
Computational and Structural Biotechnology Journal 10 (2014) 70–77

Contents lists available at ScienceDirect

journa l homepage: www.e lsev ie r .com/ locate /csb j
Mini Review
Personalized medicine in hematology — A landmark from bench to bed
Gayane Badalian-Very ⁎
Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
Department of Medicine, Harvard Medical School, Boston, MA, United States
Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
⁎ Department of Medical Oncology, Dana Farber Can
School, 450 Brookline ave, Boston, MA 02115, United S
fax: +1 617 632 5998.

E-mail address: info@gmdi.net.

http://dx.doi.org/10.1016/j.csbj.2014.08.002
2001-0370 2014 Badalian-Very. Published by Elsevier B.V
license (http://creativecommons.org/licenses/by/4.0/).

/©
a b s t r a c t
a r t i c l e i n f o
Available online 8 August 2014
Keywords:
Personalized medicine
Targeted therapies
Hematology
Drug Delivery
Personalized medicine is the cornerstone of medical practice. It tailors treatments for specific conditions of
an affected individual. The borders of personalized medicine are defined by limitations in technology and
our understanding of biology, physiology and pathology of various conditions. Current advances in technol-
ogy have provided physicians with the tools to investigate the molecular makeup of the disease. Translating
these molecular make-ups to actionable targets has led to the development of small molecular inhibitors.
Also, detailed understanding of genetic makeup has allowed us to develop prognostic markers, better
known as companion diagnostics. Current attempts in the development of drug delivery systems offer the
opportunity of delivering specific inhibitors to affected cells in an attempt to reduce the unwanted side ef-
fects of drugs.
© 2014 Badalian-Very. PublishedbyElsevier B.V. on behalf of theResearchNetwork of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Personalized medicine attempts to identify individual tailored treat-
ments based on the susceptibility profile of each individual. Precision
medicine utilizes both conventional medicine and cutting edge technol-
ogy to concur the disease proven to be resistant to conventionalmedical
techniques. The borders of personalizedmedicine are defined by limita-
tions in technology and our understanding of biology, and pathology of
various conditions. Current advances in technology have enabled us
cer Institute, Harvard Medical
tates. Tel.: +1 617 513 7940;
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to uncover themolecularmakeup of diseases and translating thesefind-
ings to actionable targets has led to the development of small molecular
inhibitors. Monitoring disease outcome utilizing companion diagnostics
has also assisted physicians in routine patient care. To date serious efforts
are directed in increasing the efficacy of drug delivery to reduce the un-
desired side effects of medications (Fig. 1). Despite the current advances
there are fundamental limitations on implementing personalized medi-
cine into daily practice. Here we lay out the steps from bench to bedside
for personalized therapeutics in hematology and explore the complex
problems at each steps. We will first discuss the discovery platforms,
and compare the existing technologies. Major discoveries utilizing
these platforms will be discussed followed by summarizing the targeted
inhibitors developedwhich are currently in clinical practice. Nextwewill
briefly discuss the advantages of small molecular inhibitors over existing
chemotherapeutic regimens and explore conditions that affect the drug
f Computational and Structural Biotechnology. This is an open access article under the CC BY
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Fig. 1. Implementation of personalized medicine requires combining discovery platforms
and clinical practice. Early stage of discovery requires interrogation of large numbers of
samples to uncover the somatic genomic alterations of tumor cells. Further studies on ge-
nomic mutations are conducted to demonstrate that the aberrations are driver mutations
and therefore actionable. Small molecular inhibitors are developed to target proteins
intercepting these alterations. Patients are screened in clinics to ensure that they carry
the desired mutation targeted by small molecular inhibitors. Intermediate end-point
biomarkers are identified and studied in the audit trail as early predictors of anti-tumor
activity.
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response to these inhibitors (pharmacogenomics and pharmacovigilance).
Finally we will discuss the drug delivery systems that could potentially
enhance the outcome and limit the undesired effects of thesemedications.

Advances in human genetics have clearly demonstrated the contri-
bution of specific genes to certain malignancies [1–3]. Such genomic
alterations are functionally manifested as dysfunctional proteins leading
Discovery Pla�orms u�lize
WGS and WES

Personaliz
Medicine
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Drugable targets Biomarkers

Intermediate Termi

Fig. 2. Steps from bench to bedside for personalized medicine: Discovery of drugable target
platforms, such as whole genome sequencing (WGS) and whole exome sequencing (WES) ar
cells does not guarantee the drug response. To determine the best group of patients who wou
are in need. Again, comprehensive platforms (WGS and WES) are used for discovery purpose
techniques, i.e. targeted sequencing.
to aberrant signal transduction [4–7]. Consequently, discovering geno-
mic alterations underlying various conditions is a fundamental step in
implementing precision medicine. Selecting an appropriate screening
technology is crucial for both discovery and diagnostics. In the era of
genomic innovation, several platforms are available [8–11]. Mass
spectrometric genotyping, allele-specific PCR-based technologies,
hybrid-capture massively parallel sequencing technologies, and whole-
genome sequencing are among the available platforms [12,13]. For
discovery purposes, sequencing of the entire genome would be the
preferred option, but, for diagnostic purposes, one must presently focus
on cost-effective platforms that cover actionable cancer-associated
mutations (MassArrays) [14] (Fig. 2).

Though personalized medicine appears to bring us ever closer to a
step away from the cure for cancer, the reality is far more complicated.
Despite current advances in genomics, there is still a long path to
decoding all cancer-associated mutations, let alone the signaling path-
way of new and novel mutations which would be an additional area
to explore [15]. In both hematologic and solid tumors, a large fraction
of affected proteins is represented by kinases, which are essential for
physiological functions of cells, such as cellular growth and develop-
ment [16–18]. Blocking thesemolecules usually drives the cells into de-
veloping compensatorymechanisms, and cancer cells eventually escape
the inhibition, developing tumor resistance [19,20]. Another obvious
challenge is excessive toxicity by nonselective inhibition of bothmutant
and wild-type proteins by some inhibitors [21–24]. Additional factors
can affect efficacy of treatment. In particular, some genetic variations
can alter the drug response of individuals, and this should be taken
into considerationwith drug dosing [25,26]. Therefore it is crucial to de-
velop companion diagnostics by combining genomic information with
proteomics as well as personal medical history and family history data
to tailor the desired agent for targeting the neoplastic cells [26–29].
Consequently, it is essential to develop prognostic biomarkers to both
screen the outcome of the treatment and screen for residual disease
[30–33].

Another limited challenge in personalizing cancer therapy is the
limited technologies in drug delivery [34]. It is essential to deliver the
appropriate inhibitors to the affected cells; however, advancement in
the development of nanoparticles that can achieve selective cellular
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targeting remains limited [35]. The use of nanoparticles has thus been
restricted primarily to a reduction of drug toxicity, as evidenced by the
success of Doxil (liposomal doxorubicin), which decreases cardiotoxicity
[36–38]. Fortunately, our understanding of the interactions between
nanoparticles and living cells continues to improve. A conceptual
understanding of biological responses to nanoparticles is essential for
developing safer targeted drug delivery in the future.

2. Discovery platforms

Almost a decade after the completion of the first genome sequenc-
ing, genome research composes the main core of discovery in various
cancers [39–41]. The classical discovery platform used for sequencing
the human genome was a capillary based electrophoresis (CE) system
[42–44]. Although this system was developed by Fredrick Sanger in
the late 70s, it was the most widely used technique for over two
decades. The high cost of sample processing along with the restriction
on clinical scalability led to the emergence of new technologies based
on hybrid capture and massively parallel sequencing (MPS) [45–47],
better known as next generation sequencings (NGS) [48–50]. These
profiling platforms enable the investigators to detect point mutations,
copy number alterations, and chromosomal aberrations using a single
run and a small amount of DNA input [51,53,54]. These platforms are
highly sensitive (i.e. they detect genetic alterations in small allele frac-
tions) and fairly scalable (i.e. they can be tuned for resolution and cov-
erage) [52]. Last but not least, these platforms are rather affordable
and they have brought down the cost of the sequencing of the entire ge-
nome to 5000 USD per samples. It is suggested that these new sequencing
instruments could sequence several samples in less than a day [52]. Table 1
summarizes the advantages and disadvantages of Sanger and NGS.

Several discoveries in field of hematology were made utilizing the
discovery platforms. For instance ALK, PDGFR and FGFR are all discov-
ered using sequencing platforms (Sanger/NGS). BRAF-V600E discovery
in LCH and ECD was based on targeted sequencing. The cutting edge
medications developed targeting genomic alterations are discussed in
the next section.

3. Diagnostic platforms: PCR based technologies and massively
parallel sequencing

It is well known that most hematologic malignancies are caused by
genomic alteration (point mutation, chromosomal aberrations, copy
number variations), and therefore complete understanding of these
diseases can only be achieved by comprehensive screening of a large
number of clinical samples. Despite the fact that the cost of sequencing
of thewhole genome has dropped significantly in the past decade (from
3 billion USD to roughly 5000 USD), screening a large number of clinical
samples could still impose economic challenges. Also, most of the
Table 1
Comparison of Sanger sequencing with next generation sequencing.

Advantages

Sanger 1. Long reading sequences, easy assembly in read outs (especially for GC rich
DNA areas)

2. Smaller depth of sequencing required for good coverage
3. Easy to analyze
4. Relatively small data storage required

NGS 1. High sensitivity (tumor heterogeneity and stoma contamination will not be
2. High depth of sequencing is feasible
3. Scalable to entire genome
4. Detects chromosomal aberrations
5. Detects copy number variations
6. Low cost per base
7. Small amount of startup material required (50 ng)
8. Quick turnaround time
information provided by whole genome sequencing (WGS) cannot be
fully interpreted [55,56]. Despite the fact that there are over 800 new
small molecules on developmental pipeline [57–59], the number of
drugable targets currently available in clinics is less than 30 [59,60].
The economic impact of a large scale application ofWGS alongwith lim-
ited clinical applicability of information obtained fromwhole genome is
suggestive for the utilization of alternative tools for diagnostic purposes.

One of the first platforms developed for high throughput screening
of clinical samples in oncology was a mass spectrometric base genotyp-
ing platform developed by Garraway and colleagues for the detection of
cancer-associated mutations [61]. They relied on the fact that a large
subset of cancer-associated deriver mutations affects hotspot amino
acids. This led to the development of multiplex allele-specific PCR
platforms [61–63]. This platform enabled us to detect a BRAF-V600E
mutation in Langerhans cell histiocytosis (LCH), a disease which, until
this observation, was known as a reactive-inflammatory one [64–66].
Despite the high sensitivity of this platform, it had a very limited
coverage andwas biased to a subset of genes. It was also unable to detect
chromosomal aberrations and large indels [67]. To overcome these
shortcomings, NGS platforms were adapted for enrichment of subsets
of the human genome. By scaling these platforms and enriching a subset
of genome, e.g. on exons or targeted genomic sequences for drugable tar-
gets and predictive biomarkers for drug response, several questions
could be addressed for a fraction of the cost of WGS (Table 2) [68–71,
132].

Whole genome sequencing (WGS) enables identification of coding
mutations and copy number alterations (amplifications and deletions),
but its ability to detect chromosomal translocation in commercially avail-
able probes is rendered due to the lack of intronic sequences in capturing
probes [72]. Stromal contaminations and genomic heterogeneity could
also complicate the interpretation of data. On the other hand, targeted
sequencing can achieve a larger depth of coverage and consequently
higher sensitivity at a comparable cost [52]. This approach could be
very useful for clinical samples with low preservation (samples derived
from formalin fixed tissue) and high stromal contamination, or in the
case of hematologic tumors, contamination by bystander cells [73–75].

On the other hand, to fully understand the genetic background of a
diseasewemust know the extent of gene expression aswell. Chromatin
immunoprecipitations (Chip-Seq) could unravel the mutation and
methylation statuses of gene regulatory sites and determine the activa-
tion status of genes, and consequently gene expression [76,78]. Tran-
scriptome sequencing (RNA-seq) [76] captures the expressed genome
of cancer cells enabling robust detection of deregulated genes [77],
and gene fusions [78–80]. Combining expression data with genomic
findings could shed light on the pathomechanisms of the disease and fa-
cilitate the design of targeted inhibitors (Table 3). Clinical applicability
of these techniques is quite important and FDA has recently approved
several NGS instruments for clinical applications.
Disadvantages

highly repetitive 1. Low sensitivity (high allele frequency of cancer needed)
2. Scalable to few genes only
3. Unable to detect chromosomal aberrations
4. Insensitive to copy number alterations
5. High cost per base
6. Large amount of startup material required (1–3 μg)
7. Slower turnaround time

troubling) 1. Short reading sequences, challenges in assembly of the reads
2. Complicated data analysis
3. Large data storage required



Table 2
Comparison of PCR based technologies with massively parallel sequencing technologies.

Advantages Disadvantages

Genotyping platforms
(PCR based technologies)

1. High sensitivity
2. High specificity
3. High reproducibility

1. High cost
2. Relatively low throughput
3. Unable to detect chromosomal aberrations
4. Dependent on probe design; could be used for detection of hotspots

(e.g. cancer-associated mutations)
5. Labor intensive

Massively parallel sequencing
(hybrid capture techniques)

1. High sensitivity
2. High specificity
3. Relatively low cost
4. Ease of use (small labor)
5. Targets large sections of DNA and consequently

covers large number of genes
6. Could be tuned for coverage and data output

1. Uniformity and sensitivity depends on design of probes
2. Commercially available capture sets could be rather inflexible for individual need
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4. Targeted therapies and current drugs

Targeted therapies or small molecular inhibitors block the prolifera-
tion of cancer cells by intercepting their specific target [81–84]. Since
their range of action is smaller than general chemotherapy agents, the
adverse effect caused by these inhibitors is smaller as well and they
are better tolerated by patients [85–88]. This seems to be a success
story, but the final picture is complicated. These inhibitors are not cura-
tive, and disease relapse remains a fairly common complication in these
malignancies. Several reasons could be attributed to disease relapse,
among which is the escape of tumors cells which obtain new surviving
mutations and the evolution of new neoplastic populations due to
weakened immune response. On the other hand, there are obvious ca-
veats in targeting cancer cells with very specific molecular inhibi-
tors. First of all, most of the small molecular inhibitors currently
available in clinics are targeting protein kinases [89–91]. These
are an essential cellular component and blocking these molecules
could result in cellular compensation. This could manifest either
as overproduction of the inhibited protein (upregulation on the
gene level), or escalating alternative compensatory pathways for
survival. Second, the delivery of these molecules to the affected
cells is limited by tissue vascularization and cellular uptake. This
forces physicians to escalate the dose of inhibitor in compensation,
leading to undesirable side effects. Currently there are several small
molecular inhibitors in clinical practice. Table 4 summarizes the
current small molecular inhibitors in clinical practice [92–96,130,
131].

“In the future we should drive our focus on enhancing the patient's
response based on their unique geneticmakeup using appropriate com-
panion diagnostics (pharmacogenomics) along with targeting the driv-
er event”. Also, to maximize the benefits of small molecular inhibitors,
we must deliver the targeted agents to a susceptible population based
on individuals' susceptibility profiles determined by companion diag-
nostics. Eventually, a better outcome will be achieved by matching the
right therapy to the right parties, taking us a step closer to a potential
cure for these malignancies. Last, but not least combiningwell designed
Table 3
Cancer genome profiling techniques.

WGS Target capture

Scale Whole genome Targeted areas of geno
actionable genome)

Substrate DNA DNA or cDNA
Application Research Diagnostic
Limitations Cost, ability to interpret the data Unable to detect chro

Biased to gene within
Advantages A single platform give information on point

mutations, chromosomal aberrations and CNV
High sequencing debt
to individual needs

CNV: copy number variations, cDNA: complementary DNA.
collaborations between private sectors and academics will expedite the
drug discovery process [130,131].

5. Pharmacogenomics and drug response

Pharmacogenomics is the science that studies the role of inherited
and acquired genetic variations to drug response. It correlates gene
expression and single nucleotide polymorphism (SNP) with both drug
toxicity and efficacy to optimize therapeutic regimens for each individ-
ual [97,98]. One of the classical examples of pharmacogenomics is the
effect of CytP450 variants on the dosing of warfarin [99–101,111].

There are several fundamental differences between cytotoxic che-
motherapies and small molecular inhibitors. Dose-related toxicities
have traditionally been considered key end points of Phase I trials
and the maximum tolerated dose (MTD) was regarded as the optimal
dose providing the best efficacy with manageable toxicity. Recently,
development of targeted inhibitors has challenged the paradigms used
in cytotoxic chemotherapy trial design. In precision medicine pharma-
cokinetic (PK) and pharmacodynamic (PD) end points tend to take a
backseat to toxicity. Molecularly targeted agents do not always main-
tain the same dose–toxicity relationship as cytotoxic agents and tend
to produce minimal organ toxicity. Furthermore, molecular therapeutic
agents usually result in prolonged disease stabilization and provide
clinical benefit without tumor shrinkage, a characteristic seen with
cytotoxic agents, therefore necessitating alternative measures of anti-
tumor efficacy. These end points include biologically relevant drug ex-
posures, PD biomarker measures of target inhibition, and intermediate
end-point biomarkers, such as molecular biomarkers (Fig. 3).

In the field of cancer, pharmacogenomics is complicated by the fact
that two genomes are involved: the germline genome of the patient
and the somatic genome of tumor, the latter of which is of primary in-
terest [102]. This genome predicts whether specific targeting agents
will have a desired effect in the individual. On the other hand, germline
pharmacogenetics can identify patients likely to demonstrate severe
toxicities when given cytotoxic treatments. For example, germline
SNPs in the gene encoding the enzyme thiopurine S-methyltransferase
RNA-Seq

me (whole exome, Transcribed region of genome

cDNA
Diagnostic, research

mosomal aberrations
the targeted region

Sensitivity limited to transcribed genome

on a given cost, adaptable Detects novel transcripts with low level of expression
Detects non-mutational events



Table 4
Targeted inhibitors used in treatment of hematologic malignancies.Data adapted from NCI: http://www.cancer.gov/cancertopics/factsheet/Therapy/targeted.

Gene Genetic alterations Tumor type Targeted agent

Receptor tyrosine kinase
ALK Mutation, CNV Anaplastic large cell lymphoma Crizotinib
FGFR1 Translocation CML, myelodysplastic disorders Imatinib methylase
FGFR3 Translocation, mutation Multiple myeloma [113] PKC412, BIBF-1120
FLT3 CNV AML Lestaurtinib, XL999
PDGFRB Translocation, mutation CML Sunitinib, sorafenib, imatinib, nilotinib

Non-receptor tyrosine kinase
ABL Translocation (BCR-ABL) CML. AML Dasatinib, nilotinib, bosutinib
JAK2
ERK1/2

Mutation (V617F) translocation
Mutation

CML, myeloproliferative disorders
Mantle cell lymphoma, CLL

Lestaurtinib, INCB018424
Ibrutinib

Serine–threonin kinase
Aurora A and B kinase CNV Leukemia MK5108
BRAFV600E Mutation LCH, ECD [110], hairy cell leukemia [112] Vemurafenib (PLX4032)
Polo like kinase Mutation Lymphoma B12536

Non-kinase targets
PARP Mutation, CNV Advanced hematologic malignancies, CLL,

mantle cell lymphoma
BMN 673

Antibodies
CD20 Hodgkin lymphoma Rituximab
CD52 B-cell chronic lymphocytic leukemia Alemtuzumab
CD20 Non-Hodgkin lymphoma Ibritumomab tiuxetan

Apoptotic agents
Proton pump inhibitors Multiple myeloma, mantle cell lymphoma,

peripheral T-cell lymphoma
Bortezomib, pralatrexate

CNV: copy number variations, AML: acute myeloid leukemia, CML: chronic myeloid leukemia, LCH: Langerhans cell histiocytosis, ECD: Erdheim Chester disease.
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(TPMT) can result in increased sensitivity to mercaptopurine as a result
of decreased drugmetabolism,whereas the number of TA repeats in the
promoter region of UGT1A1 can increase the toxic effects of irinotecan
again as a result of decreased drug metabolism. Therefore, understand-
ing the variable response to drugs is quite pressing in oncology where
Toxicity MTD

Efficacy

Pharmacokine�cs

Pharmacodynamics

Fig. 3. Comparison of standard chemotherapy with novel molecular targeted therapies: Dose-r
maximum tolerated dose (MTD) is regarded as the optimal dose that provides the best efficacy
tend to take a backseat to toxicity. Recently, development of targeted inhibitors has challenged
do not always maintain the same dose–toxicity relationship as cytotoxic agents and tend to p
in prolonged disease stabilization and provide clinical benefit without tumor shrinkage, a ch
anti-tumor efficacy. These end points include biologically relevant drug exposures, PD biomar
tumor cells and other molecular biomarkers, including functional imaging.
cytotoxic agents have narrow therapeutic indices and severe side effects
[103,108,109]. Table 5 summarizes the companion diagnostics devel-
oped by the FDA for the treatment of hematologic malignancies.

Generalization and clinical application of pharmacogenetics are rather
challenging in precision medicine. Most of the affected individuals have
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roduce minimal organ toxicity. Furthermore, molecular therapeutic agents usually result
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ker measures of target inhibition, intermediate end-point biomarkers, such as circulating
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Table 5
Companion diagnostics and anticancer treatments in hematology.Data are obtained
from FDA pharmacogenomics website (http://www.fda.gov/Drugs/ScienceResearch/
ResearchAreas/Pharmacogenetics/ucm083378.htm).

Anticancer treatments approved by FDA carrying companion diagnostics

Biomarker with pharmacokinetic effect TPMT (mercaptopurine, thioguanine)
UGR1A1 (irinotecan, nilotinib)

Biomarkers with pharmacodynamic effect EGFR (cetuximab, erlotinib, gefitinib,
panitumumab, afatinib)
KRAS (cetuximab, panitumumab)
ABL (imatinib, dasatinib, nilotinib)
BCR-ABL (bosutinib, busulfan)
ALK (crizotinib)
C-kit (imatinib)
HER2/neu (lapatinib, trastuzumab)
ER (tamoxifen, anastrozole)

Genes in bold are used for companion diagnostics of the drugs mentioned in the brackets.
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unique profiles in their tumors in addition to the fact that every individual
has a unique SNP profile at a germline level. If a certain type of cancer
carries several driver mutations then the choice of targeted therapy be-
comes complicated. In disseminated tumors, the picturewould be further
complicated by inter-tumor and intra-tumor heterogeneity of cancer
[104–107]. Therefore, a greater understanding of the complexities ofmul-
tiple gene modifiers of outcome, and the statistical challenge of under-
standing such data, will be needed before individualized therapy can be
applied on a routine basis.

Consequently, tumor heterogeneity makes the use of combination
therapies attractive. If an individual carries several driver mutations
which inhibitors should be prescribed?What would be the appropriate
dosing of each? How will drug interactions affect the picture? How can
we increase the therapeutic index? Addressing these questions seems
particularly pressing in the era of abundance of targeting inhibitors
and the enormous economic pressures on healthcare providers.

6. Drug delivery

Effective drug delivery could substantially increase the efficacy of
small molecule inhibitors in cancer. Currently, several nanoparticulate
platforms are under investigation [114]. A desirable carrier would be
able to incorporate and release drugs with defined kinetics, should
have stable formulation for extended shelf life, should be highly specific
for its target, and should be bioinert [115]. Biological materials such as
albumin, phospholipids, synthetic polymers, and even solid compo-
nents can be used as substrates for nanoparticles [116,117] (Table 6).

Ideally, the particles could be readily conjugated with a targeting li-
gand to facilitate specific uptake by target cells [118]. This would result
in increased efficacy by increasing drug concentration in the intended
target cells as well as in decreased systemic toxicity by reducing non-
specific uptake [119]. Unfortunately several drug delivery matrix
(nanoparticles) used by the pharmaceutical industry imposed risk to
Table 6
Structure and applications of nanoparticles.

Particle class Material Application

Natural material Chitosan
Dextran
Gelatin
Liposome
Starch

Gene delivery
Small molecule delivery

Silica variants Silica nanoparticles Gene delivery
Dendrimers Branched polymers Drug delivery, gene delivery
Polymer carriers Polylactic acid

Poly(cyano)acrylates
Polyethyleneimine
Block copolymers
Polycaprolactone

Drug delivery, gene delivery
Small molecule delivery
the patients [120,121]. These toxicities varied depending on the surface
properties of nanoparticles [122,123], chemical composition [119,124],
their half life [125] and distribution [126]. Among the in vivo side effects
of nanoparticles, pulmonary inflammation (PSP), pulmonary neoplasia
(PSP), immune response (polystyrene, CB, DEP), and platelet aggrega-
tions (PM, latex-aggregate surface) are well established [127,128].

In order to achieve enhanced delivery, reduced toxicity, and eventu-
ally enhanced therapeutic index, development of long-circulating and
target-specific nanoparticles is needed. A conceptual understanding of
biological responses to nanomaterials is necessary for development
and safe application of nanomaterials in drug delivery in the future. Fur-
thermore, a close collaboration between thoseworking in drug delivery
and particle toxicology is necessary for the exchange of concepts,
methods, and know-how to move this issue ahead.

To date the most common vehicle used for targeted drug delivery
is the liposomes. These molecules are non-toxic, non-hemolytic, and
non-immunogenic even upon repeated injections. Liposomes are biode-
gradable and can be designed with various half-lives. Liposomes are
currently used in cancer therapies (metastatic breast cancer, advanced
melanoma, colorectal cancers) but their high cost creates severe
limitations [129].
7. Future directions

Currently, there are huge amounts of screening data available at the
genomic level. One of the shortcomings is our limited understanding of
the functional importance of these findings. It is curtailed to distinguish
driver genomic events from passenger ones. Today, there are over 800
new drugs (targeted inhibitors) in the development pipeline. At this
point, our shortcoming is not the availability of targeted inhibitors but
rather our limitations on the delivery of these molecules to the affected
cells with a high degree of specificity. Next, wemust improve our ability
to get the targeted inhibitors designed for malfunctioning cellular com-
ponents into the affected cells. By increasing the efficacy of targeted
drug delivery, wewill both reduce the unwanted side effects of antineo-
plastic agents on healthy cells and increase their cytotoxicity on affected
cells. Lastly, we should be aware of the economic effects of precision
medicine. An outstanding high cost will not be sustainable in the long
term, so development of technologies for cost reduction should not be
ignored.
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