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Abstract: This review illustrates the various studies made to investigate the activity of N-pyrrylarylsulfone
containing compounds as potential antiviral, anticancer and SNC drugs. A number of synthetic
approaches to obtain tetracyclic, tricyclic and non-cyclic compounds, and their biological activity
with regard to structure–activity relationships (SARs) have been reviewed. The literature reviewed
here may provide useful information on the potential of N-pyrrylarylsulfone pharmacophore as well
as suggest concepts for the design and synthesis of new N-pyrrylarylsulfone based agents.
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1. Introduction

Sulfonamide is the basis of several groups of drugs [1]. Intense interest focused on sulfonamide
drugs after the discovery in 1935 that the activity of red dye Prontosil [2,3] was attributed to breakdown
product sulfanilamide (1). The antibacterial sulfonamides work as competitive inhibitors of the
dihydropteroate synthase, an enzyme involved in folate synthesis [4]. The simple 1 was cheaper
than Prontosil, had fewer unwanted effects and did not impart the typical red color to the skin.
Nowadays, sulfonamides have been replaced by other antibacterial drugs such as β-lactam antibiotics,
with some important exception; for example, sulfamethoxazole (2) is used for treatment of urinary and
respiratory-tracts infections [5]. Sulfa molecules have been chemically manipulated to obtain drug for
the treatment of leprosy, fluid accumulation and diabetes. The modern era of drug treatment of leprosy
began in 1937 when the sulfa drug dapsone (3) [6] proved to be highly effective. For more than six
decades, 3 remained first line drug to treat leprosy. Since 1980s, 3 has been administered in combination
with rifampicin and clofazimine for treatment of leprosy [7]. Chlorothiazide (4) is a carbonic anhydrase
inhibitor which was introduced in 1958 as a diuretic drug and is used to treat hypertension and
edema [8,9]. Before the discovery of 4, mercurial drugs associated with severe toxicity were the only
available drugs to treat fluid retention. Few years later, in 1962, another sulfonamide, furosemide
(5), was discovered as diuretic drug and is used to treat fluid retention and for the treatment of high
blood pressure [10]. Tolbutamide (6), the first sulfonylurea anti-diabetic drug, was approved in the
United States in 1957 for the treatment of type 2 diabetics [11]. Even though since 1964 there were
concerns that sulfonylurea antidiabetic drugs may increase cardiovascular risk, the current literature
does not confirm the detrimental risk profile of sulphonylureas compared with other anti-diabetic
drugs [12]. Ethoxyzolamide (7) is a carbonic anhydrase inhibitor used in the treatment of glaucoma
and duodenal ulcers, and as a diuretic [13]. Other sulfa drug examples include antivirals agents, such
HIV-1 non-nucleoside reverse transcriptase and protease inhibitors [14–18], HCV NS3/4A protease [19]
and NS5B polymerase inhibitors [20]; antibiotics, such mafenide, approved by the FDA in 1948 [21];
and nonsteroidal anti-inflammatory drug such celecoxib, a COX-2 selective inhibitor [22] (Chart 1).
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Chart 1. Examples of sulfa and pyrrole containing drugs. 

Pyrrole ring is a well-known privileged scaffold that exhibits a wide variety of biological activities 
[23]. Including the pyrrole into different pharmacophores has resulted in non-cyclic and polycyclic 
pyrrole-containing systems with potential therapeutic effects such as anticancer (leukemia and 
lymphoma), anti-microbic (bacteria, malaria, protozoa, and fungi) and central nervous system agents 
(antipsychotic and anxiolytic) (for example, pyrrolnitrin (8) [24], tolmetin (9) [25], isamoltane  
(CGP-361A) (10) [26], porphobilinogen (11) [27], and atorvastatin (12) [28]). Recently, VU0410150 (13), 
a pyrrylarylsulfone containing compound, has been discovered as mGluR4-positive allosteric 
modulator and evaluated as potential drug for treatment for Parkinson’s disease [29,30]. In the past 
decades, numerous N-pyrrylarylsulfones have been synthesized by our research group in several drug 
discovery projects. In this work, attempt has been made to review various N-pyrrylarylsulfone based 
compounds to discuss the synthetic approaches and the biological activity with regard to structure–
activity relationships (SARs). 

2. Pyrrolo[1,2-b]-s-triazolo[3,4-d][1,2,5]benzothiadiazepine 5,5-dioxide 

Tetracyclic systems, for example mianserin, aptazepine and bretazenil, have been widely 
investigated as psychotic drugs. The synthesis of pyrrolobenzothiadiazepine anellated with azole 
ring started as a development of a previous research project on tetra-anellated heterocycles [31–33]. 
Pyrrolo[1,2-b]-s-triazolo[3,4-d][1,2,5]benzothiadiazepine 5,5-dioxide (14) was synthesized by reaction 
of 2-nitrobenzensulfonyl chloride with ethyl pyrrole-2-carboxylate in the presence of potassium  
tert-butoxide and 18-crown-6 to provide 2-ethoxycarbonyl-1-(2-nitrobenzenesulfony)-1H-pyrrole (15). 
After reduction of 15 to amino derivative 16, the product was cyclized to lactam 17 in the presence of 
2-hydroxypyridine as a bifunctional catalyst. Treatment of 17 with di-4-morpholinylphosphinic chloride 
(18) in the presence of sodium hydride afforded phosphinyloxyimine 19 which was transformed into 
14 by reaction with formylhydrazine (Scheme 1) [34]. 

Chart 1. Examples of sulfa and pyrrole containing drugs.

Pyrrole ring is a well-known privileged scaffold that exhibits a wide variety of biological
activities [23]. Including the pyrrole into different pharmacophores has resulted in non-cyclic and
polycyclic pyrrole-containing systems with potential therapeutic effects such as anticancer (leukemia
and lymphoma), anti-microbic (bacteria, malaria, protozoa, and fungi) and central nervous system
agents (antipsychotic and anxiolytic) (for example, pyrrolnitrin (8) [24], tolmetin (9) [25], isamoltane
(CGP-361A) (10) [26], porphobilinogen (11) [27], and atorvastatin (12) [28]). Recently, VU0410150
(13), a pyrrylarylsulfone containing compound, has been discovered as mGluR4-positive allosteric
modulator and evaluated as potential drug for treatment for Parkinson’s disease [29,30]. In the past
decades, numerous N-pyrrylarylsulfones have been synthesized by our research group in several
drug discovery projects. In this work, attempt has been made to review various N-pyrrylarylsulfone
based compounds to discuss the synthetic approaches and the biological activity with regard to
structure–activity relationships (SARs).

2. Pyrrolo[1,2-b]-s-triazolo[3,4-d][1,2,5]benzothiadiazepine 5,5-dioxide

Tetracyclic systems, for example mianserin, aptazepine and bretazenil, have been widely
investigated as psychotic drugs. The synthesis of pyrrolobenzothiadiazepine anellated with azole
ring started as a development of a previous research project on tetra-anellated heterocycles [31–33].
Pyrrolo[1,2-b]-s-triazolo[3,4-d][1,2,5]benzothiadiazepine 5,5-dioxide (14) was synthesized by reaction
of 2-nitrobenzensulfonyl chloride with ethyl pyrrole-2-carboxylate in the presence of potassium
tert-butoxide and 18-crown-6 to provide 2-ethoxycarbonyl-1-(2-nitrobenzenesulfony)-1H-pyrrole (15).
After reduction of 15 to amino derivative 16, the product was cyclized to lactam 17 in the presence of
2-hydroxypyridine as a bifunctional catalyst. Treatment of 17 with di-4-morpholinylphosphinic
chloride (18) in the presence of sodium hydride afforded phosphinyloxyimine 19 which was
transformed into 14 by reaction with formylhydrazine (Scheme 1) [34].
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10,10-dioxide 

Studies on tetracyclic analogs of mianserin as antidepressant drugs led to the development of 
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3. 2-Methyl-1,3,4,14b-tetrahydro-2H-pyrazino[2,1-d]pyrrolo[1,2-b][1,2,5]benzothiadia-zepine
10,10-dioxide

Studies on tetracyclic analogs of mianserin as antidepressant drugs led to the development of
the pyrrole analog aptazepine and the strictly related isoaptazepine and 10-methyl-10-azaaptazepine
(20). Pursuing this research project, 2-methyl-1,3,4,14b-tetrahydro-2H-pyrazino[2,1-d]pyrrolo[1,2-b]
[1,2,5]benzothiadiazepine 10,10-dioxide (21) (tiaaptazepine) was designed as new putative core for
central nervous system (CNS) active drugs. The synthesis of 21 is depicted in Scheme 2. Reaction of
1-(2-aminobenzenesulfonyl)pyrrole with ethyl glyoxylate via a Pictet-Spengler type condensation gave
11-ethoxycarbonyl-10,11-dihydropyrrolo[1,2-b][1,2,5]benzothiadiazepine 5,5-dioxide (22). Reaction of
22 with bromoacetyl bromide afforded the corresponding bromoacetyl derivative 23 which reacted with
benzylamine (24) and subsequently thermally cycled to 25. Compound 25 was reduced with lithium
aluminum hydride (26) and debenzylated to 27 with hydrogen over Pd/C. Finally, 27 was converted
to 21 via reductive amination using formaldehyde in the presence of hydrogen (Scheme 2) [35].
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It is worthwhile mentioning that direct cyclization of 24 in the presence of excess of methylamine
via diketo intermediate 28, failed due the formation 11-carboxy-10,11-dihydropyrrolo[1,2-b][1,2,5]
benzothiadiazepine-11-acetic acid bis methylamide 5,5-dioxide (29). Intramolecular cyclization of 29
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in the presence of 2-hydroxypyridine led exclusively to the spiro derivative 30. It should be noted that
treatment of 24 with sodium hydrogen carbonate gave lactam 31, which might be the intermediate of
the conversion of 24 to 29 (Scheme 3) [36].
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Compounds 21 and 22 were enantioseparated by enantioselective HPLC, and the absolute
configuration of the pure enantiomers was established by circular dichroism (CD) spectroscopy.

The in vitro binding affinities for several CNS receptors (DA1, DA2, DA3, 5-HT1A, 5-HT2A, 5-HT2C,
5-HT3, α1NA, α2NA and muscarinic receptors) showed that both enantiomers of derivative 21, (−)-(R)-21
and (+)-(S)-21, showed higher affinities than the (−)-(R)-22 and (+)-(S)-22 counterparts, with exception
of α1NA for which (+)-(S)-22 was superior. Compound (+)-(S)-21 showed good affinities for 5-HT1A, 5-HT2A,
5-HT2C, and α1NA receptors but only moderate affinities for DA1, DA2 and 5-HT3 receptors. Compared
to the reference compounds mirtazepine, mianserine and 5-methoxymianserin, this compound
showed higher affinity of the 5-HT1A subtype, and different general pharmacological profile [37].

4. Imidazo[5,1-d]pyrrolo[1,2-b][1,2,5]benzothiadiazepine 9,9-dioxide

Imidazo[5,1-d]pyrrolo[1,2-b][1,2,5]benzothia-diazepine 9,9-dioxide (32) was synthesized as a new
benzothiadiazepine tetracyclic ring of pharmaceutical interest. The synthesis of 32 was achieved by a
simple procedure involving the anellation of pyrrolo[1,2-b][1,2,5]benzothiadiazepine 5,5-dioxide (33)
at the 10,11-azomethine bond by cycloaddition with tosylmethyl isocyanide (TosMIC) in the presence
of buthyl lithium. Alternatively, 32 could be prepared starting from addition reaction of nitromethane
to the azomethine bond of 33 to provide 34 which was reduced to amino 35 with of hydrogen at high
pressure in the presence of nickel/Raney as a catalyst. Treatment of 35 with triethyl orthoformate
furnished the dihydro derivative 36 which was oxidized to 32 with manganese dioxide (Scheme 4) [38].
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5. 5H-pyrrolo[1,2-b][1,2,5]benzothiadiazepin-11(10H)-one 5,5-dioxide

5H-pyrrolo[1,2-b][1,2,5]benzothiadiazepin-11(10H)-one 5,5-dioxide (PBTD) derivatives, analogs of
compound 17 described in Scheme 1, were synthesized as a novel class of HIV-1-specific non-nucleoside
reverse transcriptase inhibitors (NNRTIs). In general, the newly synthesized compounds were non
cytotoxic for MT-4 cells at concentrations up to 300 µM. Maximum antiviral activity was obtained with
compounds 37a–h bearing the chlorine atom at position 7 and the alkyl/alkenyl group at position 10
of the pyrrolo[1,2-b][1,2,5]benzothiadiazepine ring (Table 1). Compounds 37a and 37b (EC50 = 1.0 and
0.5 µM, respectively) showed the highest potency and selectivity (SI of >300 and >600, respectively) [39].

Table 1. Anti-HIV-1 activity of 7-Cl-PBTDs 37a–h a.
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Compound R
HIV-1 IIIB

CC50
b (µM) EC50

c (µM) SI d

37a H >300 1.0 >300
37b Me >300 0.5 >600
37c Et 283 2.4 118
37d Propyl 126 14 9
37e Isopropyl >300 Nd e -
37f Allyl >300 3.7 >81
37g Crotyl >300 4.1 >73
37h Dimethylallyl >300 129 >2

a Data are mean values of two to three independent experiments each one in triplicate. b CC50: cytotoxic
concentration (µM) to induce 50% death of noninfected cells, as evaluated with the MTT method in MT-4 cells. c

EC50 (HIV-1, IIIB): effective concentration (µM) to inhibit by 50% HIV-1 (IIIB strain) induced cell death, as evaluated
with the MTT method in MT-4 cells. d SI: selectivity index calculated as CC50/EC50 ratio. e nd, no data.

Crystal structure [40] of 37a showed that the aromatic moieties adopted a dihedral angle of 114.4◦,
a value that was very near to the optimal value of the butterfly-like conformation reported by the
Schaefer’s model [41].

6. Pyrrolo[1,2-b][1,2,5]benzothiadiazepine Acetic Acid 5,5,-dioxide

The PBTD scaffold has been exploited in several antiviral research programs. A series of
pyrrolo[1,2-b][1,2,5]benzothiadiazepine acetic acid derivatives was synthesized by reaction of 1-(2-
aminobenzenesulfonyl)pyrrole with ethyl 3,3-diethoxypropionate in aqueous acetic acid to furnish
ethyl 10,11-dihydro-pyrrolo[1,2-b][1,2,5]benzothiadiazepine-11-acetic acetate 5,5-dioxide (38). Ester 38
was N-acylated in the presence of triisobutylamine to afford ethyl 10,11-dihydro-10-(4-methylbenzoyl)
pyrrolo[1,2-b][1,2,5]benzothiadiazepine-11-acetate 5,5-dioxide (39) which was hydrolyzed into the
corresponding acetic acid 40. Alternatively, alkaline hydrolysis of 38 furnished acid 41 which was
transformed into azetidone 42 by treatment with trifluoroacetic anhydride (Scheme 5). Derivatives 38
and 42 showed significant inhibition of HIV-1 with EC50 = 19.5 and 18 µM, respectively) [42].

Replacement of the pyrrole ring of PBTD with the indole (43) resulted in weaker antiretroviral
compounds [39]. On the other hand, the 5H-indolo[3,2-b][1,5]benzothiazepine isomers (e.g., 44), were
endowed with anti-HIV-1 activity in the low micromolar range of concentrations [43]. In addition,
1H-pyrrolo[2,3-b][1,5]benzothiazepine (e.g., 45), 1H-pyrrolo[3,2-b][1,5]benzothiazepine (e.g., 46) [44]
and 9H-pyrrolo[2,1-b][1,3,6]benzothiadiazocin-10(11H)-one 4,4-dioxide derivatives (47) [45] were
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7. PBTDs as Chronic Myelogenous Leukemia (CML) Agents

The antitumor activity of pyrrolo[2,1-c][1,4]benzodiazepines (PBDs, e.g., 48) related to anthramycin
was extensively studied, as it was documented in Thurston’s review [46]. Given the high structural
similarity between PBTD and PBD compounds, two PBTDs, 23 and its 10-(4-methylbenzoyl)
derivative 49, were selected for screening of pro-apoptotic and anti-leukemia activity (Chart 3,
Tables 2 and 3) [47]. PBTD 23 was prepared by an improved procedure using dimethoxyacetal of
ethyl glyoxylate in absolute ethanol in the presence of 4-toluenesulfonic acid (PTSA). Compound
23, prepared as described in Scheme 2, was N-acylated to 49 with 4-methylbenzoyl by refluxing in
1-bromo-3-chloropropane in the presence of sodium hydrogen carbonate. PBTDs 23 and 49 induced
apoptosis in K562 cells and caused cell death in BCR-ABL-positive leukemia cells obtained from
chronic myeloid leukemia patients who were at onset or were IM-resistant. Apoptotic mechanism
studies showed that PBTDs 23 and 49 activated the caspase activity through two different pathways:
both compounds activated caspase-3; 23 significantly reduced the procaspase-8; in contrast 49
evidenced a decrease of procaspase-9 band. The apoptosis was observed before the expression of
BCR-ABL protein and the tyrosine phosphorylation. PBTDs-mediated suppression of K562 cell
proliferation was characterized by the appearance of DNA fragmentation and was associated with
the poly(ADPribose) polymerase (PARP) cleavage. PBTDs 23 and 49 treatment resulted in caspase-3
activation through down-regulation of Bcl-2 and up-regulation of Bax [48]. PBTDs possessed inhibitory
activity against mTOR and impeded hyper-phosphorylation of Akt as a feedback of inhibition of
mTOR by rapamycin [49]. These findings highlighted PBTDs as potential agents for the treatment of
CML [50,51].
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Table 2. Apoptotic activity of 23 and 49 in cells from CML patients at onset at 10 µM [46].

Patient Sex Age Source a
% of Apoptosis

23 49

24 h 48 h 24 h 48 h

1 M 45 PB a 64 70 77 85
2 M 60 BM b 50 70 70 85
3 F 73 PB 65 79 66 82
4 M 83 BM 50 70 50 75
5 F 46 PB 50 70 60 80
6 F 27 PB 50 70 60 80
7 F 45 PB 60 80 64 80
8 M 35 PB 60 80 65 85
9 M 66 PB 60 80 60 80
10 F 38 PB 50 70 70 80
11 F 65 PB 52 71 55 78
12 F 27 PB 52 73 55 78

a PB: peripheral blood cells. b BM: bone marrow cells.

Table 3. Apoptotic activity of 23 and 49 in cells from CML patients in blast crisis and Imatinib-resistant
at onset at 10 µM.

Patient Sex Age Source a
Percent Apoptosis

23 49

24 h 48 h 24 h 48 h

13 M 38 PB a 60 80 40 60
14 F 70 PB 55 78 50 70

a PB: peripheral blood cells.

8. Pyrryl Aryl Sulfones

Diarylsulfones emerged as a chemical class of HIV-1 NNRTIs. The presence of the nitro group at
position 2 of the phenyl ring and the sulfur bridging atom as sulfur dioxide are fundamental structural
characteristics for their activity. The antiviral activity of 2-nitrophenyl phenyl sulfone (50, NPPS) [52]
prompted the synthesis of a series of 41 pyrryl aryl sulfones (PAS) and some related derivatives [53].
Pyrryl 2-nitrophenyl sulfone (51) was straightforwardly prepared by nucleophilic substitution reaction
between 2-nitrobenzenesulfonyl chloride and pyrrole in the presence of n-tetrabutylammonium
hydrogen sulfate (TBAS) as a phase transfer catalyst. On the other hand, alkaline hydrolysis of
2-ethoxycarbonylpyrrole (16) [34] afforded the acid 52 which was transformed into 53 by reaction with
ethyl chloroformate in the presence of 4-methylmorpholine followed by treatment of the intermediate
mixed anhydride with glycine ethyl ester (Scheme 6).



Molecules 2017, 22, 434 8 of 18

Molecules 2017, 22, 434 8 of 17 

 

(Scheme 6). Compound 16, a 2-nitrophenyl 1-pyrryl sulfone bearing the 2-ethoxycarbonyl function, 
showed the highest anti HIV-1 activity (Table 4). 

 
Scheme 6. Synthesis of PAS 51–58. 

Table 4. Anti-HIV-1 Activity of PASs 16 and 51–58 a. 

Compound 
 HIV-1 IIIB  

CC50 b (μM) EC50 c (μM) SI d 
16 >308 15.08 >20 
51 36.55 >36.55 - 
52 >337.5 >337.5 - 
53 >262.2 >262.2 - 
54 >333 >333 - 
55 255 >255 - 
56 >370 63 >5.8 
57 >279 >279 - 
58 >285 >285 - 

NPPS - 1.4 - 
a Data are mean values of two to three independent experiments each one in triplicate; b CC50: cytotoxic 
concentration (μM) to induce 50% death of non-infected cells, as evaluated with the MTT method in MT-4 
cells; c EC50 (HIV-1, IIIB): effective concentration (μM) to inhibit by 50% HIV-1 (IIIB strain) induced cell death, 
as evaluated with the MTT method in MT-4 cells; d SI: selectivity index calculated as CC50/EC50 ratio. 

The importance of the diaryl sulfone moiety for the design of new anti-HIV-1 agents was further 
confirmed by the synthesis of new series of PAS and indolyl aryl sulfones [55,56]. The amino-PAS 
derivatives were synthesized as follows. Alkylation of the 2-amino group was achieved by reaction of 
59a and 59b with the appropriate aldehyde in the presence of sodium cyanoborohydride; carboxamides 
were obtained by heating with an acyl chloride in pyridine (Scheme not shown). It was reported that 
the 4-chloroaniline moiety or the related 5-chloro-2-pyridylamine represented the key feature of 
highly potent HIV-1 NNRTIs, for example 8-Cl-TIBO [57], 7-Cl-PBTD (37) [39] (Table 1), 3,3-dialkyl-
3,4-dihydroquinoxaline-2-(1H)thione [58], oxoquinoline [59], and PETT [60]. In the case of PAS 

Scheme 6. Synthesis of PAS 51–58.

Ester 55 was prepared by treating the corresponding acid 54 [54] with oxalyl chloride and then
with anhydrous ethanol. Reaction of 1-(2-aminobenzenesulfonyl)pyrrole [35] with methyl malonyl
chloride in the presence of triethylamine led to amide 56 which in turn was methylated to 57 or 58
with one or two equivalents of methyl chloride, respectively, in the presence of potassium carbonate
(Scheme 6). Compound 16, a 2-nitrophenyl 1-pyrryl sulfone bearing the 2-ethoxycarbonyl function,
showed the highest anti HIV-1 activity (Table 4).

Table 4. Anti-HIV-1 Activity of PASs 16 and 51–58 a.

Compound HIV-1 IIIB

CC50
b (µM) EC50

c (µM) SI d

16 >308 15.08 >20
51 36.55 >36.55 -
52 >337.5 >337.5 -
53 >262.2 >262.2 -
54 >333 >333 -
55 255 >255 -
56 >370 63 >5.8
57 >279 >279 -
58 >285 >285 -

NPPS - 1.4 -
a Data are mean values of two to three independent experiments each one in triplicate; b CC50: cytotoxic
concentration (µM) to induce 50% death of non-infected cells, as evaluated with the MTT method in MT-4 cells;
c EC50 (HIV-1, IIIB): effective concentration (µM) to inhibit by 50% HIV-1 (IIIB strain) induced cell death, as evaluated
with the MTT method in MT-4 cells; d SI: selectivity index calculated as CC50/EC50 ratio.

The importance of the diaryl sulfone moiety for the design of new anti-HIV-1 agents was further
confirmed by the synthesis of new series of PAS and indolyl aryl sulfones [55,56]. The amino-PAS
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derivatives were synthesized as follows. Alkylation of the 2-amino group was achieved by reaction of
59a and 59b with the appropriate aldehyde in the presence of sodium cyanoborohydride; carboxamides
were obtained by heating with an acyl chloride in pyridine (Scheme not shown). It was reported
that the 4-chloroaniline moiety or the related 5-chloro-2-pyridylamine represented the key feature of
highly potent HIV-1 NNRTIs, for example 8-Cl-TIBO [57], 7-Cl-PBTD (37) [39] (Table 1), 3,3-dialkyl-3,4-
dihydroquinoxaline-2-(1H)thione [58], oxoquinoline [59], and PETT [60]. In the case of PAS derivatives,
the 4-chloroaniline moiety worked as a pharmacophore only when the sulfonyl group was near to
the amino group. The nature of the pharmacophore could not be modified without affecting the
anti-HIV-1 activity. The highest anti-HIV-1 activity of compounds 59a and 59b was also associated
with the presence of the alkoxycarbonyl group at position 2 of the pyrrole ring. Alkylation of aniline
nitrogen completely abolished the activity (data not shown), whereas acylation led to weakly active
compounds (Table 5). The ability to inhibit the recombinant reverse transcriptase (rRT) of HIV-1 is
depicted in Table 6. When tested against the rRT form HIV-1 mutants resistant to nevirapine (Y181C)
and TIBO (L1001I), the compounds showed activity at 10-fold higher concentrations.

Table 5. Anti-HIV-1 activity of amino-PAS 59a–h against the WT strain a.

Molecules 2017, 22, 434 9 of 17 

 

derivatives, the 4-chloroaniline moiety worked as a pharmacophore only when the sulfonyl group 
was near to the amino group. The nature of the pharmacophore could not be modified without 
affecting the anti-HIV-1 activity. The highest anti-HIV-1 activity of compounds 59a and 59b was also 
associated with the presence of the alkoxycarbonyl group at position 2 of the pyrrole ring. Alkylation 
of aniline nitrogen completely abolished the activity (data not shown), whereas acylation led to weakly 
active compounds (Table 5). The ability to inhibit the recombinant reverse transcriptase (rRT) of HIV-1 
is depicted in Table 6. When tested against the rRT form HIV-1 mutants resistant to nevirapine (Y181C) 
and TIBO (L1001I), the compounds showed activity at 10-fold higher concentrations. 

Table 5. Anti-HIV-1 activity of amino-PAS 59a–h against the WT strain a. 

 

Compound R1 R2 
HIV-1 IIIB 

CC50 b (μM) EC50 c (μM) SI d

59a 2-NH2-5-Cl 2-COOMe >300 0.18 >2140 
59b 2-NH2-5-Cl 2-COOEt >300 0.14 >2140 
59c 2-NO2 2-COOEt >300 15 >20 
59d 2-Cl 2-COOEt 141 25 5 
59e 2-NH2-5-Cl 2-COOCH2CHC=CH2 100 0.40 250 
59f 2-NHCHO-5-Cl 2-COOEt >300 1.0 >300 
59g 2-NHCOMe-5-Cl 2-COOEt ≥300 1.0 ≥300 
59h 2-NHCOOEt 2-COOEt >300 1.0 >300 

NVP e   >10000 0.60 >167 
a Data are mean values of two to three independent experiments each one in triplicate; b CC50: cytotoxic 
concentration (μM) to induce 50% death of non-infected cells, as evaluated with the MTT method in 
MT-4 cells; c EC50 (HIV-1, IIIB): effective concentration (μM) to inhibit by 50% HIV-1 (IIIB strain) induced 
cell death, as evaluated with the MTT method in MT-4 cells; d SI: selectivity index calculated as CC50/EC50 
ratio; e NVP: nevirapine. 

Table 6. Anti-HIV-1 activity of PAS 59a–h against the rRT. 

Compound 
IC50 ± SD (μM) a

WT IIIB Y181C L100I
59a 0.45 ± 0.09 6.9 ± 2.3 7.4 ± 1.2 
59b 0.40 ± 0.05 7.5 ± 1.4 8.5 ± 1.0 
59c 0.40 ± 0.14 5.0 ± 1.5 10 ± 3.1 
59d 0.27 ± 0.10 8.0 ± 2.0 14 ± 1.2 
59e 0.90 ± 0.12 14 ± 2.5 >20 
59f >20 >20 >20 
59g >20 >20 >20 
59h >20 >20 >20 

NVP 0.60 ± 0.1 >20 3.5 ± 0.18 
a Compound concentration required to inhibit the HIV rRT activity by 50%. SD: standard deviation. 

Compound 59b was selected as lead compound for an antiviral project based on molecular 
modeling studies. Using the three-dimensional structure of HIV-1 RT cocrystallized with α-APA 
(alpha-anilinophenyl acetamide) derivative R95845, a model of RT/59b complex was derived using 
previously developed SARs. The experimentally determined RT bound conformations of α-APA 
R90385 [61] served as basis to select conformations of 59b for docking studies. By scanning the 
rotatable bonds of the crystal structure of 59b, a low energy conformation was identified and this 
compound superimposable on α-APA R95845 about the aromatic rings and the COOEt/COMe and 
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CC50
b (µM) EC50

c (µM) SI d

59a 2-NH2-5-Cl 2-COOMe >300 0.18 >2140
59b 2-NH2-5-Cl 2-COOEt >300 0.14 >2140
59c 2-NO2 2-COOEt >300 15 >20
59d 2-Cl 2-COOEt 141 25 5
59e 2-NH2-5-Cl 2-COOCH2CHC=CH2 100 0.40 250
59f 2-NHCHO-5-Cl 2-COOEt >300 1.0 >300
59g 2-NHCOMe-5-Cl 2-COOEt ≥300 1.0 ≥300
59h 2-NHCOOEt 2-COOEt >300 1.0 >300

NVP e >10000 0.60 >167
a Data are mean values of two to three independent experiments each one in triplicate; b CC50: cytotoxic
concentration (µM) to induce 50% death of non-infected cells, as evaluated with the MTT method in MT-4 cells;
c EC50 (HIV-1, IIIB): effective concentration (µM) to inhibit by 50% HIV-1 (IIIB strain) induced cell death, as evaluated
with the MTT method in MT-4 cells; d SI: selectivity index calculated as CC50/EC50 ratio; e NVP: nevirapine.

Table 6. Anti-HIV-1 activity of PAS 59a–h against the rRT.

Compound IC50 ± SD (µM) a

WT IIIB Y181C L100I

59a 0.45 ± 0.09 6.9 ± 2.3 7.4 ± 1.2
59b 0.40 ± 0.05 7.5 ± 1.4 8.5 ± 1.0
59c 0.40 ± 0.14 5.0 ± 1.5 10 ± 3.1
59d 0.27 ± 0.10 8.0 ± 2.0 14 ± 1.2
59e 0.90 ± 0.12 14 ± 2.5 >20
59f >20 >20 >20
59g >20 >20 >20
59h >20 >20 >20

NVP 0.60 ± 0.1 >20 3.5 ± 0.18
a Compound concentration required to inhibit the HIV rRT activity by 50%. SD: standard deviation.

Compound 59b was selected as lead compound for an antiviral project based on molecular
modeling studies. Using the three-dimensional structure of HIV-1 RT cocrystallized with α-APA
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(alpha-anilinophenyl acetamide) derivative R95845, a model of RT/59b complex was derived using
previously developed SARs. The experimentally determined RT bound conformations of α-APA
R90385 [61] served as basis to select conformations of 59b for docking studies. By scanning the rotatable
bonds of the crystal structure of 59b, a low energy conformation was identified and this compound
superimposable on α-APA R95845 about the aromatic rings and the COOEt/COMe and SO2/CONH2

groups. Inspection of the RT/59b complex revealed a region of the HIV-1 NNBS (non-nucleoside
binding site) delimited by Tyr181, Tyr188 and Trp229 side chains, which could be filed by substituents
at position 4 of the pyrrole ring. Among the compounds synthesized, 60 (EC50 = 42 nM; IC50 = 50 nM)
was the most potent PAS derivative (Table 7). Compared with 59b, it showed three- and eight-fold
improvement in cell-based and enzyme assays, respectively [62].

Table 7. Anti-HIV-1 activity of PAS 60 in MT-4 cells and against rRT a.
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Further studies were conducted to improve the activity of PAS 59b [63]. New PAS derivatives
were synthesized by introduction of different alkyl, alkenyl or cycloalkyl substituents at the 2-ester
function, along with a small series of 2-carboxamide derivatives, in order to explore the effects of
substituents a position of the pyrrole ring. The new derivatives were less potent and sometimes more
toxic than the previously reported 59a and 59b. This study confirmed the key role of the 4-chloroanilino
moiety and the substituent at the ester function.

Compound 60 was synthesized as depicted in Scheme 7. 5-Chloro-2-nitrobenzenesulfonyl
chloride was reacted with 2-ethoxycarbonyl-1H-pyrrole-4-carboxaldehyde in the presence of potassium
tert-butoxide and 18-crown-6 to give 61. Sodium borohydride reduction of aldehyde 61 afforded alcohol
62, and the nitro group reduction with iron in glacial acetic acid to provide the amino derivative 60
(Scheme 7).
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Three pyrryl heteroaryl sulfones, ethyl 1-[(6-amino-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-5-yl)
sulfonyl]-1H-pyrrole-2-carboxylate (63), ethyl 1-[(5-amino-1H-benzo[d]imidazol-6-yl)sulfonyl]-1H-
pyrrole-2-carboxylate (64), and ethyl 1-[(6-amino-2H-benzo[d][1,2,3]triazol-5-yl)sulfonyl]-1H-pyrrole-
2-carboxylate (65), were designed as novel HIV-1 NNRTIs using structure based computational
methods (Chart 4) [64]. These compounds inhibited the HIV-1 RT at micromolar concentrations, but
were found inactive in the MT-4 cells assay.
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9. Acylamino Pyrryl Aryl Sulfones

A series of PAS related compounds bearing acylamino moieties at position 2 of the benzene ring
were synthesized as truncated analogs of PBTDs [39]. Furthermore, potent HIV-1 NNRTIs, such as
PETT (67) [65] and truncated-TIBO (68) [66] compounds, were designed and synthesized based on
the structure of 8-Cl-TIBO (66) [67,68] using a ring-opening strategy. Based on these findings, the
same strategy was applied to 7-Cl-PBTD (37a) by breaking the 11,11b bond. The drug design strategy
conceived a series of acylamino-PAS (APAS) derivatives, which were synthetized and characterized
for their antiviral properties [69] (Chart 5).
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Several APAS derivatives inhibited the HIV-1 replication in MT-4 cells in the 1–2 µM range. Two
compounds, 69 and 70, showed activity at submicromolar concentrations with EC50 of 0.4 and 0.5 µM,
respectively. Both compounds failed to inhibit the HIV-1 K103N and Y181C mutant strains, similar to
that observed for structurally correlated 2-amino-6-[(3,5-dimethyl)sulfonylbenzonitrile [70]. Although
structurally related to the previously reported PAS family, the APAS derivatives were investigated
for binding mode in the non-nucleoside binding site of the HIV-1 RT [71]. Derivative 69, the most
active among the test APASs, was modeled from the X-ray coordinates of 59b and docked into the
HIV-1 NNBS of the RT using the 2-amino-6-[(3,5-dimethyl)sulfonylbenzonitrile/RT complex [70].
The binding mode of 69 shared similarities with previously reported PASs [62,64]: the ethoxycarbonyl
filled the highly hydrophobic region of NNBS, and the 4-chloro-2-methoxycarbonyl moiety took up
the H-bond region.

APAS derivatives 69 and 70 were prepared by reacting compound 59b with bromoacetyl bromide
1-bromo-3-chloropropane in the presence sodium hydrogen carbonate to give 2-bromoacetylamino
derivative 71. Treatment of 71 with sodium methoxide or thiomethoxide afforded APASs 69 or 70,
respectively (Scheme 8).
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10. Smiles Rearrangement

In the search for novel tetracyclic ring systems containing the benzothiadiazepine ring, a multistep
synthesis was planned starting from 1-[(5-chloro-2-nitrophenyl)sulfonyl]-1H-pyrrole-2-carbohydrazide
(72) [72]. Reduction of 72 with iron powder in glacial acetic acid did not afford the expected
7-chloro-11-hydrazinopyrrolo[1,2-b][1,2,5]benzothiadiazepine (73), but only a bicyclic derivative that
was identified as 1-amino-6-chloro-(1H-pyrrol-yl)benzimidazole (74). Structure of 74 was established
by NMR spectroscopy and elemental analysis, and was confirmed by crystallographic data. Formation
of 74 was hypothesized by extrusion of the sulfur dioxide followed by Smiles rearrangement [73] of 75
to 76. Reduction of nitro group to amino underwent with concomitant cyclization of the intermediate
amino derivative 77 to form 74 (Scheme 9). The structure of 74 was confirmed by direct synthesis
of 75 and subsequent treatment with iron in acetic acid to provide 74. It is interesting to note that
any attempt to obtain 73 from 1-[(5-chloro-2-aminophenyl)sulfonyl]-1H-pyrrole-2-carbohydrazide
(the corresponding amino derivative of 72), by heating in the presence of 2-hydroxypyridine, failed,
37a being the only product of reaction.
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11. Structurally Related Compounds

The highly potent anti-HIV-1 activity displayed by Merck carboxamide L-737,126 (78) [74–76]
(HIV-1 WTIIIB EC50 = 1 nM; HIV-1 RT IC50 = 25 nM) prompted the design of new indolylarylsulfone
(IAS) analogs. Due to the lack of SAR information, the design of first IAS derivatives was based on
PASs’ structural features. In general, 2-ethoxycarbonyl-1-benzenesulfonyl-1H-indoles showed weak
antiretroviral activity, with the exception of derivative 79 (HIV-1 WTIIIB EC50 = 8.3 µM) bearing the
4-chloroaniline moiety [77]. Indoles bearing the carbethoxy group at position 3 of the indole were
inactive. Moving the 1-benzenesulfonyl group of 79 to position 3 of the indole gave IAS 80 (HIV-1
WTIIIB EC50 = 1.9 µM) that showed 4.3-fold improvement of activity. Replacement of the 2-ester group
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with a carboxyamide function, 81 (HIV-1 WTIIIB EC50 = 0.04 µM) led to a notably increase of both
potency and selectivity. SAR studies led to partition the IAS scaffold in three regions: (A) the activity
of 78 against HIV-1 mutant strains significantly improved by the presence of two methyl groups at
positions 3 and 5 of the 3-phenylsulfonyl moiety (82) [78]; (B) coupling the indole-2-carboxamide with
either natural or unnatural amino acids provided potent HIV-1 inhibitors, for example 83–85, against
the HIV-1 L100I, K103N, and Y181C strains in CEM cells, with potency comparable to the fist line
HIV-1 NNRTI efavirenz [79,80]; and (C) the 5-chloro-4-fluoro substitution pattern at the indole ring,
compound 86, afforded potent inhibitors of HIV-1 RT WT and RTs carrying the K103N, Y181I, and
L100I mutations [81] (Chart 6).
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12. Conclusions

N-pyrrylarylsulfones display a variety of biological activities. This review illustrates the various
studies made to investigate the N-pyrrylarylsulfone scaffold as privileged structure to discover
putative antiviral, anticancer and SNC drugs. A number of synthetic approaches to obtain tetracyclic
pyrrolo[1,2-b]-s-triazolo[3,4-d][1,2,5]benzothiadiazepine 5,5-dioxide, 2-methyl-1,3,4,14b-tetrahydro-2H-
pyrazino[2,1-d]pyrrolo[1,2-b][1,2,5]-benzothiadiazepine 10,10-dioxide, imidazo[5,1-d]pyrrolo[1,2-b]
[1,2,5]benzothia-diazepine 9,9-dioxide, tricyclic 5H-pyrrolo[1,2-b][1,2,5]benzothiadiazepin-11(10H)-one
5,5-dioxide (PBTD), and non-cyclic pyrryl aryl sulfone and acylamino-PAS (APAS) compounds and
their biological activity with regard to structure–activity relationships (SARs) have been reviewed.
The literature reviewed here may provide useful information on the potential of N-pyrrylarylsulfone
pharmacophore as well as suggest concepts for the design and synthesis of new N-pyrrylarylsulfone
based agents.
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