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ABSTRACT
Temperate grasslands and woodlands are the focus of extensive restoration efforts

worldwide. Reintroduction of locally extinct soil-foraging and burrowing animals

has been suggested as a means to restore soil function in these ecosystems. Yet little is

known about the physical and chemical effects of digging on soil over time and

how these effects differ between species of digging animal, vegetation types or

ecosystems. We compared foraging pits of a native reintroduced marsupial, the

eastern bettong (Bettongia gaimardi) and that of the exotic European rabbit

(Oryctolagus cuniculus). We simulated pits of these animals and measured pit

dimensions and soil chemical properties over a period of 2 years. We showed that

bettong and rabbit pits differed in their morphology and longevity, and that pits

had a strong moderating effect on soil surface temperatures. Over 75% of the

simulated pits were still visible after 2 years, and bettong pits infilled faster than

rabbit pits. Bettong pits reduced diurnal temperature range by up to 25 �C compared

to the soil surface. We did not find any effects of digging on soil chemistry that

were consistent across vegetation types, between bettong and rabbit pits, and with

time since digging, which is contrary to studies conducted in arid biomes.

Our findings show that animal foraging pits in temperate ecosystems cause physical

alteration of the soil surface and microclimatic conditions rather than nutrient

changes often observed in arid areas.
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INTRODUCTION
Temperate grasslands and woodlands are among the most threatened biomes worldwide

due to widespread clearing and degradation from land use changes and inappropriate

management (Hoekstra et al., 2004). Loss of species has both accompanied and

contributed to this degradation, including soil-foraging and burrowing animals that play

a role in soil turnover. Some of these animals are considered to be ‘ecosystem engineers’
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because their digging behaviour has cascading effects on soil function and associated biota

(Jones, Lawton & Shachak, 1994; Berke, 2010). Most knowledge of the role of digging

animals in ecosystems has been developed from arid environments (Coggan, Hayward &

Gibb, 2018). This leaves little understanding of their role in many other ecosystems,

and their potential use for ecosystem restoration (Byers et al., 2006; Manning, Eldridge &

Jones, 2015).

Ecosystem engineers structurally alter their environment, which in turn leads to

changes in abiotic and biotic conditions (Jones et al., 2010). In the case of digging animals,

the creation of pits and burrows can increase soil moisture and infiltration (Laundre, 1993;

Garkaklis, Bradley & Wooller, 1998; Eldridge, 2009; Eldridge et al., 2012a; Valentine

et al., 2017), reduce soil bulk density (Canals, Herman & Firestone, 2003; Cuevas et al.,

2012; Travers et al., 2012), moderate extremes of temperature (Gutterman, 1997;

Eldridge & Mensinga, 2007; James, Eldridge & Moseby, 2010), mix the soil profile and trap

plant litter and seeds (Martin, 2003; Eldridge & Mensinga, 2007; James, Eldridge &

Hill, 2009).

Several studies have found that digging animals can also change the chemistry of soils,

but these effects are highly variable. Some nutrients (e.g. carbon, nitrogen, ammonium,

nitrate, phosphorus and sulphur) may be higher in pits because of collection of

organic matter (Tardiff & Stanford, 1998; James, Eldridge & Hill, 2009; Eldridge et al.,

2012b; Travers et al., 2012), increased microbial activity and decomposition (Eldridge

et al., 2015, 2016; Valentine et al., 2017), or removal of plants which would otherwise use

the nutrients (Canals, Herman & Firestone, 2003). In contrast, some studies have found a

reduction in certain nutrients in pits, perhaps as a result of leaching due to increased

water infiltration (Garkaklis, Bradley & Wooller, 2003; Eldridge & Mensinga, 2007), and

others have found no effect (Groot Bruinderink & Hazebroek, 1996). A recent global

meta-analysis of the effects of digging animals on soil found they significantly increased

soil N and P, but there was no overall effect for C or pH (Mallen-Cooper, Nakagawa &

Eldridge, 2019).

Most studies of digging animals have focused on arid and semi-arid ecosystems

(Whitford & Kay, 1999; Kinlaw, 1999), with few studies conducted in temperate

ecosystems, particularly in Australia (Coggan, Hayward & Gibb, 2018). This is important

because the effects of digging are likely to differ between arid and temperate ecosystems

(Crain & Bertness, 2006). Several studies have suggested that the effects of digging

animals are more pronounced in more arid or resource-poor sites (Mallen-Cooper,

Nakagawa & Eldridge, 2019; Decker, Eldridge & Gibb, 2019), however Coggan, Hayward &

Gibb (2016) found the opposite pattern. Further research on ecosystem engineers in

temperate ecosystems is therefore required to close this knowledge gap.

The total impact of an ecosystem engineer on its environment depends on both the

spatial and temporal aspects of its effects (Hastings et al., 2007). However, most studies

on digging animals have focused on only the spatial aspects of digging; quantifying

the number and distribution of pits and how much soil is moved in a certain area

(e.g. Eldridge, 2004). In contrast, fewer studies have looked at temporal aspects of digging

such as the longevity or ‘decay rate’ of pits (Raynaud, Jones & Barot, 2013). How long the
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effects of pits persist is likely to be influenced by many factors such as vegetation, soil type,

climate and topography, as well as the morphology of the pit itself (Alkon, 1999).

For example, pits have been shown to infill more quickly in sandy soils (Newell, 2008)

and under tree canopies (Eldridge & Kwok, 2008), while pits with larger openings collect

more litter (James, Eldridge & Hill, 2009). The effects of digging on soil chemistry are

also likely to change over time as organic matter accumulates and decomposes and may

persist well after the physical pit is no longer visible.

In Australia, habitat loss and feral predators have caused widespread decline of many

native soil-foraging and burrowing mammals (Burbidge & McKenzie, 1989), and their

loss is thought to have contributed to the degradation of Australian ecosystems

(Martin, 2003; Eldridge & James, 2009; Fleming et al., 2014). However, the introduced

European rabbit (Oryctolagus cuniculus) has become widespread in most ecosystems,

and it has been suggested that they could fill a similar niche (Read et al., 2008; James

et al., 2011). This is because they are comparable in size and create small foraging

pits similar to those of native digging animals (James et al., 2011). In their native range,

rabbits are recognised as important ecosystem engineers, increasing habitat

heterogeneity and plant diversity (Gálvez-Bravo et al., 2011). In Australia, however, they

have become extremely abundant, leading to negative impacts on soils and native

vegetation (Eldridge & Myers, 2001; Eldridge & Simpson, 2002; Eldridge & Koen, 2008)

and competition with native animals (Short & Smith, 1994; Short, 1998; Johnson, 2006).

Rabbits also create fewer pits than other native species, and their pits tend to be

shallower (James & Eldridge, 2007; James et al., 2011; Munro et al., 2019), which may

have an impact on their ecological effects. To date, no studies have directly compared the

physical and chemical properties of rabbit foraging pits with a native marsupial in a

temperate ecosystem.

In this study, we wanted to investigate the physical and chemical effects of foraging pits

of an Australian native marsupial, the eastern bettong (Bettongia gaimardi) and those

of the introduced European rabbit. To do this, we accurately re-created pits and measured

their physical dimensions and soil properties over time. We also used real bettong diggings

for measuring the microclimatic effects on temperature. We posed the following

questions:

1. How do the physical dimensions of artificial bettong and rabbit pits change over time?

2. Do natural bettong pits influence soil surface temperature?

3. What is the effect of artificial bettong and rabbit digging on soil chemistry within and

directly beneath the pits, and how does this change over time?

We hypothesised that differences in morphology of bettong and rabbit foraging pits

would result in different rates of infill over time, and that natural bettong pits would have

a more mesic microclimate with a smaller diurnal temperature range compared to the

soil surface. We also predicted that soil collected from within and beneath bettong pits

would be distinct from rabbit pits and control (non-pit) sites, and that any effects on soil

chemistry would change over time.
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By addressing these questions, our study provides some new insight into the role of

digging mammals as ecosystem engineers in temperate ecosystems and informs the

conservation and management of both native and exotic digging mammals.

MATERIALS AND METHODS
Study area
We conducted our study within the Mulligan’s Flat-GoorooyarrooWoodland Experiment,

which consists of two neighbouring nature reserves on the outskirts of Canberra,

south-eastern Australia (Manning et al., 2011; Shorthouse et al., 2012). The two reserves

contain important remnants of Yellow Box-Blakely’s Red Gum Grassy Woodland, which

is listed as a critically endangered ecological community (Australian Government, 2006).

In 2009, a 485 ha predator-proof sanctuary was established in Mulligan’s Flat reserve to

provide protection for the native wildlife and allow the reintroduction of several locally

extinct species, including the eastern bettong (Bettongia gaimardi) which was introduced

in 2012 (Batson et al., 2016). Within the sanctuary, feral predators (cats, foxes and dogs)

and hares were removed, and rabbits were managed at low numbers.

Vegetation, soils and climate
The soils and vegetation in the reserve have been described by Lepschi (1993) andMcIntyre

et al. (2010). For this study we defined three structural vegetation types: ‘Grassland’

(dominated by Rytidosperma sp., with poorer soils); ‘Woodland’ (discontinuous

eucalyptus canopy with understorey of Themeda australis and large tussock grass e.g.

Rytidosperma pallida, richer soils) and ‘Forest’ (continuous eucalyptus canopy with sparse

understorey of Rytidosperma pallida, with intermediate soils and thick litter layer).

Mean minimum and maximum temperatures for the hottest and coldest month are

13 �C and 28 �C (Jan) and 0 �C and 11 �C (Jul) respectively. Mean annual rainfall is

644.5 mm (1935–2017, Bureau of Meteorology, 2018). Monthly rainfall over the study

period is shown in Fig. S1 (see Supplementary Materials).

Study design
We assessed the physical and chemical properties of artificial bettong and rabbit pits

located in the three vegetation types and over time. Our study design consisted of three

fenced bettong ‘exclosures’ (200 m � 50 m) within the reserve, with one in each of the

three vegetation types. We used fenced areas where bettongs did not have access to prevent

any subsequent disturbance. We marked transects with star pickets placed 50 m from

one end of the exclosure extending through the middle of the site for 50 m. In the

woodland site, the transect passed through a section of grassland indicating a potentially

different soil type, so we extended the transect to 70 m and avoided taking soil samples

from that section. In December 2014, we placed artificial pits (see below) one metre

apart along the transect, alternating between bettong and rabbit pits (giving a total of

170 pits—85 bettongs and 85 rabbits). The location of each pit was marked with a peg and

a metal tag. For each pit, we measured length, width and depth (at the deepest point).

We placed three coloured pebbles (approx. five mm in diameter) in the bottom of each pit
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to mark the original depth. In August 2015 (8 months after initiation), the pits were

measured again. We then took soil samples from a selection of the pits (see below).

This was repeated in January 2017 (24 months after initiation).

Artificial pits
We created foraging pits that simulated those of bettongs and rabbits, in order to measure

changes in pit dimensions (Question 1) and soil chemistry (Question 3) over time.

The temperature measurements (Question 2) were taken from real bettong pits

(see below). We chose to use artificial pits for two reasons, (1) to be certain of the age of

the pits, which is difficult to determine for real pits, and (2) to enable side-by-side

comparison of bettong and rabbit pits in the same location and under the same

conditions. We created the pits by hand using a teaspoon to scrape and scoop away the soil

into a ‘spoil heap’, imitating the action of the animal. We based the size and shape of

the pits on measurements of 1,518 bettong and 432 rabbit pits, which were taken

previously from the same study site (Munro et al., 2019). While the pits of both animals

can vary widely, bettong pits are generally narrower and deeper than rabbit pits with a

typical ‘leaning cone’ shape, while rabbit pits are a shallow ‘bowl’ shape (Fig. 1).

Soil sampling
We took soil samples from six bettong and six rabbit pits in each of the three sites, at

8 months and 24 months after the pits were created (36 pits total at each sampling time).

We selected the pits for sampling using a random number generator. In some cases

where the pit could not be found or had been disturbed, we used the next suitable pit

along the transect. Due to the destructive nature of the sampling, once a pit had been

sampled, it could not be sampled again. Sampled pits were also excluded from further

measurement for pit dimensions.

For the ‘pit’ sample, we used a small trowel to collect all the loose soil that had

accumulated in the pit, down to the original depth indicated by the coloured pebbles.

Figure 1 Bettong and rabbit pit dimensions. Shape and dimensions of ‘typical’ bettong and rabbit

foraging pits shown from above (A, B) and in cross-section (C, D) (to scale). Measurements are averages

taken from 1,518 bettong and 432 rabbit pits (Munro et al., 2019).

Full-size DOI: 10.7717/peerj.7506/fig-1
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Any large litter was first removed from the site by gently brushing it away. We then sampled

the ‘under-pit’ soil below the pebbles using a 50mL syringe with the end cut off, pushed into

the soil at the base of the pit up to the 10 mL mark (Fig. S2). The control samples were

taken from an undisturbed area approximately 50 cm further along the transect (i.e. halfway

between the pits). For the ‘pit control’, we used the trowel to excavate a new depression of

the same dimensions as the paired pit. We then took the ‘under-pit control’ from below

the ‘pit control’ sample, using the same method as the ‘under-pit’. This gave a total of

144 samples (36 � pit and under-pit, 36 � pit control and under-pit control).

Soil analysis
Each soil sample was analysed to measure total nitrogen (N) and total organic carbon (C),

mineral nitrogen (NO3
- and NH4

+), plant-available phosphorus (P), pH and electrical

conductivity (EC). The coarsely ground oven-dried soil was finely ground using a puck mill,

and the organic carbon and total nitrogen content were determined using a LECO CNS

2000 (CMethod 6B2 and NMethod 7A5; Rayment &Higginson, 2011). These data were also

used to calculate the Carbon:Nitrogen ratio (C:N). A sub-sample of each sample was used to

determine soil NO3
- and NH4

+ content using 1:10 ratio of soil to two M KCl extract.

The extract was shaken for 1 h, centrifuged, and filtered prior to analysis. The NO3
- and

NH4
+ concentrations were determined by the cadmium reduction and phenate method

(Rice et al., 2012) using an Autoanalyser. Soil plant-available phosphorus was extracted

using the Resin P method (Tiessen & Moir, 2007) and determined using the colorimetric

molybdate-ascorbic acid method (Murphy & Riley, 1962). Five grams of field soil to 25 ml

DIwater extract were used to determine soil pH (Method 4A1; Rayment & Higginson, 2011)

and EC (Method 3A1; Rayment & Higginson, 2011).

Temperature measurements
To measure the effect of digging on soil surface temperatures, we selected six real bettong

pits at an open grassland site in full sun, within Mulligan’s Flat Nature Reserve. We chose

an open site to avoid variation due to shading, so the measurements are likely to

represent the most extreme temperature variation experienced in the reserve. These

measurements were taken from real bettong pits because we were not concerned about pit

age or subsequent disturbance, but we did select pits that appeared to be fresh (i.e. no

infill). Pits were randomly distributed across the site, with a minimum distance of one

metre between pits. We placed six digital temperature data loggers (Maxim Integrated

Thermochron iButton Device DS1921G) in the base of the pits, and six on the soil surface

20 cm from each pit. The thermometers were protected from direct sun by the grass

canopy, or a thin layer of loose soil in the bottom of the pits. We set the thermometers to

record every 15 min and left them out over 4 days during winter, and again during

summer (25–29 Aug and 9–13 Dec 2016).

Data analysis
To examine the change in physical dimensions of the pits over time (Question 1),

we calculated the average radius (length + width/4) and depth of bettong and rabbit
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artificial pits recorded at 0, 8 and 24 months. We used the ratio of depth to radius as a

proxy for the change in the dimensions of the pit. We also calculated the volume of each

pit, assuming a circular cone shape (pi � radius2 � (depth/3)). We used linear mixed

models to test for the interactive effects of pit age and species on the pit dimensions

(depth/radius) and volume. We included vegetation type as a random effect to account for

site differences. We then tested for pairwise significant differences between the different

factor levels using Tukey’s post-hoc test.

To measure the effect of natural bettong pits on soil surface temperatures (Question 2),

we plotted the temperatures recorded inside pits and at the soil surface at 15-min intervals,

with each interval averaged across the six data loggers for each treatment (‘pit’ and

‘surface’ in summer and winter). We then plotted temperatures as a boxplot to show the

overall mean and range for the 4 days of data. For each data logger, we calculated the mean,

maximum, minimum and range of temperatures recorded over 4 days in the field.

We then conducted paired t-tests to test whether there was a difference between the pit

and surface in each of summer and winter using GenStat (VSN International, 2015).

To assess the effects of artificial bettong and rabbit pits on soil chemical properties

(Question 3), we first used Principle Component Analysis (PCA) to explore the

correlations among all the soil variables in relation to other explanatory variables

(e.g. vegetation type, age of pit, treatment). This analysis combines variables using an

orthogonal transformation to identify compound axes of variation that explain the largest

possible variance in the dataset (Pearson, 1901). Eight soil variables were included in

the analysis: total nitrogen (N), total carbon (C), C:N ratio, nitrate and ammonium

(NO3
- and NH4

+), plant-available phosphorus (P), pH and EC. We conducted the PCA

using PC-ORD (MjM Software Design, 2016).

We next used linear mixed models to test for the interactive effects of our experimental

treatments on each of the eight soil variables. Our fixed effects were: Treatment—two

levels (Treatment and Control), tests for the effect of digging with respect to a paired

control (non-pit); Pit—two levels (Pit and Under-pit), tests for the difference between

soils collected from inside and directly below the pit; Animal—two levels (Bettong and

Rabbit), tests for the difference between pits created by bettongs or rabbits; Age—two

levels (8 months and 24 months), tests for the difference due to the age of the pits;

Vegetation type—three levels (Forest, Woodland and Grassland), tests for the difference

due to vegetation type. We were interested in the treatment effect (treatment vs

control) in each level of the interaction of age, vegetation type, animal and pit. We used

Pit number (i.e. position along the transect) as a random effect to account for spatial

autocorrelation. Our response variables were Total C (g/kg), Total N (g/kg), C:N ratio,

NH4
+ (µg/kg), NO3

- (µg/kg), P (µg/kg), EC and pH. All response variables were log

transformed to achieve normal distribution, except pH. We represented the results of

these nested treatment effects as effect sizes. These were extracted from the model

coefficients and represent the effect of a treatment vs its corresponding control within

each of the interacting effects. We used R (R Core Team, 2017) with the ‘lme4’ (Bates et al.,

2015) package for the generalised and linear mixed models, the ‘emmeans’ package
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(Lenth, 2018) for the Tukey post-hoc test and the ‘ggplot2’ package (Wickham, 2009) for

figure plotting (for code see Supplementary Material).

RESULTS
Pit dimensions
We found that after 2 years, 75% of all pits were still visible. After 8 months, 5% of bettong

pits were completely filled in, while only 1% of rabbit pits were full. After 24 months,

27% of bettong pits were completely full compared to 17% for rabbit pits. The results of

the linear mixed models are shown in Table S1, and the results of the Tukey post-hoc

tests are in Table S2. There was a significant interaction between pit age and species

(p < 0.001) for both depth/radius and volume, indicating that the difference between the

bettong and rabbit pits changed over time. At the start of the experiment (0 month),

the bettong pits were deeper and narrower than rabbit pits (higher depth/radius ratio),

but the rabbit pits had higher average volume due to their larger surface area (see Fig. 2;

Fig. S3). At 8 months, the bettong pits had become wider and shallower as their sides

collapsed, but the depth/radius ratio was still significantly higher than the rabbit pits.

At this point there was no difference in volume between bettong and rabbit pits.

Between 8 and 24 months, the bettong pits continued to infill at a slower rate, but there

was no significant change in the rabbit pit dimensions. At 24 months there was no

difference in dimensions or volume between bettong and rabbit pits.

Soil surface temperatures
There was no difference between the mean temperature in a bettong pit and the soil

surface in either summer (p = 0.25) or winter (p = 0.56) (Fig. 3; Fig. S4). However,

the pits were characterised by a significantly smaller diurnal temperature range

Figure 2 Bettong and rabbit pit dimensions over time, shown as the ratio of pit depth to radius.Values

are predicted means with standard errors based on linear mixed models. letters (a–c) indicate pairwise

significant differences based on Tukey’s post-hoc test. Full-size DOI: 10.7717/peerj.7506/fig-2
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(summer p � 0.001, winter p = 0.03). In summer, the mean maximum temperature in a

pit was approximately 12 �C cooler than on the surface (p � 0.003), the minimum

was 3 �C warmer (p� 0.001). In winter, the mean maximum temperature in a pit was 5 �C
cooler (p = 0.03), and the minimum temperature was 2 �C warmer (p = 0.02).

Effect of digging on soil chemistry
The PCA showed that our eight soil chemistry variables could be combined into three

main axes that explained 77% of the total variation among samples (Table 1). The first axis

of the PCAwas correlated with C and N (Table 1), and there was a gradient along this axis

by vegetation type, with the lowest levels of C and N found in the grassland sites and

the highest levels in forest sites (Fig. 4B). Importantly, the PCA ordination revealed that

pits were clearly separated by age along the second axis, which was positively correlated

with pH and NH4
+, and negatively with NO3

-. At 8 months, soil samples had higher

pH and NH4
+, whereas at 24 months the samples tended to have higher levels of NO3

-

(Fig. 4A). There were no obvious visual differences between the bettong and rabbit pits,

or between the pit, under-pit and control samples in terms of their positions in

ordination space.

Figure 3 Bettong pit and soil surface temperatures (˚C). Temperature data from bettong pits and soil

surface, measured every 15 min over 4 days in summer and winter 2016.

Full-size DOI: 10.7717/peerj.7506/fig-3
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We found some significant effects of foraging pits on soil chemistry, which are

summarised in Table 2 (full results for each variable shown in Figs. S5A–S5H). The effects

were dependent on vegetation type, animal, age of pit or some combination thereof, with

no consistent patterns across treatments. Most of the significant effects were detected

at 8 months, and rabbit pits had more significant effects than bettong pits. For example,

rabbit pits in the forest vegetation type had higher levels of carbon at 8 months compared

to the control (non-pit), but those in the grassland site had less (Fig. 5); whereas in

the woodland, available phosphorus levels were higher in rabbit pits but lower in rabbit

under-pits. At 8 months, rabbit pits in the grassland had higher pH, but at 24 months

pH was higher in rabbit under-pits in the woodland site. At 24 months, EC in the forest

was lower in rabbit pits but higher in the under-pit.

There were no digging effects on any soil nutrients (C, N, NH4
+, NO3

- and P) in bettong

pits. At 8 months, bettong pits had higher pH in the grassland vegetation type.

Bettong pits in the forest had higher EC at 8 months, whereas at 24 months in the

grassland EC was higher in bettong pits but lower in the under-pit. In bettong under-pits,

ammonium was higher in the forest site at 8 months. There was no significant difference

in nitrate among the treatments.

DISCUSSION
In this study we tested the hypothesis that that foraging pits of an Australian native

marsupial, the eastern bettong (Bettongia gaimardi), were distinct from control (non-pit)

sites and those of the introduced European rabbit in temperate grassy woodlands.

We demonstrated that while bettong and rabbit pits differed in their physical effects, such

as the micro-topography of the soil surface and the temperatures in the pit, they did

not have a clear effect on soil chemistry. We suggest the role of digging ecosystem

engineers in temperate zones may be limited to physical disturbance of the soil rather than

the creation of nutrient or resource hotspots described previously in arid zone ecosystems.

Table 1 Summary table of the eight soil variables measured for all soil samples (including pit,

control, under-pit, and under-pit control), and the results of Principal Components Analysis

(PCA) identifying the variation accounted for by the first three axes and their correlated soil

variables.

Soil variables Min. Max. Mean Std. dev. Correlation with PCA axis

Axis 1 Axis 2 Axis 3

Total C g/kg 12.81 413.4 67.41 57.63 0.53 -0.25 -0.16
Total N g/kg 0.6 13.23 3.44 2.25 0.52 -0.20 -0.19
C:N 4.16 37.56 18.46 3.74 0.32 -0.36 -0.15
NO3

- µg/kg 0.005 90.15 9.16 15.19 0.005 -0.45 0.47

NH4
+ µg/kg 0.02 221.95 29.73 41.63 0.37 0.41 0.006

P µg/kg 0.02 19.49 2.49 3.49 0.09 -0.04 0.81

pH 4.16 6.38 5.17 0.53 0.15 0.56 0.11

EC 4.16 225.6 53.71 40.91 0.43 0.29 0.22

% Variance explained 34.7% 26.7% 15.2%
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Figure 4 Principle Component Analysis (PCA) of all soil samples. Principal Component Analysis (PCA) of

all soil samples (including pit, control, under-pit, and under-pit control), coded by (A) the age of the pit when

the samples were taken and (B) vegetation type. The biplot lines indicate direction and strength of correlation

with the eight response variables (Total C, Total N, C:N ratio, NH4
+, NO3

-, P, EC and pH).

Full-size DOI: 10.7717/peerj.7506/fig-4
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Our work has meaningful implications for understanding the role of ecosystem engineers

in temperate ecosystems.

Question 1—How do the physical dimensions of artificial bettong and
rabbit pits change over time?
We found that more than 75% of all pits were still visible after 2 years. This was despite

significant rainfall and flooding at around 20 months, which we expected would cause

rapid infill. Both pit types filled in more quickly in the first 8 months (Fig. 2) but once

they had reached a depth of around one–two cm the rate of infill levelled off, suggesting

that they may persist for some time as shallow depressions. Other similar studies have

reported decay rates ranging from 4 months up to 3 years depending on vegetation and

soil type (Johnson, 1994; Eldridge & Kwok, 2008; Newell, 2008); however, much longer

periods have been recorded (see Gutterman, 1987; Whitford & Kay, 1999). We also found

that bettong pits filled in slightly faster than rabbit pits. This may be the result of different

Figure 5 Effect size plot based on linear mixed models for Total Carbon (g/kg). See Figs. S3A–S3H for plots for the other measured soil variables

(Total N, C:N ratio, NH4
+, NO3

-, P, EC and pH). These effect sizes are the coefficients of the treatment level vs the control level in the treatment

variable. The effects of vegetation type ((A) Forest, (B) Woodland or (C) Grassland), animal (bettong or rabbit), age of pit (8 months or 24 months)

and pit vs under-pit on total carbon are all accounted for and not represented in this figure. Points falling above the dotted line indicate a positive

effect and below the line is a negative effect. Results are significant only where the confidence intervals do not cross the dotted line.

Full-size DOI: 10.7717/peerj.7506/fig-5

Table 2 Summary of results of linear mixed models (LMM), showing effects of digging on eight soil

chemistry variables.

Forest Woodland Grassland

Bettong pit 8 months: CEC
24 months: NS

8 months: NS

24 months: NS

8 months: CpH
24 months: CEC

Rabbit pit 8 months: CC CN
24 months: BEC

8 months: CP
24 months: NS

8 months: BC BN CpH
24 months: NS

Bettong under-pit 8 months: CNH4
+

24 months: NS

8 months: NS

24 months: NS

8 months: NS

24 months: BEC BC:N
Rabbit under-pit 8 months: NS

24 months: CEC
8 months: BP
24 months: NS

8 months: BC BN
24 months: CC:N

Note:
Only significant response variables are shown, indicating a significant digging effect when compared with paired
controls (non-pit). NS indicates that there were no significant effects.
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pit morphology; we observed that the steeper sides of bettong pits quickly collapsed

into the hole and appeared to collect more litter and debris, whereas we observed the

shallow bowl-shaped rabbit diggings tended to be washed out by wind and water.

Question 2—Do natural bettong pits influence soil surface
temperature?
We found that bettong digging alters physical conditions of the soil surface by moderating

the diurnal temperature range up to 25 �C compared to the soil surface. Several previous

studies have shown that animal burrows can provide thermal refugia for many species,

particularly in arid biomes (Williams, Tieleman & Shobrak, 1999; Casas-Crivillé & Valera,

2005; Read et al., 2008;Walde et al., 2009; Pike &Mitchell, 2013). However, very few studies

have measured temperatures in shallow foraging pits. Gutterman (1997) measured

temperatures in porcupine pits (~10 cm deep) over a period of two days during spring

and summer and found a very similar moderating effect, with daytime temperatures up to

18 �C higher on the soil surface. Eldridge & Mensinga (2007) found that echidna pits

(~9 cm deep) were around 2 �C cooler than the soil surface.

Question 3—What is the effect of artificial bettong and rabbit digging
on soil chemistry?
We found that digging influenced soil chemistry, but the effects were not consistent across

vegetation types, between bettong and rabbit diggings, or over time. We found the

strongest pattern in soil chemistry to be the separation of samples by their different ages

(Fig. 4A). This was not an effect of digging but occurred across all samples and was most

likely due to seasonal differences in soil moisture and below-ground processes between

the sampling times. The 8-month samples were taken in winter, when soil moisture

was high, while the 24-month samples were taken in summer and had very low soil

moisture. Moisture levels can affect soil pH, EC and particularly the relative concentration

of NH4
+ and NO3

-; at high levels of soil moisture, NO3
- concentration declines while NH4

+

increases (Zhang & Wienhold, 2002). However, the variation in soil moisture would

not affect the other variables e.g. total C or N. There also appeared to be a gradient of

increasing levels of C and N according to vegetation type (Fig. 4B) and reflects the greater

input of organic plant litter in the woodland and forest sites compared to the

grassland. The influence of pit age and vegetation type explained most of the variation in

chemistry among the samples, making any differences due to digging harder to detect.

We expected that any effects of digging on soil chemistry would change over time, with

some changes appearing soon after pit formation, while others may take months or

years to develop as the pits fill in. We found that there were more differences in soil

chemistry at 8 months after the pits were created, but most of these had disappeared by

the second sampling time at 24 months. This suggests that as the pits fill in, they become

less distinct from non-pit soil. However, as mentioned above, some of the age effects

could have been confounded with seasonal differences. Two years may also be too short a

time to observe some effects; most of the pits were not completely filled in, and rates

of litter decomposition in this system can be extremely slow due to the inherent low fertility
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of the soils and the associated leaf traits in the vegetation (Orians & Milewski, 2007;

Cornwell et al., 2008; McIntyre et al., 2010).

Our results contrast with the findings of a meta-analysis byMallen-Cooper, Nakagawa &

Eldridge (2019), which found that disturbances greater than 12 months old tended

to be more distinct from undisturbed soil than fresh pits. However, ours is the only

study we are aware of with repeated sampling over time, and in fact most studies used

pits of unknown age. Where the age is known, there is wide variation among studies.

For example Travers et al. (2012) found that after 18 months, echidna (Tachyglossus

aculeatus) pits contained more total C and N than surface soils, whereas Garkaklis,

Bradley & Wooller (2003) found a reduction in ammonium, nitrate and sulphur in

3-year-old woylie (Bettongia penicillata) diggings but no change in carbon, phosphorus or

pH. Parsons et al. (2016) examined pygmy rabbit (Brachylagus idahoensis) burrows and

found that duration of occupancy (1–12 years) had a limited effect on soil nutrients.

General discussion
Our results support, in part, the hypothesis that the importance of ecosystem engineers

differs across gradients of environmental stress (Crain & Bertness, 2006). Most studies

of digging animals in Australia have been in arid or semi-arid biomes (Coggan,

Hayward & Gibb, 2018), and a recent global review of digging animals found that soil

disturbance effects were generally stronger in more arid environments (Mallen-Cooper,

Nakagawa & Eldridge, 2019). Several studies have suggested that this is due to the creation

of resource ‘hotspots’, where pits collect litter and moisture and become concentrated

patches of these limited resources (Eldridge & Mensinga, 2007; Eldridge & Whitford, 2009;

James, Eldridge & Hill, 2009). We suggest that in our temperate woodland system,

resources like water and nutrients are not as limiting and may be more evenly distributed

across the landscape, so any difference between dug and un-dug patches is likely to be

less pronounced. In more benign or mesic environments, competition becomes more of a

limiting factor (Crain & Bertness, 2006), so the removal of existing vegetation and

creation of gaps may be more important for some species (e.g. gap-dependent forbs

(Grubb, 1977; Morgan, 1998)) than the provision of resources.

The eastern bettong pits measured at Mulligan’s Flat are also considerably smaller and

shallower than the pits of other species such as the bilby or the burrowing bettong

(Newell, 2008) or those of the same species recorded in Tasmanian dry sclerophyll forest

(Davies et al., 2019), so they may not be as effective at incorporating organic matter into the

deeper layers of soil. The reason for this difference in pit size is unclear, but could be due to

differences in soil type, depth, moisture or compaction making it harder to dig, the

availability of food at different depths, or the fact that bettongs and other digging animals

have long been absent from the site. This would be an interesting avenue for further research.

According to the framework put forward in Jones et al. (2010), the magnitude of

structural change created by an ecosystem engineer is a function of the rate of structure

formation and the rate of decay i.e. how long the structure persists without maintenance.

A previous study at the same site estimated the rate of digging by bettongs, rabbits

and other digging animals (Munro et al., 2019). However, it was limited to a short
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timeframe and did not measure decay rates. Our study therefore adds to our

understanding of the persistence of the effects of digging animals in ecosystems.

Pit longevity, morphology and microclimate may have other ecological implications.

Studies have shown that animal diggings provide sites for seed germination, particularly

in arid environments (Gutterman & Herr, 1981; James, Eldridge & Moseby, 2010; Valentine

et al., 2017). While we did not investigate impacts of digs on other biota in this study,

we did observe seedlings germinating in pits. James et al. (2011) found that pits of native

marsupials contained 80% more seedlings than rabbit pits, which they attributed to

the difference in morphology. The steeper sided bettong pits may also make it more

difficult for ants to remove seeds (Radnan & Eldridge, 2017). While bettong pits are too

small to provide habitat for most vertebrates, the temperature moderating effect may be

important for generating heterogeneity in microclimate for seedlings, microbes and

some invertebrates (Eldridge &Mensinga, 2007; James, Eldridge & Hill, 2009). We observed

that pits were often free from frost in winter and appeared to retain moisture longer after

rainfall events in summer. Further research is needed to confirm whether pits have an

impact on seed germination and other biota in temperate grassy woodland and the

mechanisms driving this effect.

It is important to note that because we used artificial pits, they may not fully replicate

the effects of a real bettong or rabbit digging. Artificial pits do not capture the wide range

of natural variation in size and shape, which may depend on soil type, time of year

and many other factors. By using artificial pits, we expected to reduce this variation to

detect differences between treatments more easily. Natural pits may also have unknown

qualities, for example it has also been suggested that bettongs and other mycophagous

species may be able to spread fungal spores via their noses or in their faeces (Claridge et al.,

1992; Martin, 2003), and this of course cannot be replicated with artificial pits.

While rabbits are considered pests in Australia, it has been suggested that they could fill

the niche created by the loss of native engineers (Read et al., 2008; James et al., 2011).

We found that the morphology of bettong and rabbit diggings had an impact on their

infill rate and longevity, with rabbit diggings taking longer to fill than bettong diggings.

This difference in dig morphology may mean that rabbit diggings are not able to fully

replicate the ecosystem engineering effects of the native bettong. Previous research by

Munro et al. (2019) found that bettongs have a much higher rate of soil turnover than

either rabbits or other common native species such as echidnas or ground-foraging birds

(e.g. white-winged chough, Corcorax melanorhamphos). Rabbits have also famously

shown the explosive population dynamics that sometimes occur with species introduced

into a new range, with devastating impacts on native species and ecosystems (Eldridge &

Simpson, 2002; Johnson, 2006). However, in areas where other native diggers have

disappeared, rabbits (or other exotic species such as pigs) may be the only digging species

remaining, and this should be considered before undertaking rabbit control programmes

where there are no native digging species present. Ideally, replacement of introduced

diggers by native diggers in an integrated restoration programme would be the preferred

solution to this.
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CONCLUSIONS
We examined the effects of foraging pits of the eastern bettong and introduced rabbits

on soil physical and chemical properties in a temperate grassy woodland ecosystem.

We found that pits of bettong and rabbit pits differed in their morphology and longevity

and that bettong pits moderated daily temperature extremes. We also found that

more than 75% of all pits were still visible after 2 years. However, digging did not

have consistent effects on soil chemistry. These results differ from those found in

arid ecosystems and suggest the effects of ecosystem engineers in temperate grassy

woodlands are restricted to physical alteration of the soil rather than the creation of

nutrient hotspots.
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