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ABSTRACT

Aberrant DNA methylation plays an important role
in cancer progression. However, no resource has
been available that comprehensively provides DNA
methylation-based diagnostic and prognostic mod-
els, expression–methylation quantitative trait loci
(emQTL), pathway activity-methylation quantitative
trait loci (pathway-meQTL), differentially variable and
differentially methylated CpGs, and survival analy-
sis, as well as functional epigenetic modules for
different cancers. These provide valuable informa-
tion for researchers to explore DNA methylation pro-
files from different aspects in cancer. To this end,
we constructed a user-friendly database named DNA
Methylation Interactive Visualization Database (DN-
MIVD), which comprehensively provides the follow-
ing important resources: (i) diagnostic and prognos-
tic models based on DNA methylation for multiple
cancer types of The Cancer Genome Atlas (TCGA);
(ii) meQTL, emQTL and pathway-meQTL for diverse
cancers; (iii) Functional Epigenetic Modules (FEM)
constructed from Protein-Protein Interactions (PPI)
and Co-Occurrence and Mutual Exclusive (COME)
network by integrating DNA methylation and gene
expression data of TCGA cancers; (iv) differentially
variable and differentially methylated CpGs and dif-
ferentially methylated genes as well as related en-
hancer information; (v) correlations between methy-
lation of gene promoter and corresponding gene ex-

pression and (vi) patient survival-associated CpGs
and genes with different endpoints. DNMIVD is freely
available at http://www.unimd.org/dnmivd/. We be-
lieve that DNMIVD can facilitate research of diverse
cancers.

INTRODUCTION

Multiple studies have identified DNA methylation
biomarkers for cancer diagnosis and prognosis (1,2).
In addition to methylated CpG sites in the promoter
region, methylated CpGs in the gene body can also serve
as cancer diagnostic markers (3). Therefore, recent reports
have investigated global DNA methylation profiles to
develop powerful screening markers for cancer diagnosis
and prognosis (4,5). Several new algorithms and concepts
have been proposed to facilitate cancer epigenetic re-
search, such as Functional Epigenetic Modules (FEM) (6),
expression–methylation quantitative trait loci (emQTL)
(7), and differentially variable and differentially methylated
CpGs (DVMCs) (8). Although several databases regarding
DNA methylation have been launched, these databases are
mainly focused on one aspect of DNA methylation, such as
the Pancan-meQTL database (9) on methylation quantita-
tive trait loci (meQTL), Lnc2Meth (10) on lncRNA–DNA
methylation associations, and MethSurv (11) for sur-
vival analysis. However, no database has been available
that simultaneously provides CpG-based diagnostic and
prognostic models, emQTL, pathway activity-meQTL
(pathway-meQTL), DVMCs, survival analysis, as well as
FEM for different cancers, This information would aid
researchers in exploring DNA methylation profiles from
different aspects.
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For this purpose, we constructed a user-friendly database
named the DNA Methylation Interactive Visualization
Database (DNMIVD), which comprehensively provides the
following important resources: (i) diagnostic and prog-
nostic models based on DNA methylation for 14 and 23
cancer types of TCGA, respectively; (ii) meQTL, emQTL
and pathway-meQTL for diverse cancers; (iii) FEM con-
structed from Protein–Protein Interactions (PPI) and Co-
Occurrence and Mutual Exclusive (COME) network by
integrating DNA methylation and gene expression data
of TCGA cancers; (iv) DVMCs, differentially methylated
genes (DMGs) as well as related enhancer information; (v)
correlations between methylation level of gene promoters
and corresponding gene expression and (vi) patient survival
associated CpGs and genes with different endpoints (overall
survival (OS), disease-free interval (DFI) and progression-
free interval (PFI)). These abundant DNA methylation re-
sources and useful diagnostic and prognostic models will
allow users to obtain valuable information for research.

DNMIVD is freely available at http://www.unimd.org/
dnmivd/ and is convenient for building models, brows-
ing, searching and downloading data of methylation infor-
mation. Importantly, DNMIVD is the first database to al-
low researchers to build molecular models for cancer di-
agnosis and prognosis based on DNA methylation as well
as to visualize the methylation profile of CpGs and gene
promoters from various aspects. We believe that DNMIVD
provides valuable DNA methylation resources and will fa-
cilitate the research of diverse cancers.

MATERIALS AND METHODS

Data collection

The gene expression and DNA methylation data of TCGA
were downloaded from UCSC Xena (http://xena.ucsc.
edu) and preprocessed as previously described (4). Clini-
cal data with different endpoints were downloaded from
the TCGA Pan-Cancer Clinical Data Resource (TCGA-
CDR) (12). The R/Bioconductor package DESeq2 (13) was
used to normalize raw RNA-seq read count. MeQTL was
downloaded from the Pancan-meQTL database (9). En-
hancer and related information were downloaded from the
HACER database (14) (Figure 1A). The cancer types in-
cluded in DNMIVD are listed in Supplementary Table S1.

Definition of DMGs between tumor and normal samples

We first assigned DNAm values for each gene with the av-
erage beta value of the probes mapped to the promoter
region, including TSS200 (region from –200 bp upstream
to the transcription start site (TSS) itself), 1stExon (the
first exon), TSS1500 (from –200 to –1500 bp upstream
of TSS), and 5′UTR in order (6,15). To define DMGs,
we first defined �-difference as the difference between the
mean � value of tumor and normal samples. An un-
paired t-test was performed and P-value was adjusted by
Benjamini/Hochberg method. DMGs were defined by |�-
difference| > 0.2 and a false discovery rate (FDR) corrected
P-value (Benjamini/Hochberg) ≤ 0.05 (16).

DVMCs

DVMCs were defined as previously described (8). Briefly, we
used Bartlett’s test to identify differentially variable CpGs
and independent Student’s t-test for differentially methy-
lated CpGs between tumor and normal samples. CpGs
with Bartlett’s test adjusted P-value (Benjamini/Hochberg
method) ≤ 0.05, |beta difference| > 0.2 and Student’s t-test
adjusted P-value (Benjamini/Hochberg method) ≤ 0.05 are
considered as DVMCs. DVMCs have been proven to be use-
ful to identify epigenetic field defects in breast cancer (8).

emQTL

emQTL was first defined by Fleischer et al. (7), who iden-
tified distinct breast cancer lineages with emQTL. We cal-
culated Pearson correlation between each CpG with an in-
terquartile range (IQR) > 0.1 and all genes; CpG-gene pairs
with Bonferroni corrected P-value < 0.05 and | Pearson r |
> 0.3 were considered as significant emQTL.

Pathway-meQTL

We first calculated pathway activities with DESeq2 normal-
ized read count for each pathway from the Molecular Sig-
natures Database (MSigDB) (17,18), as described by Zhang
et al. (19) and used a previously published method to as-
sess the pathway activities in each sample (20). Similar to
emQTL, Pearson correlation for each CpG with IQR >
0.1 and all pathway activities among all samples were cal-
culated. Pathway-CpG pairs with Bonferroni corrected P-
value < 0.05 and | Pearson r | > 0.3 were considered as
pathway-meQTL.

To illustrate the association between pathway-meQTL
and cancer, we identified cancer hallmark associated
pathway-meQTLs (available on the download page of DN-
MIVD) based on the context of cancer hallmark associated
pathways from Zhang et al. (19). We used the previously
described method (7) to perform enhancer and transcrip-
tion factor binding site (TFBS) enrichment analysis. We
found that the CpGs involved in cancer hallmark-associated
pathway-meQTLs were significantly enriched in enhancer
regions in 14 out of 18 cancer types (Supplementary Table
S2). We checked whether the above CpGs were enriched in
TFBS in 24 cancer types and found that some transcrip-
tion factors (TFs) among the top 50 frequently enriched
TFs in cancer hallmark-associated pathway-meQTLs (Sup-
plementary Figure S1 and Supplementary Table S3) were
closely associated with cancer. For example, the oncogene
cFos, a member of the Fos family, was enriched in all 24
cancer types and is associated with tumorigenesis (21) and
survival (22). Finally, we focused on two CpGs cg04396850
and cg25351606 that were identified as potential DNA
methylation biomarkers for the diagnosis of pan-cancer (4).
The hallmark associated pathway-meQTL result showed
that the two CpGs are highly correlated with cancer hall-
mark pathway activities (Supplementary Figure S2), such as
telomere maintenance, unwinding of DNA, double-strand
break repair and cell cycle, which was consistent with the
previous result that was identified by enrichment analysis
of emQTL genes (4).

http://www.unimd.org/dnmivd/
http://xena.ucsc.edu
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Figure 1. Overview of DNMIVD. (A) Data collection, processing and database construction. (B) CpG is composed of eleven categorized resources, and
gene includes five categorized annotations.

Identification of COME gene pairs

We used DISCOVER (23), a novel statistical independence
test, to assess COME by counting how many tumors have
an alteration in two genes and comparing the observed al-
terations to the number of tumors expected to have such an
overlap by chance if these alterations were independent. In
order to screen COME events that are associated with tu-
mor, fisher exact test was performed in each cancer type to
screen the COME events that are significantly enriched in
tumor patients or normal samples. To build a reliable net-
work of COME events in each type of cancer, we further
screened frequently occurred events from the above COME
events, as frequently occurred events, we considered events
that were detected in at least three different cancer types.

FEM models

The FEM algorithm (6) is a functional supervised algo-
rithm that uses a network of PPI or COME to identify sub-
networks in which a significant number of genes are asso-
ciated with a phenotype of interest (POI; in our case, dif-

ferential expression and differential methylation). The PPI
network used in this study was downloaded from the sup-
plementary data of a previous publication (24).

Statistical analysis

All statistical analyses were performed with Python3.5.2 on
anaconda3–4.0.0. Kruskal–Wallis H-test and Chi-square
test were performed with Python package Scipy (25).
Python package lifelines (http://lifelines.readthedocs.io/en/
latest/index.html) and Cox’s proportional hazard model
was implemented in Cox regression analysis.

Database implementation

The database was organized with MySQL (version 5.7.25)
and Django (version 2.0.7). The web interface was devel-
oped using HTML with JavaScript. The interactive graph
was constructed with Python package plotly (https://plot.ly,
version 3.1.0). Venn diagrams in ‘Browse by cancer type’
module were implemented with jvenn (26).

http://lifelines.readthedocs.io/en/latest/index.html
https://plot.ly
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DATABASE OVERVIEW

DNMIVD collected the RNA-Seq, methylation and clin-
ical data from TCGA as well as meQTL, enhancer and
pathway information. For each cancer type, the data were
processed and analyzed using a series of filtering steps and
tools (27–29) (Figure 1A). DNMIVD contains 396 000
CpG sites involving 20 982 distinct genes; each CpG and
gene was connected to seven and five categories of an-
notations respectively (Figure 1B). For CpG, we provide
seven categories of information: (i) the diagnostic model,
which helps users screen diagnostic markers to distinguish
tumor samples from normal samples; this would be useful
for early cancer diagnosis, especially with DNA methyla-
tion profiles of blood samples; (ii) the prognostic model,
from which, users can obtain related prognostic markers
to predict the outcome of cancer patients; (iii) meQTL; (iv)
DVMC; (v) pathway-meQTL, which we proposed and was
proven to be closely associated with cancer (see Materi-
als and methods); (vi) emQTL and (vii) survival analysis.
Regarding genes, DNMIVD offers information on DMGs,
methylation-expression correlation, survival analysis and
FEM.

USER INTERFACE

The web-based interface of DNMIVD can be freely ac-
cessed at http://www.unimd.org/dnmivd/ and allows users
to build model, browse, search and download data.

Diagnostic and prognostic model

On ‘Model’ page, DNMIVD provides two different online
models: a diagnostic model and a prognostic model. Input
for these two models is a list of CpG sites (HM450k array
probes) or gene symbols. For input type of CpG, users can
input differentially methylated CpGs (DMCs), DVMCs or
CpGs. For gene symbols, a list of differentially expressed
genes (DEGs), DMGs or other genes of interest can be im-
ported to build these two kinds of models. If the input is
a list of gene symbols, then the gene would be converted
to a list of CpG sites located within these genes. Users can
also choose different functional regions (TSS200, TSS1500,
1 exon, intron, gene body, TSS10kb, and TTS10kb) in which
CpGs are located.

With the diagnostic model, users can predict whether the
sample is normal, a benign tumor or malignant, and obtain
basic information of the inputted CpGs, including methy-
lation status and important scores. The important score for
each CpG is calculated by XGBoost as previously explained
(4) and the bar plot of important score will then be dis-
played. Next, a logistic regression model constructed from
CpGs with an important score > 0 is implemented to train
the diagnostic model. The Receiver Operating Characteris-
tic (ROC) curve and Area Under Curve (AUC) will be dis-
played in the result page. Finally, an interactive unsuper-
vised hierarchical clustering and heatmap associated with
the methylation profile of screened CpGs is presented (Fig-
ure 2, diagnostic model).

With the prognostic model, in addition to basic informa-
tion of CpGs, the result page also includes results of the

univariate and multivariate proportional hazards regression
model; the method implemented in the prognostic model
was described previously (4). Moreover, a heatmap of DNA
methylation profile of retained CpGs, distribution of partial
hazard with user-selected endpoint and Kaplan-Meier plot
are also generated in the result page (Figure 2, prognostic
model). In addition, in the prognostic model, the user can
also select different clinical outcome among OS, DFI and
PFI.

Browse module

In the ‘Browse’ page, users can browse DNMIVD by
five different panels: ‘Cancer Type’, ‘DMG’, ‘FEM(PPI)’,
‘FEM(COME)’ and ‘pathway-meQTLs’. In the ‘Cancer
Type’ panel, by clicking a cancer type, users can view a Venn
diagram of CpGs and genes overlapping in different cat-
egories in this cancer (Figure 2, Browse). Users can click
on the intersection numbers to show the specific or shared
CpGs/genes in the table. In other panels, the corresponding
tables with different kinds of hyperlinks are provided.

Search module

Users can search DNMIVD by CpG or by gene symbol,
leading to two different result pages.

In the CpG result page, there are six different pan-
els: ‘Summary’, ‘meQTL’, ‘DVMC’, ‘pathway-meQTL’,
‘emQTL’ and ‘Survival’. The ‘Summary’ panel offers de-
tailed annotations of CpG and enhancer information over-
lapped with CpG. In the ‘meQTL’ panel, users can click but-
tons in the table to link to the Pancan-meQTL database (9).
The ‘DVMC’ panel shows the significance level and scat-
ter plot of DVMC (Figure 2, DVMC). In the ‘pathway-
meQTL’ and ‘emQTL’ panel, a table or heatmap is pre-
sented for one type of cancer or pan-cancer, respectively.
The ‘Survival’ panel shows Kaplan–Meier for CpG with dif-
ferent endpoint and patient groups (median or cutoff by in-
tervals of 0, 0.3, 0.7 and 1) (Figure 2, Survival).

The gene result page offers six different panels: ‘Sum-
mary’, ‘DMG’, ‘Meth-Exp correlation’, ‘Survival’, ‘FEM
(PPI)’ and ‘FEM (COME)’. The ‘Summary’ panel displays
basic information of a gene, followed by a boxplot of DEG
and table of CpGs located within the gene. The ‘DMG’
panel offers a boxplot of DMG (Figure 2, DMG), and
the ‘Meth-Exp correlation’ panel provides the Pearson and
Spearman correlation scatter plot between gene expression
and methylation level of the gene promoter (Figure 2, Cor-
relation). In the ‘FEM (PPI)’ and ‘FEM (COME)’ panel,
a table and graph of a network constructed from PPI or
COME are presented (Figure 2, FEM).

DISCUSSION AND FUTURE DIRECTIONS

In this study, we developed a database, DNMIVD, to col-
lect and visualize different categories of DNA methyla-
tion resources, including models to screen diagnostic and
prognostic markers, DVMC, emQTL, pathway-meQTL,
FEM and survival analysis. Our database includes 23 can-
cer types and provides enriched information for users to
investigate DNA methylation and gene expression pat-
tern across distinct TCGA cancers. For example, in a

http://www.unimd.org/dnmivd/
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Figure 2. Content and user interface of DNMIVD. (i) Diagnostic model. The results page of the diagnostic model includes a bar plot of feature importance,
ROC curve and the heatmap of DNA methylation profile for diagnostic markers in tumor and normal samples. (ii) Prognostic model. The results page of
the prognostic model is composed of the heatmap of DNA methylation profile for the screened prognostic markers, bar plot for the distribution of partial
hazard and survival Kaplan–Meier curve to display the result of the prognostic model. (iii) Browse by cancer types. If the number in the Venn diagram is
clicked, detailed information of selected CpGs of genes will be shown. If the overlapping area is too small to accommodate the number, then a question
mark “?” will replace the number. (iv) DVMC, survival, DMG, correlation and FEM panel for the search module.



Nucleic Acids Research, 2020, Vol. 48, Database issue D861

diagnostic model, four CpGs (cg23690893, cg03428945,
cg27234929, cg03162410, cg27541349) were found to be po-
tential signatures for the diagnosis of breast cancer (with
AUC > 0.99, diagnostic model in Figure 2). Regarding the
prognostic model, four prognostic signatures (cg18558767,
cg00593404, cg04747226, cg04248157) were obtained from
our previous publication (4), and a multivariate propor-
tional hazards regression model built with the four CpGs
could be used to classify patients into high-risk and low-risk
groups with different outcome (P-value < 0.001, prognos-
tic model in Figure 2). DNMIVD also includes DMG and
FEM, such as Septin 9 (SEPT9), the first FDA-approved
methylation assay for colorectal cancer, is also observed
to be differentially methylated in colon adenocarcinoma
(COAD) in DNMIVD (DMG in Figure 2). For survival
analysis, DNMIVD provides different endpoints to be cho-
sen, such as OS, DFI and PFI.

We plan to continue to maintain and update the con-
tent in DNMIVD by the following strategies: (i) integrating
public DNA methylation and gene expression dataset from
Gene Expression Omnibus and other public sources besides
TCGA. (ii) expanding DNA methylation datasets detected
by WGBS, reduced representation bisulfite sequencing, and
other approaches; and (iii) adding new algorithms to better
integrate DNA methylation and gene expression data. We
believe that DNMIVD can provide new insights into reg-
ulatory mechanisms and applications of DNA methylation
in cancer.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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