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Abstract: Cinnamon has been used as a flavoring and medicinal agent for centuries. Much research
has focused on cinnamon bark powder, which contains antioxidants, flavonoids, carotenoids, vi-
tamins, minerals, fiber, and small amounts of essential oil. However, isolated and concentrated
cinnamon essential oil may also have important medicinal qualities, particularly in antidiabetic
therapy. Some of the most common essential oil constituents identified in the literature include
cinnamaldehyde, eugenol, and beta-caryophyllene. Due to their high concentration in cinnamon
essential oil, these constituents are hypothesized to have the most significant physiological activity.
Here, we present a brief review of literature on cinnamon oil and its constituents as they relate to
glucose metabolism and diabetic pathogenesis. We also present molecular docking simulations of
these cinnamon essential oil constituents (cinnamaldehyde, eugenol, beta-caryophyllene) that suggest
interaction with several key enzymes in glucometabolic pathways.

Keywords: cinnamon; cinnamon essential oil; molecular docking; antidiabetic; glucose metabolism;
cinnamaldehyde; beta-caryophyllene; eugenol

1. Introduction

Essential oils are complex mixtures of small, aromatic molecules produced by many
plant taxa as secondary metabolites related to normal metabolic processes [1,2]. The diverse
composition of these secondary metabolites is thought to reflect both genetic species’
individuality as well as an adaptation mechanism for plants to cope with environmental
stressors such as pathogens, unfavorable temperature and pH, drought, high salinity,
ultraviolet radiation, heavy-metal stress, and nutrient depletion [2,3]. Additionally, these
molecules may be used by the plant for defense against herbivores and as an attractant for
pollinators. Essential oil compounds are stored in microscopic sacs or glands in various
parts of the plant.

Essential oil terpenoids are based on a basic isoprene unit: five carbons, (two of which
are double-bonded) and eight hydrogens. Monoterpenes consist of two isoprene units
bonded together (10 carbons), and sesquiterpenes are three isoprene units (15 carbons).
Occasionally, heavier diterpene (4 isoprene units, 20 carbons) molecules can be represented
in cold-pressed or solvent-extracted essential oils, but these molecules tend to be too
heavy to be carried over by the steam during typical distillation. Monoterpenes and
sesquiterpenes can either be straight-chain (acyclic) or contain various ring structures
(monocyclic, bicyclic, etc.), and there is considerable variety in these structures. Most
volatile essential oil compounds are produced along canonical biochemical pathways (see
Table 1) from a variety of precursor molecules, including amino acids, carbohydrates, and
fatty acids and their derivatives [4,5].

Some essential oils have been studied for their antidiabetic potential [6–10]. The US
Centers for Disease Control reports that about 34.2 million people (around 10% of the total
population) in the United States have diabetes, and about one in five of those people do not
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realize they have the disease [11]. Diabetics are at much higher risk of early mortality as
well as comorbidities such as blindness, renal disease, heart disease, stroke, and lower-limb
amputations [12]. New drugs based on complex mixtures of natural compounds may offer
therapeutic potential for treatment of diabetes.

Table 1. Canonical Biochemical Pathways for Production of Volatile Compounds in Plants.

Biochemical Pathway Classes of Compounds
Produced Examples

Mevalonate

Terpenes and terpenoids Beta-caryophyllene, limonene,
pinenes, geraniol

Non-mevalonate, also called
methylerythritol phosphate

(MEP)

Shikimate
Alkaloids, phenylpropanoids,
flavonoids, lignans, aromatic

polyketides

Cinnamaldehyde,
eugenol, coumarin

Derivation of fatty acids Fatty alcohols Octanol, decanol

Understanding the interaction between small molecules and possible enzyme binding
sites is key in discovering novel therapeutics [13]. The field of In silico modeling is becoming
an important player in early-stage drug discovery to suggest possible interactions between
ligands and proteins of interest, as well as predict the relative strength of those interactions.

The goal of this article is two-fold: (1) outline existing literature on anti-diabetic
potential of cinnamon essential oil and its main constituents; and (2) through molecular
docking simulations, suggest possible mechanisms of glucose metabolism modulation by
cinnamon essential oil.

2. Cinnamon Essential Oil and Its Constituents

Cinnamon has been used as a flavoring and medicinal agent for centuries, with refer-
ences back to Biblical times [14]. Medicinally, cinnamon has been used as a carminative
and treatment for digestive issues such as dyspepsia, anorexia, and vomiting [15]. Other
anecdotal uses of cinnamon include treatment for hemorrhage and bleeding ulcers [16],
as a warming agent and stimulant [17], and treatment against various cancers [18]. Mod-
ern investigations have focused primarily on cinnamon’s antidiabetic and antilipidemic
properties, although the therapeutic benefit and dosing parameters require further ex-
ploration [19]. Much of this research involves cinnamon bark powder, which contains
small amounts of cinnamon essential oil along with antioxidants, flavonoids, carotenoids,
vitamins, minerals, and fiber. However, concentrated, volatile cinnamon essential oil may
also have important medicinal qualities.

There may be more than 200 Cinnamomum species, but several species of cinnamon
have been identified as culturally or economically relevant: Cinnamomum zeylanicum (botan-
ical synonym: C. verum, also called Ceylon cinnamon or true cinnamon), C. cassia, C.
burmannii, C. tamala, C. loureirii, C. iners, C. pauciflorum, C. camphora and C. glaucescens [20].
Each species yields an essential oil of different chemistry and aroma. Only C. zeylanicum
(Ceylon cinnamon) and C. cassia are currently produced on a commercial scale.

Cinnamomum zeylanicum trees are slender evergreens that can reach up to 65 feet in
height. Cinnamon bark is harvested from the inner cambium of trees typically 3–4 years old.
Trees are pruned repeatedly in order to curtail height for easier harvesting and encourage
lateral growth of shoots suitable for collection [14,21]. Curls of bark (called quills) are cut
from the tree and allowed to dry. Essential oil sacs are located within the cambium and
tend to be in the range of 2–10 microns in diameter. Essential oil yield is about 1–4% from
the cinnamon bark.

Cinnamon essential oil is a volatile, hydrophobic, mildly viscous liquid, usually
yellowish in color. It has a sweet, spicy, woody aroma. The volatile oil is typically isolated
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by hydrodistillation from bark or leaves of cinnamon trees [22]. Physical characteristics
are represented in Table 2. Both monoterpenes and sesquiterpenes, and their functional
variations, are present in cinnamon essential oil. Several important cinnamon essential
oil constituents identified in the literature include cinnamaldehyde, eugenol, and beta-
caryophyllene [23]. These constituents are usually present in appreciable amounts in
cinnamon oil, and will be the focus of this paper.

Table 2. Physical properties of cinnamon essential oil [24,25].

Cinnamon Essential Oil

Physical Property Typical Value Range

Optical Rotation −1 −20–+20
Specific Gravity 1.02 1.01–1.07
Refractive Index 1.59 1.53–1.61

Flash Point 87 ◦C 62–104 ◦C
Boiling Point 248 ◦C 248–249 ◦C

Color Dark yellow Yellow to light brown
Aroma Spicy, sweet Spicy, sharp, woody

Cinnamaldehyde (3-phenylprop-2-enal) is a phenylpropanoid naturally synthesized
along the shikimate pathway in plants from the precursor amino acid phenylalanine [26].
The molecule has the chemical formula C9H8O and contains a benzene ring, a short carbon
chain, and an aldehyde group [27]. Both cis- and trans-cinnamaldehyde conformations
exist in nature, but the majority of cinnamaldehyde in cinnamon bark tends to be the trans-
stereoisomer. This constituent of cinnamon oil represents approximately 50–90% of total
chemical makeup, depending on the species and plant part from which it was derived.
Cinnamaldehyde is the primary contributor of the sweet, spicy aroma typically associated
with cinnamon essential oil. However, as is often the case, multiple constituents contribute
to the rich and complex aroma that distinguishes whole cinnamon bark essential oil from
isolated cinnamaldehyde [28].

Eugenol (4-allyl-2-methoxyphenol) is a phenylpropanoid derived from guaiacol with
an allyl chain substitution [29]. It is a member of the phenol class of compounds, synthe-
sized along the shikimate pathway from the precursor amino acid phenylalanine. The
molecule has the chemical formula C10H12O2 and contains a benzene ring, with a hydroxy
group and an ether group in ortho-conformation and the allyl chain para to the hydroxy
group. Eugenol is the main constituent of essential oil derived from cinnamon leaf, while
in essential oil derived from bark, it is typically present in about 2–13% (see Table 3).

Beta-caryophyllene, or (-)-trans-caryophyllene, is a bicyclic sesquiterpene found in
several plants used for spice and flavoring, including cinnamon [30]. This molecule is
produced along the mevalonate pathway in plants from precursor molecules of acetyl-CoA.
In nature, beta-caryophyllene occurs along with alpha-humulene (formerly called alpha-
caryophyllene), which has a ring-opened structure. Due both to its unique nine-membered
double-ring structure, which is uncommon in nature, as well as its desirable sweet aroma
and taste, beta-caryophyllene has attracted attention as a subject of research. In cinnamon
oil, beta-caryophyllene is typically present at less than 10%.
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Table 3. Comparative constituents of several cinnamon species. Common constituents in cinnamon essential oil extracted from various plant parts of Cinnamomum
zeylanicum and Cinnamomum cassia [22,23,31–34].

C. zeylanicum Bark Composition C. zeylanicum Leaf Composition C. cassia Bark Composition C. cassia Leaf Composition

(E)-Cinnamaldehyde 44.2–75.7% Eugenol 68.6–87.0% (E)-Cinnamaldehyde 42.4–89.4% (E)-Cinnamaldehyde 54.6–90.1%
Eugenol 1.6–13.3% Eugenyl acetate 1.0–8.1% (Z)-Cinnamaldehyde 0.6–12.3% (E)-Cinnamyl acetate 1.4–12.5%

(E)-Cinnamyl
acetate 0.3–10.6% Linalool 0.2–5.0% (E)-Cinnamyl

acetate 0.1–5.4% (Z)-Cinnamaldehyde 0.4–10.5%

Linalool 0.2–7.0% (E)-Cinnamyl
acetate 0.8–4.6% Benzaldehyde 0.4–2.3% Benzaldehyde 1.1–6.3%

beta-Phellandrene 1.5–8% Benzyl benzoate trace–4.1% alpha-Terpineol trace–2.0% Eugenol trace–5.8%

Beta-Caryophyllene 1.3–6.9% Beta-Caryophyllene 1.9–4.1% Coumarin trace–1.9% Cinnamyl
alcohol 0–5.7%

p-Cymene 1.7–4.0% Safrole 0–1.3% Salicylaldehyde 0.04–1.8% Salicylaldehyde 0.05–3.1%
1,8-Cineole 0.4–2.3% (E)-Cinnamaldehyde 0.6–1.1% Borneol trace–1.3% α-copaene trace–3.0%

Benzaldehyde trace–2.2% p-Cymene 0.3–0.8% Benzyl benzoate trace–1.0% Benzyl benzoate trace–2.9%
alpha-Terpineol 0.4–1.6% Cinnamyl alcohol 0–0.6% Cinnamyl alcohol 0–0.04% Delta-Cadinene trace–2.6%

Camphor trace–1.4% 1,8-Cineole trace–0.6% Coumarin 0.03–2.5%
Beta-Phellandrene 0.2–0.5% Phenylpropanol trace–1.6%

α-Amorphene trace–1.1%
Anisaldehyde 0–1.0%

(E)-Cinnamic acid trace–0.9%
Methyl eugenol trace–0.1%
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3. Literature Review of Antidiabetic Properties of Cinnamon Essential Oil and Its
Constituents

Table 4 outlines representative publications that specifically study the effects of cin-
namon essential oil and its main chemical constituents on glucose metabolism pathways
and diabetic endpoints. This review is not comprehensive for all preparations or uses of
cinnamon. Specifically, we review studies that include distilled or hydrodistilled cinnamon
volatile oil or isolated cinnamon oil constituents (specifically, cinnamaldehyde, eugenol,
and beta-caryophyllene) for antidiabetic potential.

Studies on cinnamon essential oil demonstrate improvement of fasting blood glucose,
fasting insulin, and improvement in both anatomy and function of kidney and liver cells.
Improvement in enzyme function, both enzymes involved directly in glucose metabolism
and enzymes involved in excretion, was also consistently noted. Studies including cin-
namaldehyde also showed improvement of fasting blood glucose, increased insulin sensi-
tivity, decreased appetite, and both up- and down-regulation of myriad proteins associated
with glucose metabolism.

While most current in vitro and in vivo research focuses on cinnamaldehyde as the
primary therapeutic agent in cinnamon oil, other constituents may also play a supporting
role in this oil’s observed antidiabetic properties. Eugenol and beta-caryophyllene both
show promising therapeutic benefits when tested in animal models. Research outlined in
Table 4 suggests these constituents may function by enhancing native antioxidant systems
and ameliorating oxidative damaged caused by development of diabetes.

Research to date suggests that cinnamon essential oil may have therapeutic benefit in
modulating glucose metabolism along multiple pathways. Additional in vitro and in vivo
studies are needed (particularly human clinical trials) to fully elucidate the activity and
mechanisms of cinnamon oil’s potential antidiabetic effect.

Next, using In silico molecular modeling, we attempt to predict possible enzymatic
mechanisms through which main constituents of cinnamon essential oil may exert effects.
Models will also provide estimated binding affinities that forecast the likelihood of sponta-
neous interaction between ligand and target. These models offer an initial framework for
further in vitro and in vivo validation.



Molecules 2022, 27, 853 6 of 19

Table 4. Experimental data for antidiabetic activity of cinnamon oil and some of its main constituents.

Study Product Study Type Dosage Effect Reference

Cinnamon oil Animal (Rat), KK-Ay 25, 50, 100
mg/kg b.w.

Significant decrease in fasting blood glucose, plasma C-peptide,
serum triglyceride, total cholesterol, and blood urea nitrogen
levels, with significant increase in high-density lipoprotein after
35 days. Glucose tolerance was improved and pancreatic
islet β-cells showed increased
immunoreactivity.

Ping, Zhang, and Ren (2010) [7]

Cinnamon oil
(encapsulated emulsion) Animal (Rat), STZ 200 or 400

mg/kg b.w.

Both doses improved levels of glucose, insulin, SOD, GSH,
amylase, lipid profile, and hepatic MDA. Gene expression was
modulated to favor antidiabetic outcomes. Positive histological
changes seen in liver and pancreas.

Mohammed, Ahmed, Sharaf,
El-Nekeety, Abdel-Aziem, Mehaya,

Abdel-Wahhab (2020) [35]

Cinnamon oil
(encapsulated) Animal (Rat), STZ 200 or 400

mg/kg b.w.

Treatment with encapsulated cinnamon oil showed improvement
in all diabetes-related markers in STZ-treated rats, including liver
and kidney function, insulin and glucose levels, lipid profile, and
antioxidant enzymes.

Mohammed (2020) [36]

Cinnamon oil Animal (Rat),
Alloxan 5, 10, 20 mg/kg b.w., i.p.

Decreases in fasting blood glucose, total cholesterol, markers of
kidney damage and glutathione were observed in treated animals.
Histological studies of kidney showed reduced glomerular
expansion and tubular dilatations.

Mishra, Bhatti, Singh, Ishar (2010) [37]

Cinnamon oil Animal (Rat), STZ 100, 200, or 400 mg/kg
b.w.

Treatment with cinnamon oil showed significant improvement in
histopathology of testicular organs compared to untreated
diabetic rats.

Budiastuti, Safitri,
Plumeriastuti, Srianto,

Effendi (2020) [38]

Cinnamon oil Human 400 mg/day

Fasting blood glucose levels and insulin levels, along with
Quality-of-Life measures, showed improvement after treatment
with cinnamon oil, although results were not statistically
significant. Pharmacokinetic data indicated low bioavailability.

Stevens (2020) [28]

Cinnamon oil Animal (Mouse),
Balb C

0.2 and 1.0 µL/cage,
inhalation

Docking simulations showed interaction of cinnamon oil
constituents with leptin receptor in olfactory bulb. In vivo studies
confirmed interaction with leptin receptor resulting in decreased
appetite and lower weight gain in treated mice.

Kusmardi, Tedjo,
Fadilah, Arsianti,

Paramita (2018) [39]
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Table 4. Cont.

Study Product Study Type Dosage Effect Reference

Cinnamon oil Animal (Rat), STZ 5% cinnamon oil in
commercial chow

Treatment with cinnamon oil resulted in decreased blood glucose,
triglycerides, LDL-cholesterol, and ALT, while levels of
HDL-cholesterol were increased compared to diabetic rats.

Zari, Al-Logmani (2009) [40]

Cinnamon oil Animal (Rat),
Alloxan 5, 10, 20 mg/kg b.w., i.p. Cinnamon oil significantly ameliorated blood glucose levels and

thermal hyperalgesia compared to untreated diabetic controls.
Bhatti, Kaur, Singh,

Ishar (2009) [41]

Cinnamaldehyde In vitro (HEK293 and
3T3-L1) –

Cinnamaldehyde induced expression of
peroxisome proliferator-activated (PPAR) genes in 3T3-L1
adipocytes and increased target mRNA expression in HEK293-
derived cells.

Li, Futakawa, Yamamoto, Kasahara,
Tagami, Liu, and Moriyama (2015) [42]

Cinnamaldehyde Animal (Mouse),
DIO-mice 250 mg/kg/day

Cinnamaldehyde induced significant reduction in cumulative
food intake, gastric emptying rates, and ghrelin. Upregulation of
genes involved in fatty-acid oxidation was observed in adipose
tissue, and mice showed improved glucose tolerance over
5 weeks.

Camacho, Michlig, de
Senarclens-Bezencon, Meylan, Meystre,
Pezzoli, Markram, le Coutre (2015) [43]

Cinnamaldehyde Animal (Mouse),
db/db

0.02% added
to normal chow diet

Treatment with cinnamaldehyde improved aortic tone and
function and normalized elevated kidney markers. Treatment also
ameliorated glomerular fibrosis and renal dysfunction. Authors
suggest a protective effect against vascular dysfunction by
inhibiting oxidative stress via Nrf2 signaling pathway activation.

Wang, Yang, Wang, Yang, Wan, Liu,
Zhou, Yang (2020) [44]

Cinnamaldehyde Animal (Rat), STZ 20 mg/kg b.w.

Oral administration led to insulinotropic effects, with increased
glucose uptake through GLUT4 receptors and improved function
of pyruvate kinase and
phosphoenolpyruvate carboxykinase.

Anand, Murali, Tandon, Murthy,
Chandra (2010) [45]

Cinnamaldehyde Animal (Rat),
FSD/STZ 20 mg/kg b.w.

Gestating rats treated with cinnamaldehyde showed numerous
improvements in health markers compared to diabetic controls,
including improved lipid panels and glucose tolerance, more
viable fetuses, and improved fetal glucose and insulin levels.

Hosni, Abdel-Moneim,
Abdel-Reheim, Mohamed, Helmy (2017)

[46]
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Table 4. Cont.

Study Product Study Type Dosage Effect Reference

Cinnamaldehyde Animal (Rat),
FSD/STZ 20 mg/kg b.w.

In rats with gestational diabetes, treatment with cinnamaldehyde
prevented development of placental vasculopathy and fetal
hypoxia while also alleviating maternal and fetal hyperglycemia.

Hosni, El-Twab, Abdul-
Hamid, Prinsen,

AbdElgwad, Abdel-Moneim,
Beemster (2021) [47]

Cinnamaldehyde Animal (Mouse), STZ 20 mg/kg/day

Treated mice showed significantly improved insulin sensitivity
and glucose metabolism, as well as positive changes in gut
microbiota. Authors suggest that modulating host metabolomics
may directly or indirectly affect expression levels of genes related
to glucose metabolism.

Zhao, Wu, Duan, Liu,
Zhu, Zhang,

Wang (2021) [48]

Cinnamaldehyde Animal (Rat), STZ 20 mg/kg/day
Treatment with cinnamaldehyde prevented development of
hyperglycemia and insulin resistance following STZ
administration.

El-Bassossy, Fahmy, Dadawy (2011) [49]

Cinnamaldehyde Animal (Rat), STZ
10, 20, 40

mg/kg b.w.,
p.o.

Rats treated with cinnamaldehyde showed reduced blood glucose
levels and amelioration of neurochemical and behavioral deficits
seen in diabetic rats. Reductions in IL-2 and TNF-α levels were
also noted.

Jawale, Datusalia,
Bishnoi, Sharma

(2016) [50]

Cinnamaldehyde Rat 125, 250, 500 mg/kg b.w.

Pharmacokinetic determination of Cmax in rats administered 125,
250, and 500 mg/kg b.w. cinnamaldehyde was 249, 121, and 82
ng/mL serum, respectively. Estimated half-life of
cinnamaldehyde was 6.2–6.9 h.

Zhao, Xie, Yang,
Cao, Tu, Cao,

Wang (2014) [51]

Eugenol Animal (Mouse), STZ 100 mg/kg b.w. i.p., 2×
per week for 2 weeks

Significant reduction in advanced glycation end-products (AGE)
and blood glucose
levels.

Singh et al. (2014) [52]

Eugenol Animal (Rat), STZ

Treatment with eugenol produced lower blood glucose, decrease
in serum glycosylated hemoglobin (HbA1C), lipase, and
angiotensin-converting enzyme. Lipid panel levels were also
positively affected.

Mnafgui et al. (2013) [53]
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Table 4. Cont.

Study Product Study Type Dosage Effect Reference

Eugenol Animal (Rat), STZ 2.5, 5, 10
mg/kg b.w.

Eugenol improved blood glucose and HbA1C levels in diabetic
rats and returned glucose metabolism enzyme levels to near
normal. Body weight and liver function also improved.

Srinivasan et al. (2013) [54]

Eugenol Animal (Rat),
FSD/STZ 10 mg/kg b.w.

Levels of fasting blood glucose, insulin, triglyceride, cholesterol,
and low-density lipoprotein were all improved. Glutathione
levels were increased, as were GLUT4 and AMPK levels in
skeletal muscle. Homeostasis model assessment of insulin
resistance (HOMA-IR) was significantly lower in rats treated with
eugenol compared to diabetic controls.

Al-Trad, Alkhateeb,
Alsmadi, Al-Zoubi

(2019) [55]

Eugenol Animal (Rat), HFD 20, 40 mg/kg
b.w.

Plasma glucose and insulin levels decreased in a dose-dependent
manner, and hepatic gluconeogenesis was inhibited via the
CAMKK-AMPK-CREB signaling pathway.

Jeong, Kim, Quan, Jo,
Kim, Chung (2014) [56]

Eugenol Animal (Rat), STZ 5, 10 mg/kg
b.w.

Diabetic neuropathy parameters (both blood markers and
histological changes) were ameliorated in diabetic rats treated
with eugenol. Overexpression of TGF-β1 associated with diabetes
was also reduced.

Garud, Kulkarni (2017) [57]

Eugenol Animal (Rat), STZ 10 mg/kg
b.w.

Diabetic rats treated with eugenol showed diminished oxidative
stress markers and increased antioxidants. In the brain, levels of
acetylcholinesterase and calcium were attenuated. Authors
postulate that eugenol may help ameliorate diabetic
complications due to oxidative stress.

Prasad, Bharath, Muralidhara (2016)
[58]

Eugenol Animal (Rat), STZ 2 mL/day of a
10% nanoemulsion

Oxidative damage was attenuated, and levels of antioxidants
were returned to near-normal levels in diabetic rats compared to
untreated controls.

Boroujeni, Dehkordi,
Sharifi, Taghian,

Mazaheri (2021) [59]

Eugenol
In vitro (Islets of
Langerhans cells

from male mouse)
50, 100, 200 µM

Total antioxidant capacity, superoxide dismutase, and catalase
levels increased in cells treated with eugenol following exposure
to hydrogen peroxide to induce oxidative stress. Eugenol can
bolster antioxidant systems in islet cells that are particularly
vulnerable to oxidative stress in diabetics.

Oroojan, Chenani,
An’aam (2020) [60]
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Table 4. Cont.

Study Product Study Type Dosage Effect Reference

Eugenol Animal (Rat),
Alloxan 5, 10, 15 mg/kg b.w.

Diabetic rats treated with eugenol showed lower fasting blood
glucose, and improved morphology of liver and islet of
Langerhans cells.

Hamdin, Utami,
Muliasari, Prasedya,
Sudarma (2019) [61]

β-caryophyllene In silico – β-caryophyllene showed affinity for interaction with insulin
downstream signaling molecules such as IRS-1, cSrc, and Akt.

Mani, Balraj, Venktsan,
Soundrapandiyan, Kasthuri, Danavel,

Babu (2021) [62]

β-caryophyllene Animal (Rat), STZ 10 mg/kg
b.w.

Diabetic neuropathy was attenuated in rats treated with
β-caryophyllene. Depression behavior and cytokine markers of
diabetes were also reduced.

Aguilar-Ávila, Flores-Soto,
Tapia-Vázquez, Pastor-Zarandona,

López-Roa, Viveros-Paredes (2019) [63]

β-caryophyllene Animal (Rat), STZ 200 mg/kg
b.w.

Hyperglycemia was attenuated by treatment with
β-caryophyllene, and oxidative stress was avoided through
increased activity of antioxidant enzymes.

Basha, Sankaranarayanan (2016) [64]

β-caryophyllene Animal (Rat), STZ 200 mg/kg
b.w.

Plasma insulin levels were rescued to near-normal levels in
diabetic rats treated with β-caryophyllene. Basha, Sankaranarayanan (2015) [65]

β-caryophyllene Animal (Rat), STZ 100, 200, 400 mg/kg b.w.

Administration of β-caryophyllene ameliorated STZ-induced
changes in blood glucose, insulin levels, and glucose metabolism
enzymes. The antidiabetic and insulinotropic effects were most
pronounced at the 200 mg/kg dose.

Basha, Sankaranarayanan (2014) [66]

β-caryophyllene Animal (Rat), HFD 30 mg/kg
b.w.

Treatment with β-caryophyllene improved glycemic and
lipidemic markers and reduced vascular oxidative stress and
inflammation.

Youssef, El-Fayoumi, Mahmoud (2019)
[67]

β-caryophyllene In vitro (mesangial
cells) –

β-caryophyllene modulated NF-κB and Nrf pathways and
exhibited anti-inflammatory and nephroprotective activity in
mesangial cells under high-glucose conditions.

Li, Wang, Chen, Yang (2020) [68]

β-caryophyllene In vitro (C2C12
myotubes) –

β-caryophyllene significantly increased skeletal muscle uptake of
glucose and glycolytic production of ATP through cannabinoid
receptor-2-mediated pathways.

Geddo et al. (2021) [69]
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4. In Silico Docking Models

Three cinnamon essential oil constituents, cinnamaldehyde, eugenol, and beta-caryophyllene,
combined comprise 60–70% of cinnamon essential oil. As suggested by the literature and
because of their concentration in oil, these constituents are hypothesized to have the most
significant physiological effects. Thus, cinnamaldehyde, eugenol, and beta-caryophyllene
were selected for molecular docking analysis and simulated against enzymes involved
in glucose metabolism or the glycolysis pathway (glucokinase, alpha-amylase, PTP1B,
alpha-glucosidase, and hexokinase-II (HK-II). Hypothesized interactions of essential oil
constituents with these glucose metabolism enzymes are represented in Figure 1.

Figure 1. Hypothesized interactions of cinnamon essential oil constituents with enzymes along
glucose metabolism pathways.

As interactions with small molecules can result in a variety of enzymatic responses, it
is important to note the overall effect of the binding model. Most commonly, a xenobiotic
substance can be:

• Agonistic: behaving like the natural ligand, agonist molecules bind to the receptor
and trigger signaling. When a small molecule is simulated to bind in the same active
site as a drug or mimetic with known biological effects, it is considered an agonist.

• Antagonistic: inhibiting the effect of the natural ligand or agonist by blocking the active
site of the enzyme (competitive agonist), by binding elsewhere on the enzyme and
altering the biological function (noncompetitive antagonist), or by covalently altering
the binding site (irreversible agonist). A small molecule binding in this manner would
inhibit the activity of the enzyme and alter downstream pathway outcomes.

In the case of glucose metabolism enzymes, both agonistic and antagonistic activities
may be useful therapeutics for treating Type II Diabetes. In alpha-amylase and alpha-
glucosidase, antagonistic effects from essential oil constituents are desirable; specifically,
small molecules bind in the active site and block the binding and subsequent hydrolysis
of the physiologic ligands (complex carbohydrates). Essential oil constituents shown to
interact at this site may serve to slow the rise in blood glucose following food intake.
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In PTP1B, antagonistic effects from essential oil constituents are also desirable. Specifi-
cally, small molecules bind in the active site and block the binding of the natural ligand
(phosphate group on insulin receptors [70]). This effectively inhibits the PTP1B enzyme,
allowing the insulin receptor to remain phosphorylated, and ultimately allowing increased
GLUT4 translocation to the cell surface. If essential oil constituents bind at this site, lower
blood glucose levels may result as a higher volume of glucose molecules is cleared from
the blood through uptake by GLUT4.

In glucokinase, the natural ligand (glucose) is converted to glucose-6-phosphate as
the initial step in glycolysis, and this process is an important regulator in insulin release
and glucose metabolism [71]. Glucokinase serves as both a glucose sensor in pancreatic
beta-cells and as a rate-controlling enzyme for glycogen synthesis and hepatic glucose
clearance [72]. For this enzyme, activation is hypothesized to occur through ligand binding
at an allosteric site rather than the active site. This allows the active site to remain available
for glucose metabolism. Small molecules, such as essential oil constituents, that can bind in
the allosteric pocket could serve glucokinase agonists, increasing glucose metabolism and
allowing for more sensitive glucose homeostasis.

Hexokinases catalyze the conversion of glucose to glucose-6-phosphate, the first step
in many glucose metabolism pathways. Overexpression of hexokinase is common in
certain cancers due to its ability to reduce serum levels of glucose, insulin, and insulin-
like growth factor [73]. Antagonistic reduction in hexokinase activity has therapeutic
implications for diabetes as well; the drug metformin works in part by reducing activity
of hexokinase. HK-II is the predominant form found in skeletal muscle and is insulin-
dependent. Recently, a compound called benserazide has demonstrated ability to selectively
inhibit HK-II [74]; other compounds binding in the same site as HK-II antagonists could
provide new therapeutic targets for diabetes.

5. Materials and Methods
Molecular Docking

In silico molecular docking simulations were performed using the AutoDock Vina [75]
(Scripps Research, La Jolla, CA, USA, version 1.1.2) module within UCSF Chimera [76]
(University of California, San Francisco, CA, USA, version 1.13.1). Protein crystal structures
were downloaded from Protein Data Bank (www.rcsb.org (accessed on 3 December 2021)).
Criteria for crystal structure selection included unmutated proteins from Homo sapiens
with complete structure representation and resolution less than or equal to 3 angstroms.
Protein models were prepared for docking using the Mac Command Line interface and
the Dock Prep tool in UCSF Chimera. Docked models were qualitatively visualized in
UCSF Chimera (1.13.1). Ligand structures were downloaded from MolView (molview.org
(accessed on 2 December 2021)) prepared for docking within UCSF Chimera.

Modeled enzymes included: alpha-amylase, alpha-glucosidase, glucokinase, PTP1B,
and HK-II (PDB ID: 1HNY, 3TOP, 5V4W, 1BZJ, and 2NZT, respectively [77–81]). Sim-
ulations were run with essential oil constituents cinnamaldehyde, eugenol, and beta-
caryophyllene. Positive controls included known antagonist acarbose for alpha-amylase
and alpha-glucosidase, known glucokinase agonist piragliatin, known PTP1B antagonist
TPICOOH, and known HK-II antagonist, benserazide [74].

6. Modeling Results and Discussion

Models were initially evaluated by strength of predicted interactions. Proteins were
probed for interaction with essential oil constituents or a positive control both at active sites
and at possible allosteric binding locations. Binding affinities that were estimated to have a
change in Gibbs free energy (∆G) of −6.0 kcal/mol or more negative were considered to
represent activity through spontaneous physiologic interaction [82].

All simulated binding affinities are represented in Table 5. Overall, beta-caryophyllene
showed the highest binding affinity across multiple proteins. Cinnamaldehyde and eugenol
also showed potential interaction with select proteins.

www.rcsb.org
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Table 5. Binding affinities of cinnamon essential oil constituents against selected glucose metabolism
enzymes (all results in units of kcal/mol).

Essential Oil Ligand PTP1B α-Glucosidase Glucokinase α-Amylase HK-II

β-caryophyllene −5.6 −6.6 −6.3 −6.9 −6.6
Cinnamaldehyde −6.5 −6.1 −5.8 −5.4 −5.5

Eugenol −6.0 −6.7 −6.0 −5.6 −5.6

Positive Controls PTP1B α-Glucosidase Glucokinase α-Amylase HK-II

Acarbose – −8.3 – −7.3 –
Piragliatin – – −9.5 – –
TPICOOH −9.7 – – – –

Benserazide – – – – −7.4

The PTP1B active site includes the following residues (Figure 2): ARG 47, ASP 48,
PHE 182, SER 216, ALA 217, GLY 218, ILE 219, GLY 220, ARG 221, and GLN 266 [80].
Binding in the active site of PTP1B serves to inhibit the enzyme (which itself inhibits the
insulin receptor-mediated GLUT4 translocation to the membrane). Cinnamaldehyde and
eugenol from cinnamon essential oil showed binding affinity for the PTP1B active site.
These constituents demonstrated binding affinities stronger than −6.0 kcal/mol, indicating
a high likelihood that the binding reaction will occur spontaneously. While none of the
modeled essential oil constituents demonstrated binding affinities as strong as the positive
control, known PTP1B antagonist TPICOOH, it is interesting to consider the implications
of an essential oil with broad chemistry that may be able to interact along multiple points
of a pathway and with several different constituents.

Figure 2. Molecular modeling of cinnamon essential oil constituents docked with PTP1B. (A) PTP1B
antagonist TPICOOH and essential oil compounds cinnamaldehyde, beta-caryophyllene, and eugenol
docked in the active site of PTB1B. (B) Close view of PTB1B antagonist TPICOOH and essential oil
compounds cinnamaldehyde, beta-caryophyllene, and eugenol docked in the active site of PTB1B, specif-
ically, near residues ARG47, ASP48, PHE182, SER216, ALA217, GLY218, ILE219, GLY220, ARG221, and
GLN266. (C) TPICOOH docked in the active pocket of PTB1B, with a binding affinity of −9.7 kcal/mol.
(D) Cinnamaldehyde docked in the active pocket of PTB1B, with a binding affinity of −6.5 kcal/mol.
(E) Beta-caryophyllene docked in the active pocket of PTB1B, with a binding affinity of −5.6 kcal/mol.
(F) Eugenol docked in the active pocket of PTB1B, with a binding affinity of −6.0 kcal/mol.
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Alpha-glucosidase inhibition takes place at the active pocket (Figure 3), which includes
the following residues: HIS 1584, ASP 1279, TYR 1251, TRP 1523, TRP 1418, ARG 1510,
TRP 1355, PHE 1559, ASP 1526, TRP 1369, and PRO 1159 [78]. Acarbose, a known alpha-
glucosidase antagonist and frontline drug in diabetic therapy [83], was shown to bind in
the same pocket. Once again, two of the main constituents from cinnamon essential oil
(cinnamaldehyde and eugenol) showed4G more negative than −6.0 kcal/mol.

Figure 3. Molecular modeling of cinnamon essential oil constituents docked with alpha-glucosidase.
(A) Alpha-glucosidase antagonist acarbose and essential oil compounds cinnamaldehyde, beta-
caryophyllene, and eugenol docked in the active site of alpha-glucosidase. (B) Close view of alpha-
glucosidase antagonist acarbose and essential oil compounds cinnamaldehyde, beta-caryophyllene,
and eugenol docked in the active site of alpha-glucosidase, specifically, near residues HIS 1584, TRP
1523, TRP 1418, ARG 1510, TRP 1355, PHE 1559, ASP 1526, TRP 1369, and PRO 1159. (C) Acar-
bose docked in the active pocket of alpha-glucosidase, with a binding affinity of −8.3 kcal/mol.
(D) Cinnamaldehyde docked in the active pocket of alpha-glucosidase, with a binding affinity of
−6.1 kcal/mol. (E) Beta-caryophyllene docked in the active pocket of alpha-glucosidase, with a
binding affinity of −6.6 kcal/mol. (F) Eugenol docked in the active pocket of alpha-glucosidase, with
a binding affinity of −6.7 kcal/mol.

The active site of the alpha-amylase enzyme includes the following residues: ASP 197,
GLU223, and ASP300 [77] (see Supplemental Materials, Figure S1). Beta-caryophyllene
demonstrated notable binding affinity in this active site, at −6.9 kcal/mol, especially
considering acarbose interacted at −7.3 kcal/mol at the same site. Cinnamaldehyde and
eugenol did not demonstrate significant binding affinity.

For glucokinase binding simulations, essential oil constituents were modeled against
the positive control piragliatin, a relatively new glucokinase agonist studied in patients
with Type II Diabetes [84–86]. All constituents showed qualitative binding in an allosteric
site bordered by residues VAL 62, ARG 63, TRP 99, TYR 214, MET 235, LYS 458, LYS 459,
and LEU 451 (see Supplemental Materials, Figure S2). This is consistent with modeling
conducted by Liu et al. [87], who noted that all known glucokinase agonists bind at the
same allosteric site. None of the constituents bound as strongly as the positive control
(4G = −9.5 kcal/mol); however, beta-caryophyllene and eugenol demonstrated relatively
strong binding affinity (4G = −6.3 and −6.0 kcal/mol, respectively).

In a previous publication, the compound benserazide showed strong inhibition of
HK-II, interacting with residues GLY 681, THR 680, and ASN 656 [74] (see Supplemental
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Materials, Figure S3). In our simulations, benserazide interacted at this site with a binding
affinity of −7.4 kcal/mol. Beta-caryophyllene demonstrated comparatively strong binding
affinity of −6.6 kcal/mol, while the other essential oil constituents all scored greater than
−6.0 kcal/mol. However, beta-caryophyllene and cinnamaldehyde interacted at a different
site than the control, so additional in vitro testing is needed to elucidate whether this
interaction translates into modulation of enzymatic activity.

7. Limitations

In silico modeling does not replace in vitro and in vivo work; while it predicts possible
mechanisms of interaction between essential oil constituents and enzymes of interest, these
must be confirmed through additional testing. Modeling software may incorrectly predict
binding due to underlying assumptions or errors in protein crystal structure determina-
tion. In addition, although docking simulations, in vitro, and in vivo studies all point
toward therapeutic antidiabetic activities of cinnamon essential oil and some of its main
constituents, high-quality clinical studies are needed to confirm these activities in complex
human systems.

8. Conclusions

In vitro, in vivo, and In silico testing indicate that volatile cinnamon oil and some of
its main constituents possess antidiabetic properties along different pathways. As reviewed
here, numerous studies validate cinnamon oil’s antioxidant properties and suggest that
the reduction in oxidative stress is one mechanism through which it may exert antidiabetic
effects. In silico molecular docking simulations suggest that constituents in cinnamon
essential oil may affect multiple enzymes along glucose metabolism pathways, including
alpha-glucosidase, alpha-amylase, PTP1B, glucokinase, and HK-II. While none of the mod-
eled essential oil constituents demonstrated binding affinities as strong as their comparator
drugs, they may be able to exert diverse effects across multiple metabolic pathways, poten-
tially increasing net therapeutic benefit. To our knowledge, this is the first In silico study
of this set of glucose metabolism enzymes and their theoretical interactions with volatile
cinnamon oil constituents, highlighting their antidiabetic potential.

As additional studies are conducted, particularly human clinical trials, the potential
therapeutic benefits of volatile cinnamon compounds will be further evaluated. Although
cinnamon oil has been part of the human diet in small amounts for millennia and is
considered relatively safe, critical safety studies must also be conducted to determine the
feasibility of using volatile cinnamon compounds in chronic, therapeutic modalities.

Supplementary Materials: The following are available online. Figure S1: Molecular modeling of
cinnamon essential oil constituents docked with alpha-amylase. (A) Alpha-amylase antagonist
acarbose and essential oil compounds cinnamaldehyde, beta-caryophyllene, and eugenol docked in
the active site of alpha-amylase. (B) Close view of alpha-amylase antagonist acarbose and essential
oil compounds cinnamaldehyde, beta-caryophyllene, and eugenol docked in the active site of alpha-
amylase, specifically near residues ASP197, GLU233, and ASP300. (C) Acarbose docked in the active
pocket of alpha-amylase, with a binding affinity of −7.3 kcal/mol. (D) Cinnamaldehyde docked in
the active pocket of alpha-amylase, with a binding affinity of −5.4 kcal/mol. (E) Beta-caryophyllene
docked in the active pocket of alpha-amylase, with a binding affinity of −6.9 kcal/mol. (F) Eugenol
docked in the active pocket of alpha-amylase, with a binding affinity of −5.6 kcal/mol. Figure S2:
Molecular modeling of cinnamon essential oil constituents docked with glucokinase. (A) Glucokinase
agonist piragliatin and essential oil compounds cinnamaldehyde, beta-caryophyllene, and eugenol
docked in the active site of glucokinase. (B) Close view of glucokinase agonist piragliatin and
essential oil compounds cinnamaldehyde, beta-caryophyllene, and eugenol docked in the active site
of alpha-glucosidase, specifically near residues VAL 62, ARG 63, TRP 99, TYR 214, MET 235, LYS 458,
LYS 459, and LEU 451. (C) Piragliatin docked in the active pocket of glucokinase, with a binding
affinity of −9.5 kcal/mol. (D) Cinnamaldehyde docked in the active pocket of glucokinase, with a
binding affinity of −5.8 kcal/mol. (E) Beta-caryophyllene docked in the active pocket of glucokinase,
with a binding affinity of −6.3 kcal/mol. (F) Eugenol docked in the active pocket of glucokinase,
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with a binding affinity of −6.0 kcal/mol. Figure S3: Molecular modeling of cinnamon essential oil
constituents docked with hexokinase-II (HK-II). (A) HK-II antagonist benserazide and essential oil
compounds cinnamaldehyde, beta-caryophyllene, and eugenol docked in the active site of HK-II.
(B) Close view of HK-II antagonist benserazide and essential oil compounds cinnamaldehyde, beta-
caryophyllene, and eugenol docked in the active site of HK-II, specifically near residues ASN656,
THR680, and GLY681. (C) Benserazide docked in the active pocket of HK-II, with a binding affinity
of −7.4 kcal/mol. (D) Cinnamaldehyde docked in the active pocket of HK-II, with a binding affinity
of −5.5 kcal/mol. (E) Beta-caryophyllene docked in the active pocket of HK-II, with a binding
affinity of −6.6 kcal/mol. (F) Eugenol docked in the active pocket of HK-II, with a binding affinity of
−5.6 kcal/mol.

Author Contributions: N.S. was primarily responsible for literature review. K.A. was primarily
responsible for docking simulations. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Brian Lawrence for his valuable contributions
on botany and chemistry of Cinnamomum species, and Russell Osguthorpe for his support on the
publication.

Conflicts of Interest: N.S. and K.A. are employees of dōTERRA International, a company that
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