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Tumour detection, classification, and quantification in positron emission tomography (PET) imaging at early stage of disease are
important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have
been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy,
and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI) approaches can provide
improved accuracy and save decent amount of time. Artificial neural networks (ANNs), as one of the best AI techniques, have
the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper
presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using
different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is
also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is
also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application.
The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding
and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of
nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

1. Introduction

Medical images can be obtained using various modali-
ties such as positron emission tomography (PET), single-
photon emission computed tomography (SPECT), com-
puted tomography (CT), magnetic resonance imaging
(MRI), and ultrasound (US). PET is a molecular imaging
technique used to probe physiological functions at the
molecular level rather than to look at anatomy through
the use of trace elements such as carbon, oxygen, and
nitrogen which have a high abundance within the human
body. PET plays a central role in the management of
oncological patients beside the other main components such
as diagnosis, staging, treatment, prognosis, and followup.
Owing to its high sensitivity and specificity, PET is effective in

targeting specific functional or metabolic signatures that may
be associated with various diseases. Among all diagnostic and
therapeutic procedures, PET is unique in the sense that it
is based on molecular and pathophysiological mechanisms
and employs radioactively labeled biological molecules as
tracers to study the pathophysiology of the tumour in vivo to
direct treatment and assess response to therapy. The leading
current area of clinical use of PET is in oncology, where
18F-fluorodeoxyglucose (FDG) remains the most widely used
tracer. FDG-PET has already had a large valuable effect on
cancer staging and treatment, and its use in clinical oncology
practice continues to evolve [1–5].

The main challenge of PET is its low spatial resolution
which results in the so-called partial volume effect. This effect
should be reduced to the minimum level, so that the required
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information can be accurately quantified and extracted from
the analysed volume. On the other hand, the increasing
number of patient scans beside the widespread application of
PET have raised the urgent need for effective volume analysis
techniques to aid clinicians in clinical diagnosis and set
the proper plan for treatment. Analysing and extracting the
proper information from PET volumes can be performed by
deploying image segmentation and classification approaches
which provide richer information than that obtained directly
from qualitative assessment alone performed on the original
PET volumes [6]. The need for accurate and fast analysis
for medical volume segmentation leads to exploit artificial
intelligence (AI) techniques. These include artificial neural
networks (ANN), expert systems, robotics, genetic algo-
rithms, intelligent agents, logic programming, fuzzy logic,
neurofuzzy, natural language processing, and automatic
speech recognition [7, 8].

ANN is one of the powerful AI techniques that has the
capability to learn from a set of data and construct weight
matrices to represent the learning patterns. ANN has great
success in many applications including pattern classification,
decision making, forecasting, and adaptive control. Many
research studies have been carried out in the medical field
utilising ANN for medical image segmentation and classifi-
cation with different medical imaging modalities. Multilayer
perceptron (MLP) neural network (NN) have been used by
[9] to identify breast nodule malignancy using sonographic
images. A multiple classifier system using five NNs and five
sets of texture features extraction for the characterization
of hepatic tissue from CT images is presented in [10].
Kohonen self-organizing NN for segmentation and a multi-
layer backpropagation NN for classification for multispectral
MRI images have been used in [11]. Kohonen NN was
also used for image segmentation in [12]. Computer-aided
diagnostic (CAD) scheme to detect lung nodules using a
multiresolution massive training artificial neural network
(MTANN) is presented in [13].

The aim of this paper is to develop a robust, efficient
PET volume segmentation system using ANN. The proposed
system is evaluated using different training algorithms and
its performance assessed using different metrics. ANN
outputs are also compared with the outputs of conventional
approaches including thresholding and clustering using
experimental PET phantom studies and clinical volumes of
nonsmall cell lung cancer patients.

This paper is organised as follows. Section 2 presents
mathematical background for the selected approaches. The
materials and methods used are described in Section 3.
Experimental results and their discussion are given in section
4, and finally some conclusions are presented in Section 5.

2. Mathematical Background

2.1. Mathematical Model of a Neuron. ANN is a mathemat-
ical model which emulates the activity of biological neural
networks in the human brain. It consists of two or several
layers each one has many interconnected group of neurons.
Each neuron in the ANN has a number of inputs (the input

vector P) and one output (Y). The input vector elements are
multiplied by weights w1,1, w1,2,. . ., w1,R, and the weighted
values are fed to the summing junction. Their sum is simply
the dot product (W.P) of the single-row matrix W and the
vector P. The neuron has a bias b, which is summed with the
weighted inputs to form the net input n. This sum, n, is the
argument of the transfer function f [14]

n =
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w1,i · pi + b, (1)

Y = f (W · P + b), (2)
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The learning process can be summarized in the following
steps: (1) the initial weights are randomly assigned, (2) the
neuron is activated by applying inputs vector and desired
output (Yd), and (3) calculation of the actual output (Y)
at iteration j=1 as illustrated in (3), where iteration j refers
to the jth training example presented to the neuron. The
following step is to update the weights to obtain the output
consistent with the training examples, as illustrated in
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where Δw1,i( j) is the weight correction at iteration j. The
weight correction is computed by using the delta rule in

Δw1,i
(
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) = α∗ pi

(
j
)∗ e( j), (5)

where α is the learning rate and e( j) is the error which can be
given by

e
(
j
) = Yd

(
j
)− Y( j). (6)

Finally, the iteration j is increased by one, and the previous
two steps are repeated until the convergence is reached.

2.2. Thresholding

2.2.1. Hard Thresholding. Thresholding is the simplest pre-
cursory technique for image segmentation. This method-
ology attempts to determine an intensity value that can
separate the slice g(x, y) into two parts [15]. All voxels
with intensities f (x, y) larger than the threshold value T are
allocated into one class, and all the others into another class.
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(7)

Thresholding approach does not consider the spatial charac-
teristics of a volume; it is sensitive to noise and intensities
variation. Thresholding approach has been used extensively
in the literature as ground truth to compare some of the
proposed schemes for medical image segmentation [16, 17].
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2.2.2. Soft Thresholding. Soft thresholding is more complex
process compared to hard thresholding. This approach
replaces each voxel which has a greater value than the
threshold value by the difference between the threshold and
the current voxel values. Soft thresholding could put into
evidence some important regions as the region of interest
(ROI) in this study.

2.2.3. Adaptive Thresholding. Otsu’s method has been used
as a third approach, which chooses the threshold that
minimizes the intraclass variance of the black and white
voxels in the volume [18]. Likewise, other variants of
adaptive thresholding based on source-to-background ratio
were also reported [4].

2.3. Multiresolution Analysis. Multiresolution analysis
(MRA) is designed to give good time resolution and poor
frequency resolution at high frequencies, and poor time
resolution and good frequency resolution at low frequencies.
It enables the exploitation of slice characteristics associated
with a particular resolution level, which may not be detected
using other analysis techniques [19–21]. The wavelet
transform for a function f (t) can be defined as follows:

Xψ(a,b) =
∫∞

−∞
f (t)ψ(a,b)(t)dt, (8)

where

ψ(a,b)(t) = 1√
a
ψ
(
t − b
a

)
. (9)

The parameters a, b are called the scaling and shifting
parameters, respectively [20, 22]. Haar wavelet filter will be
used in the experimental study at different levels of decom-
position. The Haar wavelet transform (HWT) of a two-
dimensional slice can be performed using two approaches:
the first one is called standard decomposition of a slice, where
the one-dimensional HWT is applied to each row of voxel
values followed by another one-dimensional HWT on the
column of the processed slice. The other approach is called
nonstandard decomposition, which alternates between the
one-dimensional HWT operations on rows and columns.
HWT serves as a prototype for all other wavelet transforms.
Like all wavelet transforms, HWT decomposes a slice into
four subimages of half the original size. HWT is conceptually
simple, fast, memory efficient, and can be reversed without
the edge effects that are associated with other wavelet
transforms. HWT is a matrix-vector-based operation and
can be formulated as follows:

H = 1
2

⎛
⎝

1 1

1 −1

⎞
⎠, (10)

O = I ×H , (11)

O =
(

(IH)TH
)T = HTIH , (12)

I = (H−1)TOH−1, (13)

where I is 2 × 2 input matrix, H contains the Haar
coefficients, and O is the output matrix. Equations (12)
and (13) show the transposed and reconstructed matrices,
respectively. MRA has been used in the literature for different
applications [22–24].

2.4. Clustering. Clustering techniques aim to classify each
voxel in a volume into the proper cluster, then these
clusters are mapped to display the segmented volume.
The most commonly used clustering technique is the K-
means method, which clusters n voxels into K clusters
(K less than n) [25]. This algorithm chooses the number
of clusters, K , then randomly generates K clusters and
determines the cluster centers. The next step is assigning
each point in the volume to the nearest cluster center, and
finally recompute the new cluster centers. The two previous
steps are repeated until the minimum variance criterion
is achieved. This approach is similar to the expectation-
maximization algorithm for Gaussian mixture in which they
both attempt to find the centers of clusters in the volume. Its
main objective is to achieve a minimum intracluster variance
V

V =
K∑

i=1

∑

xj∈Si

(
xj − μi

)2
, (14)

where K is the number of clusters, S = 1, 2, . . . ,K , and μi
is the mean of all voxels in the cluster i. K-means approach
has been used with other techniques for clustering medical
images [26].

3. Materials and Methods

3.1. The Proposed System. The proposed medical volume
segmentation system is illustrated in Figure 1. The 3D
PET volume acquired from the scanner goes through the
preprocessing block, which enhances the quality of slice
features and removes most of the noise from each slice. The
enhanced volume can be processed using three approaches,
the first processing block is thresholding which removes
the background and unnecessary information producing
a volume consists of two classes the background and the
ROI. The second approach is K-means clustering technique
which classifies each slice in PET volume into an appropriate
number of clusters. The third approach is ANN which is used
in both spatial and wavelet domains. The preprocessed PET
volume is fed first to the ANN which is trained to detect the
tumour. In another block, the PET volume is transformed
into the wavelet domain using HWT at different levels
of decomposition. This transform decomposes the volume
and produces the approximation, horizontal, vertical, and
diagonal features for each slice. The approximation features
are fed to another ANN for classifying and quantifying the
tumour. The outputs of ANNs are compared in the next
step with the outputs of the other two approaches, while the
best outputs are selected and displayed. The system has been
tested using experimental and simulated phantom studies
and clinical oncological PET volumes of nonsmall cell lung
cancer patients.
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Figure 1: Proposed system for PET volume segmentation.
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Figure 2: Activation functions: (a) Tangent-sigmoid function, (b)
Linear function.
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Figure 3: Evaluation of the number of neurons in the first hidden
layer with neural network performance using MSE.

3.2. Phantom Studies. In this study, PET volumes containing
simulated tumour have been utilised. Two phantom data sets
have been used. The first data set is obtained using NEMA
IEC image quality body phantom which consists of an ellip-
tical water-filled cavity with six spherical inserts suspended
by plastic rods of volumes 0.5, 1.2, 2.6, 5.6, 11.5, and 26.5 ml
(inner diameters of 10, 13, 17, 22, 28, and 37 mm). The
voxel size is 4.07 mm × 4.07 mm × 5 mm, while the size
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Figure 4: The segmented volume for all spheres in data set 1 using
adaptive, soft, and hard thresholding approaches, respectively.

of the obtained phantom volume is 168 × 168 × 66. This
phantom was extensively used in the literature for assessment
of image quality and validation of quantitative procedures
[27–30]. Other variants of multisphere phantoms have also
been suggested [31]. The PET scanner used for acquiring
the data is the Biograph 16 PET/CT scanner (Siemens
Medical Solution, Erlangen, Germany) operating in 3D
mode [32]. Following Fourier rebinning and model-based
scatter correction, PET images were reconstructed using
two-dimensional iterative normalized attenuation-weighted
ordered subsets expectation maximization (NAW-OSEM).
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Figure 5: Phantom data set 1: (a) Original PET image (168 × 168), (b) thresholded image (168 × 168), (C) clustered image (168 × 168),
(d) segmented image (84 × 84) using ANN and MRA, zoomed by a factor of 2.

Table 1: Tumours characteristics for the second data set.

Tumour Isotropic Nonisotropic

Number Position Size Position Size

1 slice 68 2 voxels slice 142 2 voxels

2 slice 57 3 voxels slice 119 3 voxels

3 slice 74 2 voxels slice 155 2 voxels

CT-based attenuation correction was used to reconstruct
the PET emission data. The default parameters used were
ordered OSEM iterative reconstruction with four iterations
and eight subsets followed by a postprocessing Gaussian filter
(kernel full-width half-maximal height, 5 mm).

The second data set consists of Monte Carlo simulations
of the Zubal antropommorphic model where two volumes
were generated [33]. The first volume contains a matrix with
isotropic voxels, the size of this volume is 128 × 128 × 180.
The second volume contains the same matrix of the first one
but with nonisotropic voxels having a matrix size of 128 ×
128 × 375. The voxel size in both volumes is 5.0625 mm
× 5.0625 mm × 2.4250 mm. The second data volume has
3 tumours in the lungs whose characteristics are given in
Table 1.

3.3. Clinical PET Studies. Clinical PET volumes of patients
with histologically proven NSCLC (clinical Stage Ib-IIIb)
who have undertaken a diagnostic whole-body PET/CT scan
were used for assessment of the proposed segmentation
technique [34]. Patients fasted no less than 6 hours before

PET/CT scanning. The standard protocol involved intra-
venous injection of 18F-FDG followed by a physiologic saline
(10 ml). The injected FDG activity was adjusted according
to patient’s weight using the following formula: A (Mbq)
= weight (Kg) 4 + 20. After 45 min uptake time, free-
breathing PET and CT images were acquired. The data were
reconstructed using the same procedure described for the
phantom studies. The maximal tumour diameters measured
from the macroscopic examination of the surgical specimen
served as ground truth for comparison with the maximum
diameter estimated by the proposed segmentation technique.
The voxel size is 5.31 mm × 5.31 mm × 5 mm, while the size
of the obtained clinical volume is 128 × 128 × 178.

4. Results and Discussion

4.1. NEMA Image Quality Phantom. An experimental study
has been run at the beginning to determine the best ANN
design and algorithms. Multilayer feedforward NNs [8]
consists of input layer (144 neurons), hidden layer (variant
number of hidden neurons), and outputs layer (1) has been
chosen first to determine the best number of hidden neurons.
To evaluate the effect of the number of neurons in the
hidden layer and achieve the best ANN performance for
our application, different numbers of neurons in the hidden
layer have been used. The maximum number of iterations
used in the ANN is 1000. The experiment has been repeated
10 times for each chosen number of the hidden neurons,
and the average was considered for that number. Hyperbolic
tangent sigmoid transfer function has been used for all layers



6 International Journal of Biomedical Imaging

0
0.2
0.4
0.6

0.8

1

15
10

5
0 0

5
10

15

(a)

0
0.2
0.4
0.6

0.8

1

15
10

5
0 0

5
10

15

(b)

0
0.2
0.4
0.6

0.8

1

15
10

5
0 0

5
10

15

(c)

0
0.2
0.4
0.6

0.8

1

15
10

5
0 0

5
10

15

(d)

0
0.1
0.2
0.3
0.4
0.5
0.6

15
10

5
0 0

5
10

15

(e)

0
0.1

0.15
0.2

0.25
0.3

0.35

15
10

5
0 0

5
10

15

(f)

Figure 6: Segmented sphere surface plot for phantom data set 1. Voxel values scaled in [0..1] on Z axis, and voxels number is within [0..12]
on X and Y axes: (a) sphere 1, (b) sphere 2, (c) sphere 3, (d) sphere 4, (e) sphere 5, and (f) sphere 6.
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Figure 7: Phantom data set 2. (Tumour 1): (a) Original PET image (128 × 128), (b) thresholded image (128 × 128), (C) clustered image
(128 × 128), (d) segmented image (64 × 64) using ANN and MRA, zoomed by a factor of 2, where tumour 1 (2 voxel) is detected.

except the output layer where the linear activation function is
used. The two activation functions are illustrated in Figure 2.
Levenberg-Marquardt backpropagation training algorithm
has been used during the evaluation of neurons numbers
in the hidden layer [35] to validate the best design for the
ANN, which is suitable for the proposed application. Figure 3
presents the number of neurons in the first hidden layer with
the performance measured using mean-squared error (MSE)
at 1000 iterations. The results obtained after this evaluation
shows that the best number of the hidden neurons which

corresponds to the smallest MSE, and good ANN outputs is
70 hidden neurons.

Using the achieved ANN structure, different training
algorithms have been evaluated in the next step to achieve
the best ANN performance. In this evaluation the same ANN
structure, sufficient training cases and 1000 epochs have been
considered. The following training algorithms have been
used in this part of the study. BFGS quasi-Newton back-
propagation [36], bayesian regulation backpropagation (BR)
[37], conjugate gradient backpropagation with Powell-Beale
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Figure 8: Confusion matrix: (a) for phantom data set 1, sphere 1, (b) phantom data set 2, tumour 1, (c) phantom data set 2, tumour 2, and
(d) for phantom data set 2, tumour 3.

restarts (CGB) [38], conjugate gradient backpropagation
with Fletcher-Reeves updates (CGF) [39], conjugate gradient
backpropagation with Polak-Ribire updates (CGP) [39], gra-
dient descent backpropagation (GD) [40], gradient descent
with momentum backpropagation (GDM) [41], gradient
descent with adaptive learning rate backpropagation (GDA)
[42], gradient descent with momentum and adaptive learn-
ing rate backpropagation (GDX) [43], Levenberg-Marquardt
backpropagation (LM) [35], one-step secant backpropaga-
tion (OSS) [44], random order incremental training with
learning functions (R), resilient backpropagation (RP) [45],
and scaled conjugate gradient backpropagation (SCG) [46].
The average of the performance and the required time for
each of these training algorithms are presented in Table 2,
this experiment has been repeated for 10 times and the
standard deviation for the performance achieved is 4.15E-
07. The best outputs associated with the best performance
was achieved using Levenberg-Marquardt backpropagation
training algorithm. This algorithm is using a combination of
techniques which allows the NN to be trained efficiently. This
combination includes backpropagation, gradient descent
approach, and Gauss-Newton technique [47, 48].

After determining the main design parameters of ANN,
a feedforward ANN with one hidden layer (70 hidden
neurons), one outputs layer (1) has been used in the study of
PET data sets. The training algorithm used with this network
is Levenberg-Marquardt backpropagation algorithm. In this
application, 70% of the first data set have been used for
training (46 slices), 15% for validating (10 slices), and 15%
for testing (10 slices). A window of 12 × 12 voxels has been
used to scan each input slice. The size of this window is
chosen to include all the spheres even the biggest one. The
utilisation of this window has reduced the input features size
fed into the ANN each time without losing the slice details
in addition to reduce the required computational time. The
input features of the ANN have been extracted in spatial and
wavelet domains. For both domains an ANN with 144 inputs,
70 hidden neurons, and (1) outputs layer has been used. The
input features in the spatial domain are the voxels of each
processed slice. While the utilised wavelet filter decomposes
each slice from the input volume and produces four types
of coefficients. The approximation coefficients produced by
the HWT represent the most detailed information about the
analysed slice. The size of these coefficients (84 × 84) is half
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Figure 9: Illustration of algorithm performance on clinical PET data showing: (a) original PET image (128 × 128), (b) thresholded image
(128 × 128), (C) clustered image (128 × 128), and (d) segmented image (64 × 64) using ANN and MRA, zoomed by a factor of 2.

Table 2: Evaluation of the effect of different training algorithms
on the performance of multilayer feedforward NN with 144-70-1
topology.

Training function Time (sec) Performance (MSE)

BFG 58 0.000426

BR 35 3.69e-6

CGB 11 0.0128

CGF 11 0.0156

CGP 13 0.0160

GD 6 0.117

GDM 6 0.100

GDA 6 0.0950

GDX 6 0.0383

LM 27 1.32E-7

OSS 13 0.0198

R 226 0.0503

RP 6 0.0183

SCG 10 0.0154

of the original size. The ANN achieved good performance
with very small MSE, 2.39E-16.

An objective evaluation of the artificial intelligence
system (AIS) outputs has been performed by comparing
the sphere computed volume (CV) with its true original
volume (TV). The experimental results have been repeated
10 times, and the average of the sphere volume measured
using ANN is calculated. The standard deviation for the
volume of sphere 1 is 0.0971, for sphere 2 is 0.1170, for
sphere 3 is 0.1185, for sphere 4 is 0.1232, for sphere 5

is 0.1258, and for sphere 6 is 0.1293. The CV obtained
from the ANN, and the percentage of the absolute relative
error (ARE %) for each sphere are presented in Table 3.
ANN has clearly detected all spheres, where spheres 1,
2, and 3 are accurately segmented whereas spheres 4 is
overestimated, and sphere 5 and 6 are underestimated. It is
worth mentioning that the proposed system has shown better
performance compared to the thresholding and clustering
based approaches which are used as ground truth. Adaptive,
soft, and hard thresholding approaches have been also used
to perform the segmentation. The best results obtained from
these approaches is by using adaptive threshold method
which is used for the comparison with the other assessed
techniques. Figure 4 presents the obtained spheres volumes
using three thresholding approaches. Table 3 illustrates a
comparison between the assessed approaches in term of
ARE percentage. Thresholding approach has overestimated
the volume of all spheres, while the exploitation of K-
means clustering approach underestimates the volume of all
spheres, particularly spheres 5 and 6.

The segmented slices from thresholding, clustering and
ANN in the wavelet domain are illustrated in Figure 5,
where Figure 5(d) is zoomed for illustration purpose. The
three-dimensional shaded surface for each segmented sphere
obtained from ANN are plotted in Figure 6, where the voxel
values are scaled in [0..1] on Z axis and voxels number is
within [0..12] on the remaining two axes.

4.2. Simulated Zubal Phantom. The proposed segmentation
system was able to detect tumours in the second phantom
data set with isotropic voxels. The first tumour with size



International Journal of Biomedical Imaging 9

Table 3: Comparison of sphere volumes and ARE between TV and CV for different segmentation algorithms assessed including
thresholding, clustering and ANN.

Spheres Thresholding Clustering ANN

No. TV (ml) CV (ml) ARE % CV (ml) ARE % CV (ml) ARE %

1 26.52 26.74 0.81 25.73 2.97 26.54 0.08

2 11.49 11.62 1.07 11.01 4.22 11.51 0.10

3 5.58 5.96 6.97 5.28 5.35 5.63 0.95

4 2.57 2.81 9.08 2.40 6.89 2.63 2.13

5 1.15 1.29 11.98 1.03 10.03 1.10 4.54

6 0.52 0.61 15.76 0.46 11.52 0.49 5.88

of 2 voxels was clearly detected in slice 68. Figure 7 shows
the segmented slices from thresholding, clustering, and ANN
in the wavelet domain for this tumour. The second and
third tumours with size 3 and 2 voxels, respectively, were
also clearly detected in slice 57 and 74, respectively. Similar
results have been achieved for detecting tumours in the
second data set with nonisotropic voxels. On the other hand
similar segmented slices have been obtained using ANN in
the spatial domain, however, more computational time is
required for processing all data sets in this domain.

4.3. Performance Evaluation. In the field of AI a number
of performance metrics can be employed to evaluate the
performance of ANN. A confusion matrix is a visualisation
tool typically used in supervised and unsupervised learning
approaches. Each row of the matrix represents the instances
in a predicted class, while each column represents the
instances in an actual class. One benefit of a confusion
matrix is that it is easy to see if the system is confusing
two classes (the tumour and the remaining tissues). The
confusion matrix for the first data set shows that 1 voxel out
of 65 ones in the first segmented sphere was misclassified,
Figure 8(a). Where the percent in the green box refers to each
class prediction accuracy. While the percent in the pink box
refers to the misclassified voxels accuracy in each class. The
gray boxes represent the percents of classified voxels numbers
in each class in green, and the percent of the error in each
class in red. The blue box represents the total percent of all
classes in green and the total error in these classes in red.
All the numbers in the confusion matrix are represented as
a percentage.

The confusion matrix for the second data set, tumour 1
is illustrated in Figure 8(b). The two voxels of this tumour
were precisely classified in one class and the remaining voxels
(4094) classified in the other class. The confusion matrix
for the second data set, tumour 2, shows that the 3 voxels
were precisely classified as a first class and the remaining
voxels (4093) classified in the other class. The obtained result
is presented in Figure 8(c), while Figure 8(d) illustrates the
confusion matrix for the second data set, tumour 3. The two
voxels of tumour 3 were precisely classified as a first class and
the remaining voxels (4094) classified in the other class.

The other performance checking approach is receiver
operating characteristic (ROC). This approach can be repre-
sented by plotting the fraction of true positives rate (TPR)

versus the fraction of false positives rate (FPR), where the
perfect point in the ROC curve is the point (0,1). The ROC
curve for the first data set is located near the perfect point
and the FPR for the sphere voxels number is near the 0 point.
Perfect ROC has been obtained for the second data set and
the FPR for tumour voxels number is 0.

4.4. Clinical PET Studies. The proposed approaches have
been also tested on clinical PET volumes of nonsmall cell
lung cancer patients. A subjective evaluation based on the
clinical knowledge has been carried out for the output of
the proposed approaches. The tumour in these slices has
a maximum diameter on the y-axis of 90 mm (estimated
by histology). The segmented tumour using ANN in spatial
domain and wavelet domain (after scaling) has a diameter
of 90.1 mm. The segmented volumes using the proposed
approaches outlines a well defined contour as illustrated in
Figure 9.

5. Conclusions

An artificial intelligence system based on multilayer artificial
neural networks was proposed for PET volume segmen-
tation. Different training algorithms have been utilised in
this study to validate the best algorithm for the targeted
application. Two PET phantom data sets and a clinical
PET volume of nonsmall cell lung cancer patient have
been used to evaluate the performance of the proposed
system. Objective and subjective evaluation for the system
outputs have been carried out. Confusion matrix and
receiver operating characteristic were also used to judge the
performance of the trained neural network. Experimental
and simulated phantom results have shown a good perfor-
mance for the ANN in detecting the tumours in spatial
and wavelet domains for both phantom and clinical PET
volumes. Accurate tumour quantification was also achieved
through this system. Ongoing research is focusing on further
validation of the proposed algorithm in a clinical setting
and the exploitation of other artificial intelligence tools and
feature extraction techniques.
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