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Nutritional implications 
for ultra-endurance walking and running events
Eric Williamson* 

Abstract 

This paper examines the various nutritional challenges which athletes encounter in preparing for and participating 
in ultra-endurance walking and running events. Special attention is paid to energy level, performance, and recovery 
within the context of athletes’ intake of carbohydrate, protein, fat, and various vitamins and minerals. It outlines, by 
way of a review of literature, those factors which promote optimal performance for the ultra-endurance athlete and 
provides recommendations from multiple researchers concerned with the nutrition and performance of ultra-endur-
ance athletes. Despite the availability of some research about the subject, there is a paucity of longitudinal material 
which examines athletes by nature and type of ultra-endurance event, gender, age, race, and unique physiological 
characteristics. Optimal nutrition results in a decreased risk of energy depletion, better performance, and quicker 
full-recovery.
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Background
As a crucial aspect of the life of athletes, and a basic 
element of physical fitness, endurance is significantly 
impacted by not only physiological characteristics but 
very importantly, the body’s capacity to effectively uti-
lize nutrients to sustain performance, particularly dur-
ing ultra-endurance events. Defined as events lasting at 
least 6  h [1], ultra-endurance events place extreme and 
unique physiological demands on athletes. Some events 
span several days, including those that have no scheduled 
breaks [2]. The diversity in location in which these events 
are sometimes performed presents athletes with unique 
challenges including extreme temperatures, increase in 
altitudes, rapid energy depletion, and the need to con-
sume nutrients during the event. Proper training is 
important to prepare for such extraordinary physical 
feats, but nutrition is paramount as these events would 
not be possible without adequate fuel availability. Nutri-
tion, hydration, and recovery are among the most impor-
tant considerations for athletes, which require advanced 
planning.

It has been identified that a comprehensive source 
providing succinct guidelines and recommendation to 
both protect the health of these athletes and promote 
performance is not available. Numerous case reports 
and field studies [3–24] show that few ultra-endurance 
runners and walkers meet recommendations that have 
been established throughout the literature. In an obser-
vational study of 42 amateur runners in a Swiss moun-
tain marathon, researchers discovered that the intake of 
most participants were significantly below the requisite 
nutritional recommendations [7]. They further asserted 
that 90% of ultramarathon runners agreed that nutrition 
has an important influence on overall performance. This 
being said, adequate food and fluid intake is related to a 
successful finish of an ultra-endurance race [7, 24] and an 
important key to attaining this adequacy seems to be an 
appropriate nutrition strategy during the race [25]. These 
findings are possible indicators that the difficulty which 
athletes experience in meeting standard recommenda-
tions could be attributed to various factors. Among these 
are lack of or poor nutrition education, norms of ultra-
endurance sports, the development of physical symptoms 
including injury, gastrointestinal disturbances, suppres-
sion of appetite, logistic challenges with implications 
for both food preparation in terms of time and available 
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resources/facilities to do so and, by extension, total food 
intake particularly in those periods of increased needs 
[15, 26, 27]. Additionally, dehydration and fluid overload 
[14, 26–29] appear to be areas with which have chal-
lenges. The myriad of stressors, such as extreme envi-
ronmental conditions, intense physical exertion, limited 
sleep, and rationing of food, which ultra-endurance ath-
letes encounter [14, 26–29], highlights the importance 
of prior planning where individualized nutrition strategy 
is concerned. It is clearly demonstrated throughout the 
literature that there is a need for appropriate education 
of ultra-endurance athletes, coaches, medical staff and 
race organizers, based on environmental conditions and 
course topography. Overarching goals should be aimed at 
minimizing the energy gap between intake and expendi-
ture, attaining adequate dietary intakes of micronutrients 
and avoiding over or under hydration. This review will 
comprehensively discuss recommendations to address 
these issues.

Review
Energy needs of the ultramarathon athlete
As can be seen in Table  1, ultra-endurance events are 
highly diverse, but available literature suggest that they 
result in an energy deficit. Ultra-endurance athletes 
typically train for 1–6  h per day and many have multi-
ple training sessions per day [30]. It is not uncommon to 
train for longer than 6 h at a time as some events require 
more than 24  h of continuous activity [30]. Therefore, 
as shown in Table  1, quantities of energy intake well 
above those of the average person are required to fuel 
the activity for both training sessions and events. With 
performance as a primary goal, athletes should strive to 
achieve an energy intake that matches the energy out-
put of their activity, basal metabolic rate (BMR), thermic 
effect of food, and other activities of their daily life. It is 
important that ultra-endurance athletes consider these 
variables both during activity and outside the context of 
activity as failure to restore energy between training ses-
sions can delay recovery and be detrimental to perfor-
mance. Extreme energy deficits have been found to be a 
common feature among athletes who engage in continu-
ous and multi-stage ultramarathon events. This is subse-
quently associated with poor recovery from exercise and 
sustained fatigue [14, 15]. Both inadvertent symptoms 
such as gastrointestinal challenges and injury, including 
those that are dermatologically related, increase the risk 
of insufficient food and fluid intake with and without the 
addition of environmental challenges [31, 32]. In compe-
tition, field research suggests that ultra-endurance ath-
letes finish their races with an energy intake between 36 
and 54% of energy expenditure [18, 34]. With this in con-
sideration, Ramos-Campo et al. [33] have found that the 

magnitude of the energy deficit is correlated with perfor-
mance, which suggests that reducing this energy deficit 
may be an advantage.

Table 1 A comparison of ultra-endurance walking and 
running events.

As in standard marathon runners, attaining an intake 
that is as close as possible to energy output should be a 
noteworthy ambition [35]. Both general and environ-
ment/activity-specific implications and strategies on 
how to do this will be discussed in the following sections. 
However, it should be recognized that other non-nutri-
tional strategies to reduce the risk of inadequate energy 
intake, such as those to reduce gastrointestinal symptoms 
and injuries, play a role in achieving this. Common GI 
challenges that hinder intake include nausea, abdomi-
nal cramping, bloating, diarrhea, vomiting, flatulence, 
and belching [26, 36]. These issues are more common as 
intensity and/or duration increase. Common injuries that 
hinder intake depend largely on the environment and cli-
mate and include blisters, subungual haematomas, chaf-
ings, abrasions, and plantar fasciitis [26, 37]. Climate and 
environmental-specific injuries include blisters and sun-
burns in hot temperatures, [26] and frostnip and frostbite 
in cold temperatures [37].

Carbohydrate
Given that the majority of an ultra-endurance athlete’s 
training is spent engaged in lengthy durations of aerobic 
activity, many of these athletes are well adapted to utiliz-
ing lipids via oxidative phosphorylation [35]. However, 
the energy demands of their specific activity will vary, 
predominantly depending on the duration, intensity and 
type of exercise being engaged in [38]. Intensity, duration, 
and food intake will largely determine how much fuel is 
being sourced from carbohydrates (CHO), protein, and 
fat. Although all three are being used as sources of energy 
at any given time, the intensity and duration are primary 
factors which determine the extent to which one is used 
over another. When the athlete is exercising at the stand-
ard marathon pace that requires 80–90% of maximal oxy-
gen consumption (VO2 max) or above, carbohydrate will 
be his or her primary fuel source and could provide up to 
96% of the energy being expended [35]. However, at lower 
intensities in which sufficient oxygen can be achieved, 
such as walking, much more fuel could be provided from 
fat [39]. Therefore, the fraction of macronutrient utiliza-
tion distribution is of considerable dependence on indi-
vidual and exercise differences as well as carbohydrate 
availability, with lower availability forcing the body to 
depend more highly on fat and protein.

Based on the preceding discussion, as well as the obser-
vation that elite marathon running is nearly 100% CHO-
dependent [40], awareness of CHO intake is important 
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during training and events, especially those for which 
completion in minimal time is an objective. In fact, 
many studies have demonstrated that increases in the 
hourly rate of CHO and overall energy intake are cor-
related with faster race times in ultra-endurance events 
[8, 18, 41]. This suggests that athletes should strive to 
maximize availability of CHO for their working muscles 
and reinforce the need for adequate energy to maintain 
performance.

Glycogen provides a reserve of CHO for the body and 
low glycogen availability appears to be a stimulus for feel-
ings of fatigue [42]. To maximize fuel storage as glycogen 
for events, a high carbohydrate diet is generally suggested 
between training sessions and events [43]. Current rec-
ommendations regarding specific recommendations for 
carbohydrate ingestion have recently been reviewed by 
Burke and Hawley [44]. Specifically, 8–12  g of CHO/kg 
body weight/day is recommended, with a more precise 
amount dependent on the athlete’s training intensity and 
duration [45]. This being said, the need for high carbohy-
drate intakes both before and during the event is depend-
ent on whether carbohydrate fuel sources are depleted 
or limiting for the demands. Increases in intensity, dura-
tion, demand of terrain [45], experience level of the ath-
lete [40], and altitude [46, 47], all, increase carbohydrate 
needs. It is not a concern of athletes’ about consuming 
too much as almost all ultra-endurance walking and run-
ning events result in a deficit (as shown in Table 1) and 
narrowing the gap between energy intake and expendi-
ture correlates positively with performance, rather it is a 
question of whether to pack carbohydrates or fat as the 
fuel source if they are carrying their own food. Fat pro-
vides more energy per gram and if the above variables are 
towards the lower end and less carbohydrate is needed, 
packing foods higher in fat will make the athletes carry 
load lighter and could allow them to narrow the energy 
gap further. This will be discussed in further detail in the 
section discussing dietary fat.

Current practices suggest that carbohydrate intakes 
in the diets of ultra-distance athletes range from 5 to 
7  g/kg/day in regular diets during training to 7–10  g/
kg/day during the 3–4 days prior to competition [48]. A 
study by Mahon et  al. [49] on mountain ultramarathon 
runners found that despite over 65% of athletes report-
ing that they intended to increase their CHO intake in 
the week prior to the event, no participants came close 
to their CHO-loading recommendations of 10–12 g/kg/d 
in the 48  h leading up to the event. This demonstrates 
that although a high carbohydrate intake is well known 
to benefit long duration endurance performance, athletes 
often fail to reach daily CHO targets needed to maximize 
glycogen storage due to the difficulty in practical appli-
cation. As carbohydrate intakes both prior to and during 

ultra-endurance events with demanding characteristics 
of those discussed above are positively correlated with 
performance, athletes should strive to consume as close 
to this recommendation as possible if needed. Possible 
means of doing so is through frequent consumption of 
carbohydrate dense foods that are low in highly satiating 
nutrients, mainly being water, protein, and fiber [50], and 
high on the glycemic index. Examples include white rice, 
pretzels, breakfast cereals, bagels, and granola bars.

In addition, to restore glycogen stores between exer-
cise sessions, a carbohydrate intake of 1.0–1.5 g/kg at 2 h 
intervals for the first 6  h and beginning within the first 
30 min following exercise appears to be an effective strat-
egy for recovery [51]. Consumption of carbohydrates 
during performance has also been shown to be benefi-
cial to best conserve muscle and hepatic glycogen storage 
and to maintain blood glucose concentration. A carbo-
hydrate intake as high as 90  g/h for the extensive dura-
tion of activities being discussed is suggested to maintain 
performance [43]. Again, however, this appears to have 
practical difficulties. Mahon et al. found that the average 
intake of the ultramarathon mountain runners was just 
28 g/h. Another study on a 100 km ultra endurance run-
ning race found that mean intake was only 43 g/h. Again, 
narrowing the gap between energy intake and energy 
expenditure results in improvements in performance 
and athletes should strive to increase this g/h intake. 
Some ways in which athletes may be able to achieve this 
is through fluids, gels, and even whole foods, depending 
on the athlete’s preferences and gastrointestinal toler-
ance. Experimenting with different forms of carbohydrate 
in fluid replacement beverages such as glucose, maltose, 
fructose polymers, and branched chain starches with 
high glycemic indices at a concentration of 6–12% are 
recommended to provide carbohydrate late in exercise 
as muscle and liver glycogen stores become depleted and 
the risk of hypoglycemia is increased [52, 105]. These car-
bohydrates can also be provided in gel or bar form as it 
was recently demonstrated that carbohydrates in a bev-
erage are oxidized at similar rates to carbohydrates from 
a gel [53] and from a bar [54]. Further ways to increase 
intake during events through management of gastroin-
testinal symptoms (GIS) will be discussed in the section 
on gastrointestinal intolerances.

Fat
Dietary fat is essential for optimal health and should 
not be overlooked by those engaging in ultra-endurance 
events. For those consuming a medium to high carbo-
hydrate diet, a fat consumption similar to that recom-
mended for the general population of 20–35% of energy 
intake is generally suggested to maintain performance 
and health [43]. Endurance training is known to enhance 
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an athlete’s capacity for fat oxidation during exercise and 
fat oxidation provides the greatest relative contribution to 
energy expenditure during low to moderate intensities of 
exercise with a peak recently shown to occur at 64 ± 4% 
VO2 max [55]. Recent research has explored ways in 
which this can be further up-regulated to enhance exer-
cise capacity and sports performance by reducing the 
reliance on the muscles’ limited glycogen stores and need 
to consume carbohydrate during prolonged events. Strat-
egies employed to attain this include consuming a very 
low carbohydrate (<50  g/day) high fat (>70% of energy 
consumption) diet for either scheduled periods or per-
manently [56]. After 2–3 weeks on this diet, the body is 
able to adapt to using fat at greater contributions, sparing 
more carbohydrate [57].

With a reduced reliance on carbohydrates as a fuel 
source as well as the elimination of the need to consume 
carbohydrates during activity, many potential advantages 
are presented. The athlete would no longer be required 
to carry sources of CHO with him or her, worry about 
attaining enough CHO or risk GIS from eating during 
activity. However, this strategy also comes at a cost. This 
reliance on fat limits the intensity of exercise that can be 
performed and severely restricts the capacity to do anaer-
obic work [57, 58]. This is due to the decreased avail-
ability of CHO for glycolysis, the body’s fastest energy 
producing mechanism for intense work.

In a study on mountain ultramarathon runners, Mahon 
et  al. [49] found that those consuming suboptimal 
amounts of CHO had higher levels of blood β-ketones 
post-event and that these post-blood β-ketone lev-
els were negatively associated with performance. This 
further supports the need for CHO intake during pro-
longed events, given that ketones are an indicator of fat 
metabolism, particularly if an objective is to complete the 
event in minimal time. It is also important to note that in 
non-fat adapted athletes low CHO availability increases 
muscle protein breakdown [59] and if performed chroni-
cally can lead to a loss of skeletal muscle mass. However, 
naturally during multi-day events, exercise pacing tends 
to conform to submaximal levels of intensity, often below 
lactate threshold to preserve limited glycogen stores and 
optimize fat utilization and the Krebs cycle pathway for 
ATP resynthesis [60]. This being said, fat adaptation is 
worth experimenting with for those who consume far 
below the recommended intakes of energy and carbo-
hydrates for their events, particularly for those who are 
prone to GIS. Bringing calorie intake closer to energy 
expenditure using fat also improves performance when 
compared to a larger caloric deficit without extra fat [61, 
62]. Since fat is more calorically dense than protein and 
carbohydrate, athletes who must carry their own food 
should choose high fat food options if it allows them to 

reach closer to their caloric needs over carbohydrate. 
Therefore, this strategy may be most appropriate for 
those competing in ultra-events which have breaks and 
which athletes must carry their own food.

Although preloading with dietary fat, specifically 
medium chain triglycerides (MCT), has strong literature 
support to potentially improve performance based on its 
capacity to serve as a fuel source and spare muscle glyco-
gen [63, 64], the majority of studies have found no glyco-
gen preserving effect or improvement in shorter distance 
endurance performance [65–70]. In longer duration 
activities, the research is conflicting. A study by Van Zyl 
et al. [193] found that performance in cyclists who rode 
for greater than 2 h in a 40 km simulated time trial had 
greater performance with supplemented beverages con-
taining CHO+MCT during the trial rather than either 
CHO or MCT alone. Contrary to this, Jeukendrup et al. 
[67] also studied long duration cycling activity (180 min) 
and found that the contribution to energy expenditure 
was small and did not provide any significant benefit to 
performance or carbohydrate preservation. The differ-
ence in the results of these two studies is likely due to 
the quantity of MCT ingested by the participants. Van 
Zyl et al. provided 86 g in total whereas Jeukendrup et al. 
provided 29  g in total. However, an intake of 86  g far 
exceeds the recommended maximum by many authors 
(30 g) who suggest intakes higher than this lead to gastro-
intestinal discomfort and diarrhea [71–73]. A later study 
by Jeukendrup et  al. [74] attempted to test an intake of 
85 g and found that it did indeed decrease performance 
due to provocation of GIS. At this time, the literature 
does not support the use of MCT supplementation in 
ultra-endurance activity.

Protein
Protein is a critical nutrient requiring considerable 
attention by the athlete to ensure proper recovery from 
exercise and to promote optimal adaptation between 
training sessions. The protein needs of athletes engag-
ing in prolonged activity are greater than those required 
for the general population because of the need to repair 
damaged muscles and synthesize new muscle proteins. 
It further serves as an energy substrate during activ-
ity [75]. The repair and generation of body proteins 
greatly contribute to athletes’ sought after adaptations 
to induced challenges and consequent improvements in 
performance.

Bodily protein stores have been shown to provide up to 
10% of the total energy used during endurance exercises 
[76]. The fraction of contribution is influenced by many 
factors including intensity, duration and, as previously 
discussed, the level of glycogen/glucose availability in 
the body [76, 77]. When it comes to increased metabolic 



Page 8 of 18Williamson  Extrem Physiol Med  (2016) 5:13 

efficiency with training, a certain degree of metabolic effi-
ciency does occur to mitigate amino acid oxidation with 
training [95], however, the rate of oxidation still increases 
over 2 h of endurance activity resulting in a several fold 
increase compared to resting conditions regardless of 
training level [96, 97]. Due to both the use of amino acids 
as a fuel source as well as muscle damage associated with 
exercise, skeletal muscle mass seems to decrease in ultra-
endurance running events without breaks, as has been 
shown in a few case reports of ultra-endurance athletes 
[3, 78]. In contrast, in ultra-endurance events where 
there are breaks, skeletal muscle mass tends to remain 
stable [79–81]. When muscle loss occurs from walking 
or running, with the exception of the thigh, it has been 
shown to occur in all muscle groups with the greatest 
losses occurring in the lower leg or calf region [3, 82, 83]. 
The eccentric contractions involved in running cause the 
greater portion of body mass lost as muscle mass com-
paratively [82] to more concentric-based ultra-endurance 
activities such as cycling [84]. One way in which athletes 
may reduce the amount of endogenous protein lost, and 
by extension, promote recovery, is by ensuring adequate 
glycogen stores going into exercise and by consuming 
adequate energy during prolonged activity [35]. The fol-
lowing recommendations can also help ensure athletes 
are recovering lost muscle and preventing loss of skeletal 
muscle mass during training and events.

While a vast body of research supports a “hypertro-
phy-centric” view following resistance exercise, recent 
research highlights a critical role for dietary protein in 
supporting recovery from endurance exercise. Although 
the pre-eminent adaptations in resistance exercise 
compared to endurance exercise may be different, the 
requirements for amount, type, and timing are similar 
[75]. Protein remodeling, which is primarily determined 
by changes in muscle protein synthesis, is an important 
aspect of the acute recovery process after exercise that 
ultimately underpins the adaptations (e.g., greater mus-
cle power, aerobic capacity) that accrue with endurance 
training [75]. Numerous studies have reported increases 
in mixed muscle protein synthesis following a single bout 
[85, 86] of exercise, and both short-term (i.e., 4  weeks) 
[87] and chronic (i.e., 4 months) [88] endurance training. 
Such increases in mixed muscle protein synthesis likely 
reflect enhanced remodeling of muscle proteins that may 
include mitochondrial-related proteins/enzymes, angio-
genic proteins (e.g., endothelial and smooth muscle cells 
within capillaries), and myofibrillar proteins.

The current recommended intake of protein is 1.2–
2.0  g/kg for a general athletic population [45]. Given 
the extraordinary caloric needs to fuel these unique 
tasks, it is likely that these athletes are meeting and 

possibly exceeding this recommendation if they are 
meeting their energy requirements [76]. In addition to 
daily protein needs, other factors are also important 
for optimizing performance adaptations, including 
timing and partitioning of intake. To maximize protein 
synthesis, and thus muscle remodeling and recovery 
[89], it is suggested that endurance athletes consume a 
minimum of 20 g of protein at 3–4 h intervals to maxi-
mize muscle protein synthesis [75, 90]. The amount 
required for ultra-endurance athletes and those who 
exercise longer than 2 h is presently unclear. However, 
it is likely that their needs would be even higher given 
the increase in total oxidation of amino acids during 
exercise as well as the possibility of splanchnic organ 
tissue damage due to the shunting of blood away from 
the digestive system during activity [91]. The rate of 
muscle breakdown is accelerated when muscle protein 
oxidation exceeds synthesis, which usually occurs in 
proportion to intensity and duration of the sporting 
activity [92–94].

Currently, ultra-endurance runners consume an 
approximate average of 12% of energy as protein during 
racing [98]. It has been posited that supplemental protein 
or amino acids on top of this intake during an ultra-run 
may improve performance through provision of amino 
acids for use as a fuel source and to attenuate muscle 
damage [99]. Despite the use of supplementary amino 
acids having been shown to improve performance and 
decrease muscle soreness in cyclists, a study on ultramar-
athon runners showed no benefits. Knechtle et al. [100] 
supplemented 14 subjects with 52.5  g of amino acids 
immediately before and during a 100  km run and com-
pared them against a placebo group. Contrary to their 
hypothesis, there were no improvements in performance 
or effects on parameters related to skeletal muscle dam-
age in the supplemented group. Unfortunately, measures 
of skeletal muscle damage were only taken immediately 
after the race. More research is needed to determine if 
the intake of amino acids during the race would lead to 
lower values of these markers in the following hours and 
days of recovery. Therefore, at the present time, evidence 
would suggest no additional benefit from consuming sup-
plementary amino acids or protein during ultra-endur-
ance running events.

In comparison to resistance exercisers, the imme-
diacy of dietary protein intake after exercise is critical 
for optimal recovery [101, 102]. The consumption of a 
snack or meal with a minimum of 20 g of protein within 
30–60 min post exercise is suggested to optimally stimu-
late muscle protein synthesis and attenuate any existing 
breakdown that is ongoing from the bout of prolonged 
exercise [75].
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Hydration
As little as a 2% reduction in body mass due to dehydra-
tion has been said to result in performance decrements 
as well as hemorheology, metabolic dysregulation, heat 
intolerance, and cardiovascular strain [103]. However, 
weight changes before and after an ultra-distance event 
do not provide an accurate indication of hydration sta-
tus and weight loss greater than 2% does not necessar-
ily have serious adverse consequences on performance 
[104]. Hoffman et  al. [104] found that in addition to 
hydration status being unrelated to changes in weight, 
runners in a 161  km ultramarathon had a mean weight 
loss of approximately 3% and that many of the top per-
formers had a weight loss of beyond 2% for much of the 
race. In other activities such as shorter duration endur-
ance events, hydration needs for an event can be approxi-
mated during training through methods such as taking 
body weight before and after training at a duration, inten-
sity, and environment that mimics that of a competition 
[105]. However, because reductions in body mass can 
be attributed to substantial breakdown of body tissues 
such as adipose and muscle [11] and increases in weight 
can result from reduced diuresis as well as decreases in 
intracellular osmolytes including glycogen, proteins, and 
triglycerides, this would be an ineffective strategy for 
ultra-endurance athletes. The reduced diuresis is induced 
by activation of vasopressin secretion and the angioten-
sin–renin–aldosterone mechanism during exercise and 
the decreases in intracellular osmolytes causes a shift 
of water to the extracellular compartment during very 
prolonged exercise [106]. With the complexity of hydra-
tion during these events, hyper-hydration has become 
increasingly common and is the most reported medical 
complication to occur during ultra-distance triathlons 
[107]. This is crucial as this can lead to the life-threaten-
ing case of hyponatremia by altering the blood serum to 
sodium ratio [108]. In fact, this shift appears to be a pri-
mary result of fluid overload and is unrelated to sodium 
losses [109]. To prevent over or underhydration, current 
available research suggests that the most suitable strategy 
to maintain hydration is to ‘drink to thirst’ [15, 27, 104, 
109–112].

Urine color (see Fig. 1) can also be used to guide hydra-
tion in ultra-endurance running. However, it should be 
noted that urine concentration (i.e., color and osmolar-
ity) rises substantially throughout the race and increas-
ingly becomes less reliable with duration [15]. Costa et al. 
found that it is in fact less reliable than relying on thirst 
as an indicator of hydration status [15]. It is important to 
note here that substrate metabolism is also altered as a 
result of dehydration during exercise resulting in greater 
reliance on carbohydrate as a fuel source [113]. Although 
the fatigue associated with dehydration is mainly a result 

of hyperthermia it also results in lower FFA uptake and 
higher muscle glycogen utilization [114]. Therefore, not 
only is maintaining hydration important for sustaining an 
optimal body temperature, preventing immediate fatigue, 
but it is also important to spare glycogen, potentially pre-
venting or delaying later onset of fatigue.

Because sweat also contains sodium one might argue 
that sodium supplementation may be of importance 
during ultra-endurance walking and running events. 
Published data has shown that as high as 90–96% of ultra-
endurance runners use sodium supplements [27, 29, 104]. 
Although past recommendations suggest a sodium intake 
of 1.7–2.9 g/L of fluid consumed to allow for fluid reten-
tion, more recent data have shown no benefit to hydra-
tion [19, 27–29, 104, 115] or blood serum sodium levels 
[19, 28, 29, 115] by consuming supplemental sodium dur-
ing these races. This is likely due to the adaptations that 
increase sodium bioavailability and prevent losses (e.g. 
sweat, urine, and feces) which take place in response to 
periods of sodium deprivation or restriction [115–117]. 
In fact, sodium supplements taken in excess can result in 
inadequate weight loss and even unnecessary weight gain 
[118]. This ultimately results in fluid overload and decre-
ments to performance as discussed above. It is therefore 
recommended that to best maintain hydration, athletes 
drink to thirst without using sodium supplementation 
beyond that taken in food and fluids, even when exercis-
ing in high ambient temperatures [104].

Fig. 1 Urine color as an indication of hydration status (reproduced 
with permission from [196])
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Other recommendations for maintaining euhydra-
tion during the event pertain to both the use of carbo-
hydrate supplemented beverages and fluid intake before 
the event. As mentioned in the carbohydrate section, a 
concentration of 6–12% of carbohydrate is recommended 
for those that consume carbohydrate-supplemented bev-
erages to achieve rapid absorption, reduce the risk of 
cramping, and provide energy [52, 105]. At 2–4  h prior 
to exercise, to achieve hydration balance going into the 
event, it is recommended to consume 5–10 mL/kg body 
weight from water or carbohydrate-supplemented bev-
erage. This will allow enough time for excretion of any 
excess as urine before the event allowing for a balanced 
bodily fluid level going into the activity [45].

Vitamins and minerals
Vitamin and mineral considerations are crucial when 
participating in and training for ultra-endurance activi-
ties. When it comes to athletic performance, these 
micronutrients are particularly important for energy 
production, hemoglobin synthesis, maintenance of bone 
health, adequate immune function, and protection of the 
body against oxidative damage. They also assist in impor-
tant physiological processes related to synthesis, recov-
ery, and adaptation to exercise. Because of this, exercise 
may increase the turnover and loss of these nutrients 
resulting in greater dietary intakes being required. Some 
vitamins and minerals that athletes need to pay particu-
lar attention to are calcium, vitamins D, C, E, and the B 
vitamins, iron, zinc, magnesium, as well as, beta carotene 
and selenium for their antioxidant properties.

Calcium and vitamin D play important roles in growth, 
maintenance, and repair of bone tissue as well as regula-
tion of nerve conduction, and development and homeo-
stasis in skeletal muscle. A deficiency in both or either 
calcium and vitamin D increases the risk of low bone-
mineral density and stress fractures [119]. Calcium can 
be obtained from food; however, vitamin D is mainly 
synthesized through sunlight. Serum Vitamin D levels 
should be tested regularly, especially in athletes who do 
not receive adequate sunlight daily, such as those who 
live at northern latitudes (>35th parallel) or who primar-
ily train indoors throughout the year [120]. In those with 
suboptimal levels (stated in Table  2), supplementation 
may be necessary. Current vitamin D supplement recom-
mendations suggest 1000–2000  IU per day for athletes 
[121].

B vitamins play a role in energy production and the 
building and repair of muscle tissue. There is some data 
suggesting that to obtain optimal health and perfor-
mance, highly active athletes may need to double the cur-
rent recommended amounts of these B vitamins though 
it is likely that these needs are being met with increased 

energy intakes [122]. Of particular consideration, how-
ever, are vitamin B12 and folate. A deficiency in either 
of these nutrients results in anemia which can greatly 
reduce time to fatigue and therefore endurance perfor-
mance [123]. Because vitamin B12 is obtained through 
animal products, such as meat and dairy, athletes such as 
vegetarians or vegans may need to consume supplements 
with this vitamin.

Iron deficiency will also result in anemia, reducing the 
ability of red blood cells to transport oxygen. A deficiency 
in iron is common among those engaged in prolonged 
activity due to up-regulation of the hormone hepcidin. 
The increase in this hormone is observed hours after 
exercise and reduces the gut’s ability to absorb dietary 
iron [124]. Because of this, ultra-endurance athletes 
should pay particular attention to their iron consump-
tion and obtain regular blood tests to check their ferritin 
status. Iron absorption can be improved by consuming 
heme iron found in meat products with non-heme iron 
found in plant products and vitamin C with sources of 
iron [125, 126]. Athletes should aim for blood ferritin lev-
els of >50 μg/L for optimal performance and iron supple-
ments may be considered under the discretion of a health 
care provider if this level is not being met through dietary 
sources alone [127, 128].

Zinc plays a role in muscle repair, energy metabolism, 
and immune status. A deficiency in zinc can result in 
disrupted thyroid hormone levels, affecting metabolic 
rate and performance [129]. It can also reduce cardi-
orespiratory function, muscle strength, and endurance 
[123]. Athletes are at high risk of inadequate zinc levels 
[130] and should therefore strive to achieve adequate 
zinc intake through zinc-rich foods. They should be cau-
tioned if using zinc supplements that they do not exceed 
the tolerable Upper Intake Level (UL) of zinc (40  mg/
day) [131], which can lead to decreases in high-density 
lipoprotein cholesterol and nutrient imbalances by inter-
fering with the bioavailability of other minerals such as 

Table 2 Optimal serum levels for ultra-endurance runners/
walkers

Micronutrient Serum marker Optimal serum level

Vitamin C L-Ascorbic acid 40-60 μM

Calcium Calcium 4.5–5.5 mEq/L

Vitamin D 25-hydroxyvitamin D 75–100 nmol/L

Vitamin E Alpha Tocopherol 5.5–17 µg/mL

Folate Plasma folate 2.7–20 μg/L

Vitamin B12 Holotranscobalamin 35–156 pmol/L

Iron Ferritin >50 ng/mL

Magnesium Magnesium 1.5–3.0 mEq/L

Zinc Zinc 84–159 µg/dL
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iron and copper [123]. Zinc-rich foods include shellfish, 
green leafy vegetables, and seeds. If supplementation is 
required, athletes should receive guidance from their 
health care provider.

Magnesium supports the proper functioning of the 
nervous and musculoskeletal systems [132]. Deficiency 
can cause multiple symptoms resulting in decreased per-
formance as it is linked to many pathological conditions 
of the cardiovascular, skeletal, and nervous systems [133]. 
Ultra-endurance athletes are at increased risk of this defi-
ciency due to increased urinary and sweat losses induced 
by magnesium redistribution within the body during 
prolonged intense activity [134]. In addition, the dietary 
reference intake of 310–420 mg/day is likely suboptimal 
for most athletes [135]. Ultra-endurance athletes should 
have their blood levels of magnesium tested regularly and 
self-monitor for common symptoms of hypomagnesae-
mia such as muscle cramps. Supplementation with mag-
nesium is recommended if necessary and dosage should 
be determined under the discretion of their healthcare 
provider to avoid toxicity.

Antioxidants
Exercise can induce a release of free radicals or reactive 
oxygen species which have the ability to modify lipids, 
proteins, carbohydrates, and nucleic acids in the body 
[136]. These modifications are collectively known as oxi-
dative damage or oxidative stress and have been linked to 
negative health outcomes such as insulin resistance, ath-
erosclerosis, cardiac dysfunction, and injury [137]. Anti-
oxidant vitamins and minerals, such as vitamins C and E, 
beta carotene, and selenium can be used to mitigate these 
effects. These nutrients act in different ways to either 
remove oxidative species or prevent their reactions from 
happening [138]. However, because oxidative species also 
have some beneficial effects on the body, their function is 
not to completely eliminate these processes, but to keep 
them at homeostatic, and thus optimal, levels. Therefore, 
there is a threshold to which antioxidants can provide 
benefits for performance, health, and recovery. Research 
on ultra-endurance athletes has demonstrated that their 
need to prevent oxidative damage is higher given their 
extraordinary exercise volume [136].

Although more research is needed to examine the 
effects of these antioxidant supplements during and 
immediately prior to an event, current evidence suggests 
little to no benefit [139, 140]. A study on runners ingest-
ing vitamin supplements (N  =  9) and mineral supple-
ments (N = 12) showed that the supplementation did not 
result in faster race times compared to the athletes with-
out supplemental intake of vitamins and minerals [141]. 
It is important to note that although ultra-endurance 
athletes may benefit from ample intakes of antioxidant 

vitamins and minerals that exceed the current recom-
mendations for the general population, they should be 
cautioned not to consume these nutrients at levels above 
the ULs. High doses above the UL can also result in pro-
oxidative effects, causing risks of decreased performance, 
recovery and health [142].

Other antioxidants which have recently been investi-
gated for their effects on endurance performance include 
polyphenols with the most popularly researched being 
quercetin, catechins, and resveratrol. These polyphenols 
are organic chemical compounds mainly found in plants 
that have strong antioxidant properties [143]. They have 
also been shown to have anti-inflammatory, cardiopro-
tection, and anti-carcinogenic properties in clinical pop-
ulations [144]. However, few studies have investigated the 
effects of these polyphenols on performance, particularly 
in an ultra-endurance population.

Catechins are commonly found in plants such as green 
tea and cacao. Some human studies have shown posi-
tive effects for endurance including V02 max [145], fat 
oxidation, and insulin sensitivity [146] in an untrained 
population; however, studies on trained subjects are yet 
to show benefits [147–149]. It is unlikely that supple-
mental catechins would be beneficial to ultra-endurance 
performance.

Resveratrol is present in concentrated quantities in 
grapes. It’s strong antioxidant properties have shown to 
be beneficial against degenerative and cardiovascular 
diseases from atherosclerosis, hypertension, ischemia/
reperfusion, heart failure, diabetes, obesity, aging, and 
neurodegenerative diseases [150]. With one exception, 
studies to date have only been performed on rodents, 
and the effects on performance range from extremely 
beneficial to extremely detrimental [151–157]. Taken 
together, these studies would suggest that resveratrol 
benefits trained rodents and is potentially harmful in 
untrained rodents. The only human study was performed 
in untrained elderly participants and the effect demon-
strated that supplementation was also potentially harmful 
through blunting of cardiovascular training adaptations 
to endurance exercise [151]. Further research is needed 
before supplemental resveratrol should be taken by ultra-
endurance athletes.

Quercetin is found in foods such as red onion, dill, 
apples and capers and has been studied more extensively 
than other polyphenols. It provides many health benefits 
in humans [158] and has shown to encourage mitochon-
drial growth in rodents [159]. Although quercetin sup-
plementation shows potential endurance performance 
benefits in cell culture and in  vivo animal studies [160, 
161], research on its use as a supplement in humans are 
less clear. Some studies have reported increased endur-
ance exercise capacity and performance in humans 
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following supplementation with quercetin [162–164]; 
however, many have failed to find benefits [165–171]. 
Of the 2 studies [172, 173] on ultra-endurance trained 
subjects, both have shown no significant benefit. Nie-
man et  al. [172] examined the effect of quercetin sup-
plementation on inflammation after three consecutive 
days of cycling and following an ultra-endurance run. No 
improvements in performance or attenuation of mark-
ers of muscle damage, inflammation, increases in plasma 
cytokines, and alterations in muscle cytokine mRNA 
expression were found [172]. Quindry et al. [173] supple-
mented half of their 63 ultra-endurance running trained 
subjects with quercetin combined with niacin and vita-
min C for 3  weeks leading up to and during a 160  km 
ultramarathon. The supplement did not fortify plasma 
antioxidant levels against ultramarathon-induced oxida-
tive stress in blood plasma or improve performance. This 
being said, a 2011 meta analysis by Kressler et  al. [194] 
encompassing the above research concluded that querce-
tin supplementation can improve human endurance exer-
cise capacity in a small but significant magnitude (~3%). 
Based on data showing favorable outcomes for supple-
mental quercetin [162–164], a daily dosage of 1000  mg 
could have small potential benefits and is unlikely to be 
detrimental for ultra-endurance trained populations.

Where micronutrients in general are concerned, there 
are currently no Recommended Dietary Allowance 
(RDA)’s in place specifically for athletes. However, the 
amounts needed in excess of those recommended for 
the general population are likely dependent on multiple 
factors including individual variability, training intensity, 
and training duration. To determine if ultra-endurance 
athletes are consuming adequate amounts of vitamins 
and minerals, they should obtain regular blood tests to 
ensure blood levels are being maintained at levels that 
are not only acceptable for general health but are optimal 
for performance (see Table  2). This may be particularly 
important during times when their training or nutri-
tion changes. It is important to emphasize that regular 
adequate intake of vitamins and minerals is required for 
optimal performance and that consuming extra vitamins 
and minerals through supplementation immediately 
before or during an ultra-endurance event has not shown 
to provide any performance, health or recovery benefits 
[141, 174].

Gastrointestinal intolerances
During ultra-endurance activities and correspond-
ing training exercises, food and fluid must be con-
sumed while being active to minimize the energy deficit. 
Because of this, it is no surprise that GIS are a common 
issue for these athletes [175]. Endeavoring to prevent 
GIS is important as it is one of the most common cited 

reasons for inadequate intake during events [176, 177] 
and is positively correlated with increasing duration 
[178]. Running in particular appears to result in more 
pronounced GIS than other activities [175] as well as a 
dehydrated state compared with a euhydrated state [179]. 
There also seems to be an individual predisposition for 
GI distress during exercise as Pfieffer et  al. have deter-
mined a positive relationship between GIS during races 
and history of GI issues both associated with and away 
from exercise [175, 180]. Another common issue in ultra-
endurance athletes is reduced appetite, which is closely 
related to GIS as both are subsequent results of splanch-
nic ischemia. Particularly at workloads above 70 % VO2 
max, splanchnic blood flow is reduced to about 30–40% 
as blood shifts to working muscles and skin to dissipate 
heat [177].

If the event has no enforced breaks, whole foods may 
not be an option as they may be too difficult to chew 
and swallow and could result in GIS. In this case, intake 
from fluids is a viable option as not only does it provide 
the energy but also hydration. However, in cases where 
the prevention of hyper-hydration is important, prod-
ucts such as sports gels can also be supplemented to 
the racer’s diet. With gels, it has been shown that high 
doses of CHO (1.4  g/min) are well tolerated by most 
runners [180]. Against this background, it may be best 
to determine strategies, such as use of different types 
of nutritional sources and frequency of consumption 
to find which methods work best to maximize carbo-
hydrate intake during an event without causing GI dis-
tress. One of the possible ways that this could be done 
is through coingestion of glucose and fructose as a car-
bohydrate source rather than one or the other. Research 
suggests that this can increase carbohydrate oxida-
tion from an average of 1–1.26  g/min mainly due to 
increased bioavailability as the 2 different compounds 
use different transporters within the gut [181]. With 
the use of gels as a source of carbohydrates, Pfeiffer 
et  al. [180] showed no overall difference in tolerance 
between glucose-based gels and combined glucose and 
fructose gels. However, some individuals showed more 
symptoms with one or the other gel. It should, there-
fore, be advised that individual athletes, especially 
those who experience GI problems frequently, test 
their tolerance during intense training sessions, ideally 
under conditions similar to those of the races they aim 
to compete in.

The intake of the nutrients fat, fiber, and protein, have 
all been linked to GIS during exercise [182]. To prevent 
this, food items low in these nutrients, such as bananas, 
biscuits, energy gels/bars, and sports drinks, are popular 
food and fluid choices for ultra-endurance events. How-
ever, as the duration of ultra-endurance races increases, 
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these food and drink choices have become less toler-
able and appealing [183, 184]. In terms of athletes’ toler-
ance, individual testing of food and drink intake during 
training conditions similar to the event they are train-
ing for are vital. No matter where the athlete is starting 
from, another potential strategy is “gut training”, which 
involves increasing the absorptive capacity of the gut 
through high carbohydrate dieting and progressively 
increasing the hourly carbohydrate intake during train-
ing [185]. Although the evidence of this is mainly anec-
dotal, intestinal carbohydrate transporters can indeed be 
up-regulated [186, 187] and gastric emptying rates can be 
enhanced with training [188].

GIS occur less frequently after adequate training or 
when relative exercise intensity is reduced [189, 190]. 
Although more research in this area is needed, experi-
mentation with this strategy during training is likely to 
present little risk and athletes should dedicate at least 
some time to gut training. Endurance training itself 
appears to enhance gastric transit time [191], and higher 
energy intakes during training further enhance this rate 
[192]. Cox et  al. [187] demonstrated that exogenous 
carbohydrate oxidation rates were higher after the high 
carbohydrate diet (6.5; 1.5  g/kg BW provided mainly as 
a carbohydrate supplement during training) for 28  days 
compared with a control diet (5 g/kg BW/day) in endur-
ance trained cyclists. The higher rates were attributed to 
improved absorption, which provides evidence that the 
gut is indeed adaptable and that this could be used as a 
practical method to increase exogenous carbohydrate 
oxidation. Therefore, ultra-endurance runners should 
strive to gradually increase their intakes as tolerated dur-
ing training to further approach suggested intakes (kcals/
km) for events. This could lead to improvements in per-
formance through greater fuel availability as discussed in 
preceding sections.

Conclusion
There is a paucity of agreed-on and concrete nutri-
tion best practices for ultraendurance runners and even 
less demarcating such by event type. From a macronu-
trients perspective, ultra-endurance athletes need to 
ensure adequate intake. Generally, carbohydrate, pro-
tein, and fat recommendations are 8–12  g of CHO/kg 
body weight/day, ≥20  g at 3–4 h intervals and 20–35% 
of energy intake, respectively, and athletes should strive 
to minimize the gap between energy intake and energy 
expenditure to optimize performance. However, the 
practicality of such recommendations needs to be con-
sidered on an individual basis and the importance of 
rehearsal of an individualized nutrition strategy prior to 
competition cannot be overemphasized. Because micro-
nutrients are crucial and may sometimes be overlooked, 

special attention needs to be placed on each both in 
terms of interaction with the body’s internal physiol-
ogy, other ingested foods and the nature and intensity of 
physical rigor the body endures. As far as is necessary, 
and in keeping with advice from healthcare providers, 
ultra-endurance athletes may use supplements to support 
training and events performance and aid in recovery. 
While some recommendations presented are prescrip-
tive in nature based on the findings of various studies, 
ultra-endurance athletes are encouraged to apply them 
within the context of their particular training regiment, 
body mass composition, and corresponding physiologi-
cal needs. All the literature reviewed indicate that ultra-
endurance athletes must take great care in attending to 
their nutritional needs to maintain good health, promote 
optimal performance, and reduce the likelihood of inju-
ries. Proper nutrition will result in decreased energy 
depletion, better performance, and accelerated recovery. 
With the growing international appeal of ultra-endurance 
events, significant research is needed to promote the 
health and wellbeing of athletes. More longitudinal stud-
ies are needed to ascertain the precise nutritional and 
environmental conditions under which athletes perform 
most optimally based on age, gender, type of event, body 
type, and other physiological factors.
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