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ABSTRACT

Epidemiological studies suggest that India has the largest number of dengue virus infection cases worldwide. However, there is
minimal information about the immunological responses in these patients. CD8 T cells are important in dengue, because they
have been implicated in both protection and immunopathology. Here, we provide a detailed analysis of HLA-DR� CD38� and
HLA-DR� CD38� effector CD8 T cell subsets in dengue patients from India and Thailand. Both CD8 T cell subsets expanded
and expressed markers indicative of antigen-driven proliferation, tissue homing, and cytotoxic effector functions, with the HLA-
DR� CD38� subset being the most striking in these effector qualities. The breadth of the dengue-specific CD8 T cell response
was diverse, with NS3-specific cells being the most dominant. Interestingly, only a small fraction of these activated effector CD8
T cells produced gamma interferon (IFN-�) when stimulated with dengue virus peptide pools. Transcriptomics revealed down-
regulation of key molecules involved in T cell receptor (TCR) signaling. Consistent with this, the majority of these CD8 T cells
remained IFN-� unresponsive even after TCR-dependent polyclonal stimulation (anti-CD3 plus anti-CD28) but produced
IFN-� by TCR-independent polyclonal stimulation (phorbol 12-myristate 13-acetate [PMA] plus ionomycin). Thus, the vast ma-
jority of these proliferating, highly differentiated effector CD8 T cells probably acquire TCR refractoriness at the time the patient
is experiencing febrile illness that leads to IFN-� unresponsiveness. Our studies open novel avenues for understanding the
mechanisms that fine-tune the balance between CD8 T cell-mediated protective versus pathological effects in dengue.

IMPORTANCE

Dengue is becoming a global public health concern. Although CD8 T cells have been implicated both in protection and in the
cytokine-mediated immunopathology of dengue, how the balance is maintained between these opposing functions remains un-
known. We comprehensively characterized CD8 T cell subsets in dengue patients from India and Thailand and show that these
cells expand massively and express phenotypes indicative of overwhelming antigenic stimulus and tissue homing/cytotoxic-
effector functions but that a vast majority of them fail to produce IFN-� in vitro. Interestingly, the cells were fully capable
of producing the cytokine when stimulated in a T cell receptor (TCR)-independent manner but failed to do so in TCR-de-
pendent stimulation. These results, together with transcriptomics, revealed that the vast majority of these CD8 T cells
from dengue patients become cytokine unresponsive due to TCR signaling insufficiencies. These observations open novel
avenues for understanding the mechanisms that fine-tune the balance between CD8-mediated protective versus pathologi-
cal effects.

Dengue disease is becoming a global epidemic, with nearly 40%
of the world’s population at risk for transmission of one or

more of the four dengue virus (DENV) serotypes, and the mos-
quito vectors that transmit these viruses continue to spread to
other parts of the world. Approximately 390 million human den-
gue infections are estimated to occur annually, with 100 million
clinical disease cases, the symptoms of which range from fever to
hemorrhage and shock, often leading to death, especially among
children. India is estimated to have the highest dengue burden in
the world, but there is minimal to no information on the human
cellular immune response to dengue virus infections from India.
Currently there are no available antivirals. Several vaccines are

under research, development, or clinical trials, and a live, recom-
binant, tetravalent dengue vaccine was recently licensed and
approved for use in Mexico, Brazil, El Salvador, Paraguay, and
Philippines. Thus, there is a compelling need for a better un-
derstanding of the immunology of the human host to dengue
virus during clinical disease.

Both innate and adaptive responses are involved in dengue
virus immunity, but CD8 T cells are of particular interest because
of their role in eliminating virus-infected targets through cyto-
toxic effector function and thus are also of great interest from a
vaccination perspective.

CD8 T cells are also important in dengue, because they have
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been implicated both in protection against dengue and in causing
cytokine-mediated immune pathology (1–16). Because the den-
gue-specific memory T cells secrete cytokines upon in vitro stim-
ulation with heterologous viral antigen (3, 13), it was suspected
that the “cytokine storm” induced by activated T cells may con-
tribute to the immunopathology of dengue. These suspicions were
further strengthened by the observations that CD8 T cell expan-
sion peaks before or around the time of the peak of clinical disease
and that the frequencies of activated CD8 T cells and cytokine-
producing cells were somewhat higher in patients with severe
forms of the disease (5, 8). More recent studies, on the other hand,
highlight an HLA-linked protective role for CD8 T cells in dengue
(1, 7, 12, 14–18). Despite many of these elegant studies, significant
gaps remain in our understanding of CD8 T cell properties during
the febrile phase of dengue disease. Therefore, in this study, we
addressed the following questions. What is the overall expansion
of the different CD8 T cell subsets in dengue patients? What
changes occur in the gene expression profiles of the activated CD8
T cells from dengue patients? What are the phenotypes of these
different CD8 T cell subsets? What fraction of each of these acti-
vated CD8 T cell subsets produce gamma interferon (IFN-�) in
response to dengue virus antigens?

By using a combination of phenotypic, functional, and tran-
scriptomic approaches, our studies revealed that both HLA-
DR� CD38� and HLADR� CD38� CD8 T cell subsets ex-
panded massively in dengue patients. Both CD8 T cell subsets
expressed markers indicative of overwhelming antigenic stim-
ulus and proliferation, tissue homing, and cytotoxic-effector
functions, with the HLA-DR� CD38� subset being more ro-
bust in these effector qualities. The expression profiles of these
activated CD8 T cells were strikingly similar to those of whole
blood or peripheral blood mononuclear cells (PBMCs) ana-
lyzed from dengue patients from different geographical regions
across the continents. Surprisingly, despite this strong effector
phenotype, we found that only a minute proportion of these
massively expanding activated effector CD8 T cells were capa-
ble of producing IFN-� cytokine when stimulated in vitro.
Transcriptomics studies revealed that these cells downregu-
lated pathways involved in T cell receptor (TCR) signaling, and
functional studies confirmed that these TCR signaling insuffi-
ciencies might contribute to their inability to produce IFN-�.
These results open novel directions for a better understanding
of the mechanism by which CD8 T cell-mediated protective
versus pathological effects are fine-tuned during the time of

febrile illness and open novel therapeutic avenues for dampen-
ing inflammation, especially in infections like dengue.

MATERIALS AND METHODS
Patient cohort. Patients diagnosed with dengue disease either at All India
Institute of Medical Sciences (AIIMS), New Delhi, India, or at Siriraj
Hospital, Bangkok, Thailand, were enrolled in this study between the
years 2011 and 2015. Dengue virus infection was confirmed by a combi-
nation of methods, including serotype-specific reverse transcription
(RT)-PCR, as well as several other diagnostic tests (NS1 enzyme-linked
immunosorbent assay [ELISA] and dengue virus-specific IgG and IgM
[ELISA or dipstick] tests). The WHO 1997 classification was used to char-
acterize the patients as having dengue fever (DF), dengue hemorrhagic
fever (DHF), or dengue shock syndrome (DSS) (19). Healthy young
adults (18 to 25 years old) were used as controls. All the studies were
preapproved by institutional review boards, and informed consent was
obtained from the enrolled patients. Information about the patient cohort
is provided in Table 1.

IgM/IgG ratio evaluation. Patients who do not show any detectable
levels of serum dengue-specific IgM and IgG (seronegative) and those
who show levels of dengue-specific IgM greater than those of IgG by a
ratio �1.2 are generally considered to have primary dengue infections.
Patients who show IgG only or IgM levels lower than those of IgG by a
ratio of �1.2 are usually considered to have secondary dengue infection
(19). In order to characterize primary and secondary dengue cases in our
study based on these criteria, we performed capture ELISA for both IgM
and IgG using Panbio dengue virus IgM and IgG capture ELISA kits
(Alere; product codes 01PE10 and 01PE20).

PBMC and plasma isolation. PBMCs and plasma were isolated as
described previously (20). Briefly, blood samples were collected in Vacu-
tainer CPT tubes (Becton Dickinson [BD]). Plasma samples were isolated
from the CPT tubes and preserved at �80°C. The PBMCs were collected,
washed extensively, and suspended in phosphate-buffered saline (PBS)
containing 2% fetal calf serum (FCS) for immediate use or frozen in liquid
nitrogen in FCS with 10% dimethyl sulfoxide (DMSO) for subsequent
analysis.

Analytical flow cytometry. Cells were washed and stained for 30
min in ice-cold PBS containing 10% bovine serum albumin. All the
antibodies were purchased from Becton Dickinson except CD71 (Biolegend;
334108), granzyme B (Invitrogen; MHGB04), Ki-67 (EBioscience; 11-5699-
42), T-Bet (EBioscience; 50-5825-80), and ICOS (EBioscience; 46-9948-42).
For intracellular protein staining, cells were permeabilized with Cytofix/
Cytoperm buffer (Becton Dickinson), followed by staining for 60 min
with antibodies that were diluted in Perm/Wash buffer (catalog no.
554723; Becton Dickinson). The fixable viability dye eFluor 780 (EBio-
science; 65-0865-18) was used for excluding dead cells during analysis.
Flow cytometry data acquisition was performed either on a FAC-
SCanto II or an LSR-II (Becton Dickinson). Flow cytometry data were
analyzed using FlowJo software (TreeStar Inc.). Phenotypes and func-
tions were analyzed among gated CD8 T cells, defined as cells that
expressed both CD3 and CD8. Absolute cell numbers per milliliter
volume of blood were calculated using the BD Trucount Tubes bead
system (BD; 340334) according to the manufacturer’s protocol.

Ex vivo stimulation of PBMCs. PBMCs were cultured for 6 h with or
without stimulation. The stimulations included a total of 511 15-mer
peptides that overlapped by 10-mers that spanned the entire proteome of
dengue virus serotype 2 (DENV-2) (kindly provided by BEI Resources).
These peptides were reconstituted in DMSO and then combined into
pools that represented each of the 10 dengue virus proteins (capsid, PrM,
envelope, NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). Where indi-
cated, more than one megapool was generated because of the large num-
ber of amino acids. The final concentrations of individual peptides at the
time of stimulation were adjusted to 2 �g/ml. Cells were stimulated with
peptides, along with costimulation using purified anti-human CD28 and
CD49D (BD; 340957 and 340976). In situations where cells were poly-
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clonally stimulated, pretitrated beads coated with anti-CD3 plus anti-
CD28 antibodies (Dynabeads Human T-activator CD3/28 for T cell ex-
pansion and activation; Invitrogen; 11131D) or a mixture of phorbol 12-
myristate 13-acetate (PMA) and ionomycin at a concentration of 1� (cell
stimulation cocktail; EBioscience; 00-4970-03) was used. The cells were
cultured for 2 h at 37°C, and then brefeldin A (GolgiPlug; BD; 555029) was
added, followed by a further 4 h of culture. The cells were then harvested;
surface stained with cocktail containing fixable viability dye (EBioscience;
65-0865-18), CD3 (Biolegend; 300424), CD8 (Biolegend; 301048), CD38
(BD; 562288), and HLA-DR (BD; 560896); and then fixed and permeab-
ilized using a Cytofix/Cytoperm kit (BD; 554722). The cells were then
stained with IFN-� (BD; 554700) and CD69 (Biolegend; 310920) and
analyzed on a BD Fortessa FACS Scan or BD Canto II.

Fluorescence-activated cell sorter (FACS) sorting of naive and acti-
vated CD8 T cells. PBMCs isolated from peripheral whole blood of den-
gue patients and healthy controls were stained with the relevant antibod-
ies at 4°C for 30 min, washed thoroughly, suspended in PBS containing
2% FCS, and immediately sorted on a BD FACS Aria III (Becton and
Dickenson) with high forward-scatter gates to account for the larger blast-
ing effector lymphocytes. CD3� CD8� CD45RA� CCR7� naive CD8 T
cells and CD3� CD8� HLA-DR� CD38� activated CD8 T cells were
isolated to a purity of 99%.

Gene expression analysis of CD45RA� CCR7� naive and HLA-DR�

CD38� effector CD8 T cells. The sorted cells were washed thoroughly,
and the cell pellet was immediately suspended in TRIzol (Invitrogen) and
stored at �80°C until RNA extraction. All the samples were processed
simultaneously for RNA isolation by standard TRIzol RNA isolation pro-
cedures using glycogen as a carrier. Total RNA was evaluated by spectro-
photometry to determine the quantity, protein concentration, and or-
ganic solvent contamination, and an Agilent 2100 bioanalyzer was used to
determine RNA degradation. Two rounds of in vitro transcription were
performed to amplify RNA, and then cRNA was labeled and hybridized on
a human genome U133 plus 2.0 array (Affymetrix) by GSR Microarrays,
Vanderbilt University. The chips were scanned on a seventh-generation

GeneChip scanner 3000 (Affymetrix), and Affymetrix GCOS software was
used to generate the raw intensity data file.

Microarray data analysis. The gene expression data in .CEL file for-
mat were converted and annotated using R software. Expression values
lower than 20 were converted to a value of 20. For genes that were detected
by multiple probes, only the one with the highest average expression value
was kept for further analysis. A total of 19,738 genes were analyzed. For
each gene, an average of the expression values in the naive CD8 T cells
(CCR7� CD45RA�) was used as the baseline for expression. To determine
the statistical significance of the expression of each gene between the dengue
and naive groups, a 2-tailed Student t test was used, and the P value was
calculated with Microsoft Excel. Hierarchical clustering (HCL) and principal-
component analysis (PCA) were performed using MultiExperiment Viewer
(MeV) version 10.2. For HCL analysis, Pearson correlation for distance met-
ric calculation and the average linkage method were used. For PCA, the me-
dian value was used as the centering mode. The Broad Institute’s Molecular
Signatures Database (MSigDB) version 5.1 (http://software.broadinstitute
.org/gsea/msigdb) was used to determine the biological pathways in which the
up- and downregulated genes were involved.

GSEA. Gene set enrichment analysis (GSEA) was performed using
GSEA v2.2.2 (Java version 1.0), downloaded as a desktop tool from the
Broad Institute (21). HLA-DR� CD38� CD8 T cells were compared to
three data sets: GSE51808, which compares whole blood from patients with
acute dengue and healthy subjects from Thailand (M. Kwissa et al. [22]),
GSE43777, which compares PBMCs from patients with acute dengue and
convalescent dengue patients from Venezuela (P. Sun et al. [23]), and GSE1
8090, which compares PBMCs from patients with acute dengue and nonden-
gue patients from Brazil (E. J. Nascimento et al. [24]). Normalized enrich-
ment score analysis was performed as previously described (25).

Statistical analysis. Unpaired two-tailed t tests with Welch’s correc-
tions were used to determine statistical significance.

Accession number(s). The original .CEL files were uploaded to
the NCBI Gene Expression Omnibus (GEO) with accession number
GSE84331.

TABLE 1 Summary of dengue patients analyzed in this studya

Parameter

Value

AIIMS, New Delhi, India Siriraj, Bangkok, Thailand

Total no. of patients 108 45
No. of males/females 56/52 34/11
Age (yr) [range (avg)] 1.2–14 (8.9) 6–18 (12)
No. of days post-onset of clinical symptoms [range (avg)] 2–10 (4.6) 3–11 (6.2)
No. of patients DENV NS1 positive 92 23
No. of patients DENV IgM positive 16 22
No. of patients DENV PCR positive 82 36

No. of patients serotyped 80 17
DENV-1 3 1
DENV-2 76 4
DENV-3 1 6
DENV-4 0 6

No. of patients with classified disease grade 108 45
DF 44 30
DHF 21 15
DSS 43 0

Serological status and disease grade of dengue patients (no.)
Primary dengue 48 (25 DF; 10 DHF; 13 DSS) 15 (13 DF; 2 DHF)
Secondary dengue 60 (19 DF; 11 DHF; 30 DSS) 18 (11 DF; 7 DHF)
Not assigned 0 3 (0 DF; 3 DHF)
Not done 0 9 (6 DF; 3 DHF)

a One hundred eight dengue patients from New Delhi and 45 patients from Bangkok were analyzed in the study.
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RESULTS
Activation and expansion of CD8 T cell subsets during dengue
infection. HLA-DR and CD38 coexpression is considered a hall-
mark feature of effector CD8 T cells in human viral infections
(26). To characterize the expansion of these cells during dengue
disease, we analyzed CD8 T cells derived from PBMCs from 153
confirmed dengue fever illness cases, 108 of which were from New
Delhi, India, and 45 of which were from Bangkok, Thailand. The

patient cohort is described in Table 1. Figure 1A shows an example
of flow cytometric analysis of CD8 T cell subsets described as
HLA-DR� CD38�, HLA-DR� CD38�, and HLA-DR� CD38�.
Ki-67 is a well-accepted marker for identification of cells that are
actively proliferating or have recently proliferated. Analysis of
Ki-67 in these three subsets of CD8 T cells showed that in dengue
patients, approximately 60% of the HLA-DR� CD38� double-
positive CD8 T cell population, and in some patients as high as
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80%, were positive for the proliferation marker Ki-67 (Fig. 1B).
The HLA-DR� CD38� single-positive CD8 T cell population also
expressed Ki-67, albeit at lower frequencies, and the HLA-DR�

CD38� double-negative population expressed very low levels of
Ki-67. This suggests that both the HLA-DR� CD38� double-pos-
itive and the HLA-DR� CD38� single-positive CD8 T cells are
highly proliferative in vivo, but the proliferative capacity was more
dramatic in the HLA-DR� CD38� double-positive subset.

The frequency of the HLA-DR� CD38� CD8 T cells was gen-
erally low (average, 1.5%) in healthy subjects, but these cells ex-
panded dramatically in the dengue patients (Fig. 1C, left). Their
average frequency was about 15% of the total CD8 T cells, and in
some patients, their frequencies reached as high as 80%. These
HLA-DR� CD38� CD8 T cells average about 0.2 � 106 cells per
ml blood and reached as high as 1 � 106 per ml blood in some of
the dengue patients (Fig. 1C, right). The frequencies and numbers
of these activated CD8 T cells declined in the convalescent phase.
The frequencies (Fig. 1D, left) and numbers (Fig. 1D, right) of the

HLA-DR� CD38� cells varied dramatically even among the
healthy subjects (range, 1% to 80% of the CD8 T cells), although
the fraction of healthy subjects with a high frequency of HLA-DR�

CD38� CD8 T cells tended to be lower. Interestingly, our results
showed that these HLA-DR� CD38� single-positive CD8 T cells
also substantially increased in the dengue patients. The fact that
the HLA-DR� CD38� cell subset also expanded in numbers, in
addition to showing enrichment for Ki-67, suggests that the HLA-
DR� CD38� cells are also likely to be antigen-specific proliferat-
ing effectors. The Ki-67-negative cells in each of the CD8 T cell
subsets could have been activated and proliferated in the past and
now have ceased proliferation (27). We next examined whether
the expansion of the two CD8 T cell subsets was also seen in den-
gue patients from different geographical regions. Our analysis of
dengue patients from Thailand showed that the average frequen-
cies and numbers of the two activated CD8 T cell subsets (HLA-
DR� CD38� and HLA-DR� CD38�) were also similar in dengue
patients from Thailand (Fig. 2A and B). Moreover, our results
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from India and Thailand are consistent with previous studies re-
porting expansion of HLA-DR� CD38� and HLA-DR� CD38�

cells in dengue patients from Brazil (4) and Vietnam (6). The
previous studies also suggested that the numbers of activated CD8

T cells were higher in dengue patients with severe disease. Al-
though our study was not designed to extensively study disease
severity, we also found that the numbers of both activated CD8 T
cell subsets were moderately higher in patients with DHF/DSS
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than in patients with mild DF (Fig. 3A and B). Viral loads were not
significantly different between the two groups, as shown in our
previous study (28). From these data, we conclude that both HLA-
DR� CD38� and HLA-DR� CD38� CD8 T cell subsets proliferate

and expand massively in dengue patients. The expansion of these
different CD8 T cell subsets is seen in dengue patients from differ-
ent geographical regions of the world despite the expected popu-
lation HLA differences.
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Phenotypic analysis of CD8 T cell subsets from dengue pa-
tients. Despite the many elegant studies that have investigated
CD8 T cell association with dengue disease or HLA-linked protec-
tion, a detailed understanding the phenotypes of these activated
CD8 T cells in the febrile illness stage and how the phenotypes
differ between CD8 T cell subsets is lacking. Hence, we performed
a comprehensive immune phenotyping of the HLA-DR� CD38�

double-positive, HLA-DR� CD38� single-positive, and HLA-
DR� CD38� double-negative CD8 T cell subsets from the dengue
patients. Figure 4A shows flow cytometric analysis of the pheno-
types of these different CD8 T cell subsets, and the spread of the
phenotypes in individual patients is shown in Fig. 4B. Both HLA-
DR� CD38� double-positive and HLA-DR� CD38� single-posi-
tive CD8 T cell populations had high forward scatter, high side
scatter, and upregulated CD71, which is a transferrin receptor
involved in iron uptake among the proliferating cells. However,
this activation was more pronounced in the HLA-DR� CD38�

double-positive CD8 T cells. Both HLA-DR� CD38� and HLA-
DR� CD38� CD8 T cells could egress the lymphoid organs
(downregulated CCR7), were enriched with terminally differenti-
ated effector cells (downregulated interleukin 7 receptor [IL-7R]
alpha chain), increased cell-cell interactions (upregulated leuko-
cyte function-associated antigen 1 [LFA-1]), and were pro-
grammed by a Th1/Tc1 differentiation pathway (upregulated T-
bet). However, neither of the subsets represented early-stage
effectors (downregulated Th17 lineage marker CCR6). We also
found that the two subsets downregulated the anti-apoptotic mol-
ecule Bcl-2 and to some extent the costimulatory molecules CD28
and CD27.

The HLA-DR� CD38� CD8 T cell subset was more pro-
nounced in the downregulation of CD45RA and the upregulation
of CD45RO, suggesting that the subset was more activated. The
subset was able to traffic to the skin and mucosa (upregulated
cutaneous lymphocyte antigen [CLA]) and to adhere, survive, and
be maintained in inflamed tissues (upregulated CX3CR1); repre-
sented the most terminally differentiated Th1 lineage effector
CD8 T cells (upregulated CXCR3); and was favored to respond to
antigenic stimulus or had recently been exposed to antigen in vivo
(upregulated costimulatory molecule ICOS). Although the HLA-
DR� CD38� subset had low expression of CLA, CXCR3, and
CX3CR1, the subset upregulated RANTES/MIB1-b receptor
(CCR5) expression, similar to the HLA-DR� CD38� subset. This
suggests that both subsets have the ability to home to the tissues
but the HLA-DR� CD38� subset has the full spectrum of homing
receptors. The HLA-DR� CD38� CD8 T cells also expressed the
markers, suggesting that they might have experienced massive
antigenic stimulus in vivo (upregulated two strong negative
costimulatory molecules, LAG-3 and PD-1). Moreover, almost
all of these HLA-DR� CD38� CD8 T cells strongly upregulated
perforin, granzyme A, and granzyme B, whereas only a fraction
of the HLA-DR� CD38� subset expressed granzyme A and
granzyme B, suggesting that both subsets are capable of cyto-
toxic effector functions but the HLA-DR� CD38� subset is
much more efficient.

We conclude that both HLA-DR� CD38� and HLA-DR�

CD38� activated CD8 T cells in dengue patients are massively
expanding, express markers of tissue homing, and are equipped
with cytotoxic effector functions. However, the HLA-DR�

CD38� CD8 T cells demonstrate more pronounced full-spectrum
effector phenotypes.

IFN-� production in CD8 T cell subsets during dengue virus
infection. Previous studies established that the CD8 T cells from
dengue fever patients produce IFN-� when stimulated with den-
gue virus peptides in vitro. Considering our results described
above that show massive expansion, activation, tissue homing,
and cytotoxic effector phenotypes of the two activated CD8 T cell
subsets in dengue patients, it was of interest to examine what frac-
tion of these cells produce IFN-�, what is the breadth of the re-
sponse, and which of the two activated CD8 T cell subsets contains
the IFN-�-producing cells. Figure 5A shows a flow cytometry ex-
ample of the IFN-� production of the gated CD8 T cell population
after dengue virus peptide stimulation, and Fig. 5B shows the fre-
quency of IFN-�-producing CD8 T cells in individual patients
after stimulation with each of the dengue virus protein peptide
pools. Consistent with other studies (6, 29), the breadth of the
response was diverse between individual patients, but for the most
part, NS3-specific responses were most dominant (Fig. 5B, pie
chart). Interestingly, the cumulative frequency of the total CD8 T
cells producing IFN-� in response to a combination of all the
peptide pools derived from each of the 10 dengue virus proteins
was rather low (range, 0.28% to 2.13% of the CD8 T cells). This
low frequency of IFN-�-producing cells was rather surprising
considering the massive expansion and activation of the CD8 T
cell subsets that was observed in the dengue patients. We found
that the small numbers of IFN-�-producing CD8 T cells preferen-
tially segregate into the HLA-DR� CD38� double-positive CD8 T
cell subset (Fig. 5C and D). From these results, we conclude that,
although the IFN-� cytokine-producing cells were present in both
activated cell populations, they were preferentially enriched in the
HLA-DR� CD38� double-positive population. However, the to-
tal IFN-�-producing cells accounted for only a minute fraction of
these massively expanding cytotoxic effector CD8 T cells.

Transcriptomic analysis of CD8 T cells during dengue virus
infection. Although at least three studies have examined gene ex-
pression profiles of blood or PBMCs in dengue patients (22–24),
so far, no study has reported gene expression profiles of sorted
CD8 T cells from dengue patients. To gain further insight into the
characteristics of these activated CD8 T cells, we performed mi-
croarray analysis. HLA-DR� CD38� CD8 T cells were sorted from
the PBMCs of seven dengue patients from Siriraj Hospital in
Bangkok, Thailand. These patients were diagnosed with either
mild dengue (DF) or severe dengue (DHF). By comparison with
the sorted naive (CCR7� CD45RA�) CD8 T cells, we found that
these activated CD8 T cells from dengue patients showed global
transcriptional changes across multiple pathways (Fig. 6A and B),
the details of which are provided in theTable 2. PCA showed that
there was no striking difference between the gene expression pro-
files of the activated CD8 T cells from DF versus those from DHF
patients (Fig. 6C). Figure 6D shows selected genes of interest. The
strong upregulation of genes involved in cell proliferation
(MKI67, TOP2A, and CHEK1 genes) strengthened our pheno-
typic and quantitative analyses presented above and reinforces the
idea that these cells were not simply a result of bystander activa-
tion but had been actively undergoing massive levels of antigen-
driven proliferation in vivo. Consistent with the strong tissue-
homing (CXCR6, CCR1, CCR5, CX3CR1, and XCL1) and
cytotoxic-effector phenotypes described above, the expression of
several genes involved in tissue homing were strongly altered, and
the genes involved in cytotoxic-effector functions (GZMB, GNLY,
and PRF1 genes) were massively upregulated. In contrast, the
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IFN-� gene transcripts were moderately upregulated. Interest-
ingly, these activated CD8 T cells from dengue patients showed
signs of overwhelming antigenic stimulus in vivo that is often ex-
pected to lead to cytokine functional exhaustion via negative co-
stimulation and TCR signaling attenuation. This is evidenced by
upregulation of transcripts corresponding to a wide range of
negative costimulatory molecules (PRDM1, CTLA4, HAVCR2,
LAG3, TIGIT, and CD160). Additionally, we observed that
these cells heavily downregulated the expression of ACTN1, a
key component involved in actin polymerization and forma-
tion of the supramolecular activation cluster of the immuno-
logical synapse. These activated CD8 T cells also downregu-
lated the expression of several other genes involved in T cell
receptor signaling amplification (AKT3, SOS1, ITK, PLCG1,
NCK2, and RASGRP1 genes).

We also compared the gene expression profile of the sorted

CD8 T cells from our study with previously published gene
expression data sets of total PBMCs or whole blood from den-
gue patients from Thailand, Venezuela, and Brazil (22–24).
The GSEA showed that the 500 most upregulated genes identi-
fied from our sorted HLA-DR� CD38� CD8 cells positively
correlated with upregulated genes during dengue virus infec-
tion compared to healthy controls or non-dengue infection
from other studies. The normalized enrichment scores (NES)
of this comparison ranged from 1.5 to 1.7, and about 60% of
the genes in the leading-edge subset overlapped (Fig. 7A to C).
Similar to the upregulated genes, many of the 500 most down-
regulated genes identified from our sorted CD8 T cells were
also downregulated compared with other data sets. NES be-
tween �1.2 and �1.8 with 32 to 62% overlapping in the leading
edge between the subsets were identified. Moreover, we found
similar trends of gene expression in many of the genes that
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belong to the CD8 T cell signature in the other three studies of
PBMCs or whole blood from dengue patients (Fig. 7D to E).
These results together show that this massive expansion and
activation of CD8 T cells in these dengue patients forms an
overwhelming proportion of the total dengue immune re-
sponse and is strikingly similar in dengue patients from differ-
ent geographical regions. Moreover, our gene expression re-
sults suggest these highly activated, massively proliferating,
antigen-specific, cytotoxic CD8 T cells in the dengue patients
may have received overwhelming antigen stimulus in vivo and,
as a result, altered several molecular pathways that may con-
tribute to suboptimal stimulation through TCR signaling in-
sufficiencies.

IFN-� dysfunction of CD8 T cell subsets during acute dengue
disease. To examine whether the lack of IFN-� production from a

vast majority of these activated CD8 T cell subsets is indeed related
to signaling insufficiencies suggested by our transcriptomics anal-
ysis or related to intrinsic defects in IFN-� gene transcription and
translation, we compared the IFN-� production levels in the CD8
T cell subsets by stimulating them with TCR-dependent (anti-
CD3� CD28) and independent (PMA plus ionomycin) polyclonal
stimuli.

By polyclonal TCR-dependent stimulus (Fig. 8A, middle row,
4th plot), the vast majority of HLA-DR� CD38� double-negative
cells (which are expected to be enriched in mostly naive cells)
robustly upregulated CD69, and as expected, very few of them
made IFN-�. In contrast, the activated CD8 T cell subsets from the
same patient were inefficient in both CD69 upregulation and
IFN-� production (Fig. 8A, middle row, 2nd and 3rd plots). Sim-
ilar trends were observed for multiple patients (Fig. 8B). This re-
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sult suggested that the vast majority of these massively expanding
HLA-DR� CD38� double-positive and HLA-DR� CD38� single-
positive subsets neither upregulated CD69 nor made IFN-� when
stimulated with a polyclonal TCR-dependent stimulus in vitro.
However, when stimulated with a strong TCR-independent stim-
ulus (PMA plus ionomycin), almost all the members of the acti-
vated HLA-DR� CD38� subset upregulated CD69 and made
IFN-�.

From these results, we conclude that these massively ex-
panding, highly activated, cytotoxic effector CD8 T cells in
dengue fever patients are indeed capable of making IFN-�
upon stimulation in vitro with a strong TCR-independent

stimulus but do not make it with TCR-dependent stimuli,
probably due to TCR signaling insufficiencies, as suggested by
our transcriptomic analysis.

DISCUSSION

Our study provides a comprehensive description of the two major
subsets (HLA-DR� CD38� and HLA-DR� CD38�) of CD8 T
cells during dengue fever disease. We show that both subsets ex-
pand massively, but the double-positive HLA-DR� CD38� subset
is much more robust in overall expansion and is equipped with a
full spectrum of characteristics indicative of strong antigen-driven
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proliferation, tissue surveillance, and cytotoxic-effector func-
tions.

These activated CD8 T cell subsets comprise a huge fraction of
PBMCs during the acute febrile phase of dengue disease. From our
results, we infer that on average, a dengue-infected child 10 years

of age is expected to harbor about 106 to 109 of these highly acti-
vated CD8 T cells in the blood circulation alone, without account-
ing for the cells that are likely to have trafficked to inflammatory
tissues. This represents a huge expansion of CD8 T cells during the
febrile phase of dengue disease. The expansion of the CD8 T cells
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that we have seen in these dengue patients appears to be strikingly
higher than the expansion reported in other human flavivirus in-
fections, such as yellow fever and tick-borne encephalitis, or re-
spiratory infections, such as influenza or respiratory syncytial vi-
rus infection (30–33). Moreover, the level of CD8 T cell expansion
that we have seen in these dengue patients is somewhat similar to
the expansion in human infections with other hemorrhagic-fever
viruses, such Ebola virus and Puumala virus (34, 35). Although
our study could not address whether this expansion would differ
with the infecting dengue serotype because a majority of the pa-
tients recruited for the study in Delhi and successfully serotyped
were DENV-2, the dominance of DENV-3 or DENV-4 in our
Thailand patients suggest that the expansion is likely to be robust
in patients infected with different dengue virus serotypes.

Considering that these dengue fever patients still harbor viral
antigen at the time of clinical presentation, these massively ex-
panding CD8 T cells are expected to cause a cytokine storm if they
retain their ability to make IFN-� in vivo. Interestingly, we found
that very few of these massively expanding CD8 T cells derived
from the dengue patients with febrile illness were capable of mak-
ing IFN-� in vitro, even when stimulated with dengue peptide
pools spanning the entire proteome.

This in vitro IFN-� unresponsiveness of the vast majority of
these highly activated effector CD8 T cells is somewhat reminis-
cent of the T cell exhaustion seen under conditions of prolonged
antigenic stimulus in chronic viral infections and closely resem-
bles the “stunned” phenotype reported in the febrile phase of
other acute infections, such as HIV infection and viral hepatitis
(36, 37). In chronic infections, the exhausted CD8 T cells first lose
IL-2 production, followed by tumor necrosis factor alpha
(TNF-�) and finally IFN-� production (38, 39). Our study was
not designed to comprehensively test an extensive array of these
other cytokines. However, it is worth pointing out that (i) in a
limited number of experiments, we failed to detect any IL-2 pro-
duction from these activated CD8 T cells after dengue virus pep-
tide stimulation in vitro and (ii) from the other studies, we infer
that the frequency of TNF-�-producing cells is also likely to be
very low in dengue patients, on the order of 0.1 to 3% of the total
CD8 T cells, which is not substantially different from the low
frequency of IFN-�-producing cells that we have seen in our den-
gue patient cohort (5).

An understanding of the mechanism by which these cells lose
their capacity to produce cytokine is important and will poten-
tially open novel therapeutic avenues for dampening inflamma-
tion, especially in infections like dengue. The IFN-� cytokine re-
pression in exhausted CD8 T cells in chronic infections is achieved
by gene silencing at the transcriptional/translational levels
through epigenetic gene methylation programs that are inherited
between successive cell divisions. These programs are further reg-
ulated by the PD-1-inhibitory pathway and various regulatory
proteins that induce and maintain cytokine exhaustion (40, 41).
Because our phenotypic and transcriptomic analyses showed that
these activated CD8 T cell subsets from dengue patients upregu-
late several negative costimulatory molecules, such as PD-1, Lag3,
KLRG1, CTLA-4, and CD160, one would suspect that these cells
may be subjected to IFN-� repression in a manner similar to that
of the exhausted CD8 T cells in chronic infections. Interestingly,
our transcriptomic analysis indicated that these cells also
downregulated several other key pathways involved in TCR
signaling, amplification, and synapse. Prominent among these

are AKT3, which is critical for costimulation via CD28/ICOS;
SOS, RASGRP1, NCK2 and ITK, which are involved in early TCR
signaling amplification through the adapter protein SLP-76; and
ACTN1, which is a key molecule involved in the formation of the
supramolecular activation cluster of the immunological synapse
and sustained TCR signaling via actin polymerization. Based on
these results, we wondered whether the lack of IFN-� production
in these cells was truly due to IFN-� gene silencing, as observed in
chronic infections, or to TCR signaling insufficiencies, as revealed
by our transcriptomic analysis. To test these possibilities, we com-
pared IFN-� production after polyclonal TCR-independent
(PMA plus ionomycin) or TCR-dependent (anti-CD3/28) stimu-
lus. Our observation that these activated cells failed to upregulate
CD69 or produce IFN-� when stimulated by a polyclonal TCR-
dependent stimulus but robustly upregulated CD69 and also pro-
duced IFN-� when stimulated by a strong TCR-independent
stimulus suggested that the cells are indeed capable of making
IFN-� but do not make it due the TCR signaling insufficiencies.
Thus, the mechanism of IFN-� unresponsiveness by these CD8 T
cells in dengue fever illness is likely to be different from the mech-
anism that contributes to IFN-� exhaustion in chronic infections
such as HIV, where in T cells IFN-� is reduced due to IFN-� gene
repression in CD8 T cells (38).

However, from these data, we cannot conclude whether a ma-
jority of the CD8 T cells were incapable of producing IFN-� in
vivo. Indeed, most dengue cases from studies performed in other
parts of the world (42) and our Indian cohort had some IFN-� in
the plasma (28). This suggests that, perhaps, these cells and/or
other immune cells were making IFN-� in vivo prior to the arrival
of the patient at the clinic, but a vast majority of them may have
lost the in vitro IFN-� production capacity by the time the patient
experienced clinical symptoms and presented to the clinic. This
hypothesis is further strengthened by our transcriptomic analysis
showing that the activated CD8 T cells derived from these dengue
patients upregulated IFN-�-induced genes (Fig. 6B). Therefore,
we predict that these activated CD8 T cells would have had the
ability to produce IFN-� in vivo but a vast majority of them may
have acquired signaling insufficiencies in parallel with clonal ex-
pansion by the time the patient developed clinical febrile illness.

Taken together, our studies for the first time provide a com-
prehensive description of the phenotypes, functions, and molec-
ular profiles of two major subsets of CD8 T cells that expand
massively during the febrile phase of dengue disease. Both subsets
acquire strong cytotoxic effector phenotypes and tissue-homing
characteristics, with HLA-DR� CD38� being more robust in
these qualities. Despite this strong cytotoxic-effector phenotype,
the vast majority of these cells do not produce IFN-� when stim-
ulated with dengue peptides in vitro. Our studies reveal that this
IFN-� unresponsiveness is not due to intrinsic defects in IFN-�
gene transcription/translation but is related to TCR signaling
insufficiencies. The IFN-� unresponsiveness acquired during
the massive antigen-driven clonal expansion is likely to ensure
that these cells do not cause excessive inflammation at the time
that their numbers are high during the febrile phase of dengue
disease. These results have implications for understanding the
mechanisms determining the balance between CD8 T cell-me-
diated protection and pathology during the febrile phase of
dengue disease.
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