeraARS score
was computed for each pair of sequences, by comparing a target gene S, to a reference gene R.
The algorithm scans the target gene, nucleotide-by-nucleotide if this is a non-translated region,
or codon-by-codon if it is a coding region. For each position, it finds the length (/;) of the lon-
gest common substrings that starts from position i that also appears at the reference gene.

The average length of those substrings is calculated (defined here as ARS(S, R)). Next,
analysis repeats with R as the target gene and S as the reference, to get ARS(R, S). The
final Normalized chimeraARS score for a pair of genes is the average of these two ARS
scores (see example in Fig. 1le). This score is computed for all pairs of sequences in the
set and arranged as symmetric matrix M.

Equation 1. The Normalized chimeraARS score algorithm.

1. Let S denote one DNA or RNA sequence.

2. Let R denote a second genetic sequence.

3. Fora position i in sequence S let li be the length of the longest substring S(i, i+li) that appears in the reference coding
region R. (li21)

(Ellmgt h(s)h)

ARS(S.R) = lengt h(S)

li=Max{x [ (1 < k < length(R))A(1 < x < length(S))A(S(@i,i+x—1) == Rk, k+x—1))}

Normalized_ARS(R, S) = ARS(SR)+ ARS(R.S)

Algorithm implementation
To calculate the Normalized chimera ARS score for a given pair of sequences effi-

ciently, we created a different Suffix Array [SA] data structure for each sequence [61].
Specifically, for every sequence in the input set, the algorithm creates its unique SA
that will be used to calculate the longest common substring between each pair of
sequences (Supplemental Fig. S2). One SA is considered the target and the other- the
reference SA. For each position in the target sequence (a suffix in the target SA), we
searched, using a binary search, the longest matching prefix in the reference SA.

Combining chimeraARS scores
The normalized ARS scores mentioned above were computed separately for the UTR/
promoter region, and the CDS sequence. The UTR/promoter region includes 100
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nucleotides and 50 nucleotides before the start codon for S. cerevisiae and E. coli, re-
spectively; the CDS sequence includes the first 500 and 250 nucleotides for S. cerevisiae
and E. coli respectively. In the second sequence type, the score is calculated based on
codons/nucleotide triplets (Fig. 1c). However, the results reported here are robust to
changes in this length threshold (Supplemental section: Determine sequence range and
Fig. S1). To combine the two scores, we performed weighted arithmetic mean where
the coding regions are weighted five times higher than that of the UTR/promoter
weight to reflect the relatively longer region of the coding region that was used:

Aggregated ARS score(R,S) = (|UTR_length| * Normalized ARS scores(R_UTR, S_UTR) + |
CDS_length| * Normalized ARS scores(R_CDS, S_CDS))/ ({UTR_length| + |CDS_length|).

The reported results are robust to changes in the relative lengths of these two seg-
ments (see Supplemental section: CSN based on coding and regulatory regions separ-
ately, and Supplemental Fig. S11). This combined score is computed for all pairs of
sequences in the input set and arranged as symmetric matrix M.

From scores matrix to correlation matrix

In the next step of the algorithm, Spearman’s correlation for each pair of rows %, y
in M (Aggregated ChimeraARS score matrix) is computed to generate a correlation-
based scoring matrix Mr where Mr(x, y)=rho = Spearman_correlation(x, y). The al-
gorithm compares rows that represent the sequences’ scores sets. Note that com-
paring columns would yield the same result due to matrix symmetrically. We used
this measure as it compares for each pair of sequences (x,y) the set of normalized
chimeraARS scores related to sequence x to the set of normalized chimeraARS
scores related to sequence y.

This type of comparison includes more information than just using one normalized
ARS scores related to x and vy since it considers N relations instead of only one (where
N denotes the number of input sequences).

We used Spearman’s rank correlations in this case because we do not expect a linear
relationship between pairs of analyzed variables, and we do expect to see monotonic re-
lations (See example in Fig. 1b, Step 3).

Equation 2. Scores' correlation definition.

spearman_correlation(M(x,:),M (y,:)), x #y

Mr(x,y) ={ Lz

From Correlation’s matrix to a CSN graph
The matrix Mr can be represented as a complete graph with edges representing ‘simi-

larity’ score among pairs of genes; however, such a graph is ‘noisy’ if it includes edges
with very low weights. Thus, we filtered edges based on their corresponding correlation
scores: Only edges above a minimal weight (i.e., specific correlation) were included. We
reported here results related to a threshold of RHO = 0.6 (note that the p-value related
to all these edges was significant). However, the results are robust to changes in this
threshold (Supplemental Fig. S4).
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Equation 3. Threshold definition
G=CSN =(V,E)
V = {x | x is gene nodes}

E = {(x,y) | RHO(x,y) > 0.6 }

Determine edge cutoff
In S. cerevisiae, the edge weight threshold is 0.6; to keep the graph sparse enough to

visualize it properly, In E. coli, the minimum correlation score is set to 0.42 to achieve
the same edges density as S. cerevisiae CSN (Supplemental Fig. S12F).

Ensuring graph connectivity

The previous step may generate a disconnected graph that cannot be efficiently dealt with
the network embedding algorithm (see next sub-section). Thus, in the next step, we trans-
formed the graphs obtained in the previous step to a connected graph by adding a mini-
mum number of edges that were not included in the initial graph while greedily choosing
at each step the maximal additional edge’s weights. This algorithm is a modification of the
Kruskal algorithm that connects graph components instead of nodes.

Equation 4. Kruskal Algorithm for Connecting Graph Components
1. Given graph G (G=CSN =(V, E)).
2. Let Bdenote a set of G connected components (b,...b ).

Let E«, denote the set of all possible edges between component b, and by nodes.

3
4. For each pair of components b,, b, (b.€B, by€B, b,#b,), find e_max,, , the heaviest edge in E,,.
5. e_max_arrdenotes the sorted array of all components e_max,, in descending order.

6. Fore=(n1,n2)ine_max_ arr:

1. Let bl denote nl component, b2 denote n2 component
2. Ifblzb2:

a. E=eUE

b. bl=b2=blUb2

Network embedding and visualization
Finally, to visualize the graph in 2D, we used Cytoscape software [62]. We used a force-

directed layout algorithm as the embedding algorithm for setting the node and edge’s
locations in 2D [63]. The force-directed layout algorithm sets the graph topology by
force equation where nodes push each other away, but edges between nodes pull them
together. The attraction between two nodes is correlated to the weight of the edge be-
tween them. This way, nodes with heavier weight (in our case, higher similarity) tend
to be physically closer in the graph.

Randomization and validation

To estimate the importance of silent aspects of the genes on CSN performance, we cre-
ated a reference network we called ppCSN, which maintains the amino acid sequence of
the gene, its GC content, and the codon frequencies but not the exact nucleotide order.
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Randomization was done as follows:

(1) To randomize the gene’s non-translated sequences (e.g., promoters and introns),
we performed permutations on their nucleotides.

(2) To randomize the gene’s translated sequence (e.g., CDS), while keeping the amino
acid chain and genomic codon bias, we rearranged all synonymous codons within and
between sequences (Fig. 1d).

(3) Then we used the same pipeline as CSN on this partly-shuffled sequence (Fig. 1b);

(4) we made sure that the number of edges (and nodes) in the CSN and ppCSN was
identical by adding edges according to their weights in addition to ppCSN edges.
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