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Dictyostelium discoideum amoebae align in a head to tail manner during the process of
streaming during fruiting body formation. The chemoattractant cAMP is the
chemoattractant regulating cell migration during this process and is released from the
rear of cells. The process by which this cAMP release occurs has eluded investigators for
many decades, but new findings suggest that this release can occur through expulsion
during contractile vacuole (CV) ejection. The CV is an organelle that performs several
functions inside the cell including the regulation of osmolarity, and discharges its content
via exocytosis. The CV localizes to the rear of the cell and appears to be part of the polarity
network, with the localization under the influence of the plasma membrane (PM) lipids,
including the phosphoinositides (PIs), among those is PI(4,5)P2, the most abundant PI on
the PM. Research onD. discoideum and neutrophils have shown that PI(4,5)P2 is enriched
at the rear of migrating cells. In several systems, it has been shown that the essential
regulator of exocytosis is through the exocyst complex, mediated in part by PI(4,5)P2-
binding. This review features the role of the CV complex in D. discoideum signaling with a
focus on the role of PI(4,5)P2 in regulating CV exocytosis and localization. Many of the
regulators of these processes are conserved during evolution, so the mechanisms
controlling exocytosis and membrane trafficking in D. discoideum and mammalian cells
will be discussed, highlighting their important functions in membrane trafficking and
signaling in health and disease.
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INTRODUCTION

Chemotaxis is a form of migration where cells migrate directionally, typically towards a gradient of
chemicals known as chemoattractants. During this process, cells often have asymmetric responses
and develop a polarized morphology, where they have a distinct front and rear (Devreotes and
Janetopoulos, 2003). In the model organism Dictyostelium discoideum, a soil-living amoeba, cells
move towards one another in a head-to-tail fashion and align in streams (Kriebel et al., 2008). The
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cyclic adenosine monophosphate (cAMP) is the chemoattractant
that leads to aggregation of the amoebas into multicellular
structures during starvation conditions (Konijn et al., 1969;
Goldbeter, 1975; Goldbeter, 2006). Although many researchers
have studied intracellular signaling in D. discoideum, the
mechanism by which cAMP release occurs, setting up a
gradient at the rear of individual cells, has remained elusive.
How does signal relay produce an effective, localized chemotactic
response from the rear of a cell? The enzyme that synthesizes
cAMP, adenylyl cyclase (ACA), has been reported to be in a
gradient along the periphery of the cell, with more accumulated in
the rear (Kriebel et al., 2008). ACA also appears to be enriched in
intracellular vesicles within the cell and multivesicular bodies left
behind migrating cells. In this same study, Kriebel et al. suggested
that cAMP is released from the rear of migrating cells via these
extracellular vesicles (Kriebel et al., 2018).

The main regulator of ACA, known as the Cytosolic Regulator of
Adenylyl Cyclase (CRAC), contains a pleckstrin homology (PH)
domain which regulates the translocation to the leading edge of the
cell during each transient activation of ACA (Insall et al 1994; Lilly
andDevreotes 1994; Parent et al., 1998; Ruchira et al., 2004). This PH
domain of CRAC binds to PI(3,4)P2 and PI(3,4,5)P3, with these two
PIs being synthesized at the very front of the cell. This PH domain is
required for ACA function, suggesting that the membrane
localization of CRAC brings the regulator in close proximity to
ACA for activation (Ruchira et al., 2004). It is unclear how or if
CRAC at the leading edge of the cell activates the ACA at the trailing
edge. If it somehow leads to ACA activity at the rear, the cAMP will
still need to be somehow released from the cell.

Interestingly, another potential regulator of cAMP signaling from
the rear of the cell has emerged. Fadil et al. (2022) discovered that the
CV is redistributed to the rear of migrating cells and regulates cell
streaming and cAMP secretion. In this mechanism, CRAC
recruitment and ACA activity at the leading edge can synthesize
cAMP, which then would diffuse through the cytosol and be
pumped into the CV network. The mechanism controlling the
CV redistribution is still under investigation, however evidence is
emerging that higher levels of PI(4,5)P2 and potentially other
charged lipids may play a role in the CV localization. The CV
appears to be part of the overall polarity network, localizing to areas
of actomyosin contraction.

In addition to being targeted to particular regions of the
periphery of the cell, once there, the CV regulates the
discharge of water by a kiss-and-run exocytic event (Essid
et al., 2012). Exocytosis is an essential membrane trafficking
process that can discharge soluble and insoluble intracellular
protein contents including neurotransmitters, hormones, and
cytokines, as well as many other small molecules and
metabolites into the extracellular space (Voets, 2000; Rettig
and Neher, 2002; Sudhof, 2013; Imig et al., 2014). As
described here, PI(4,5)P2, plays a role in many of the PM-
related cellular activities, including regulated vesicle exocytosis
(Wenk et al., 2001). PI(4,5)P2 has been found to be critical for
exocytosis in several mammalian cell types and is involved in
neuronal function and disrupted in several human diseases
(Stokes et al., 1978; Cremona et al., 1999; Nandez et al., 2014;
Li et al., 2020). This review describes the importance of the

polarity network regulating CV localization and highlights the
important role PI(4,5)P2 plays in mediating vesicle fusion and
CV-PM interactions.

CONTRACTILE VACUOLES AND
EXOCYTOSIS IN DICTYOSTELIUM
DISCOIDEUM
Freshwater protists like the amoeba, Heliozoans, and many
Ciliates regulate water’s penetration by a complex organelle
responsible for their osmoregulation. This organelle is known
as the contractile vacuole (Schneider, 1960; De Chastellier et al.,
1978; Patterson, 1980; Hausmann and Patterson, 1984; Allen,
2000; Frankel, 2000). In D. discoideum, the CV organelle is
composed of an extensive network of tubules and bladders
linked to the PM. This is critical when the cell encounters
hypotonic environments where maintaining osmoregulation is
critical (Gerisch et al., 2002). The excess water accumulates in the
tubules, filling the vacuoles, which then fuse with the PM to expel
the water into the extracellular medium (Heuser et al., 1993).
After ejection of water through the vacuole, the tubules elongate
again and collect water for resuming the cycle. Late in the cycle,
the CV ejects its content in a focal kiss-and-run exocytic event
where the CV and PM transiently interconnect (Allen, 2000;
Allen and Naitoh, 2002; Frankel, 2000; Essid et al., 2012;
McKanna, 1973, 1976).

There are several critical proteins that control CV function,
including calmodulin (Moniakis et al., 1995). In fact, antibodies
against calmodulin were one of the first markers used to identify
the CV in fixed cells (Gerisch et al., 2002; Zhu and Clarke, 1992).
LvsA (large volume sphere), a protein that binds to calmodulin,
has been shown to localize to the CV and is required for
osmoregulation (Gerald et al., 2001; Malchow et al., 2006).
Mutant cells missing the LvsA protein are osmo-sensitive and
impaired in the vacuole discharge (Gerald et al., 2001). Another
protein, Disgorgin, which is a GAP for Rab8a is also required for
CV discharge mediated by fusion with the PM (Du et al., 2008).
Disgorgin and LvsA, together with GTP hydrolysis by Rab8a, are
also essential for the CV detachment from the PM after
discharging its contents (Essid et al., 2012) while Rab2 and
RabS have also been shown to be localize to the CV and be
important for osmoregulation (Maringer et al., 2016). The
distribution of adaptor proteins AP 1 (Lefkir et al., 2003) or
AP 180 (Stavrou and O’Halloran, 2006) each caused disruption in
osmoregulation. Proteins that govern this specialized organelle’s
activities in D. discoideum have been conserved throughout
evolution and many of their orthologs have been shown to
regulate mammalian membrane trafficking (Duhon and
Cardelli, 2002; Neuhaus et al., 2002).

The connections between the CV and the PM are regulated by
the exocyst complex, and contain Rab GTPases localized to the
CV, which assist in regulating fusion with the PM (Yeaman et al.,
2001; Essid et al., 2012; He and Guo, 2009; Maringer et al., 2016).
Exocytosis and vesicular transport are known to be regulated by
PIs (Paolo et al., 2004). In particular, PI(4,5)P2 is involved in the
priming of the vesicle to the targeted membrane and fusion step
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(Cremona et al., 1999; Paolo et al., 2004; Holz et al., 2000; James
et al., 2008; Milosevic et al., 2005; Martin, 2001; Wenk et al.,
2001). The exocyst complex is an octameric complex of the
subunits Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and
Exo84 and contains other components, including the SNARE
(soluble N-ethylmaleimide-sensitive factor (NSF) attachment
protein receptors)- associated protein SecA that have also been
shown to be required for the CV discharge function
(Sriskanthadevan et al., 2009; Zanchi et al., 2010; Essid et al.,
2012). Among different Rab GTPase proteins, RabD (Knetsch
et al., 2001; Harris and Cardelli, 2002), Rab4 (Bush et al., 1994,
1996), Rab8a (Essid et al., 2012), and Rab11 (Harris et al., 2002)
are identified as regulators for discharge function.

The Role of Rear Contractile Vacuole in
cAMP Secretion
During the process of polarization, the CV redistributes to the
rear of D. discoideum cells and is critical for the streaming
phenomena mediated by the chemoattractant cAMP
(Figure 1) (Fadil et al., 2022). The cAMP binds to the
serpentine cAMP receptors, triggering heterotrimeric G
signaling with the cell. Downstream responses include the
activation of PI3 Kinase, which leads to the recruitment of the
CRAC protein, triggering the synthesis of cAMP from ATP by
ACA. In this new model, cAMP diffuses within the cytosol and is
pumped into the CV network by the AbcC8 transporter (Fadil
et al., 2022). The cell then discharges cAMP, likely along with
Ca+2 (Fadil et al., 2022; Parkinson et al., 2014) from the cell’s rear
through the CV vacuole tethered to PM. This provides the
localized cAMP release from the back of the cells and
supports the head to tail streaming characterized during early

aggregation. The Dajumin-GFP (Gerisch et al., 2002) labeled the
CV vacuoles and tubules and was localized to the rear of
migrating cells (Figure 1). The cAMP transporter AbcC8 has
recently been identified as the main cAMP transporter (Kriebel
et al., 2018), and when fluorescently tagged, its localization
mirrored that of Dajumin, localizing throughout the CV and
tubules (Fadil et al., 2022). Thus, the presence of the AbcC8
transporter within the CV network provides a mechanism for
cAMP to enter the CV tubules, with cAMP being released from
the rear of the cell during the ejection phase of the CV cycle.

To confirm the importance of a functional CV in cell
streaming, two different mutant cell lines were tested that have
major defects in assembling a functional CV, Huntingtin null and
LvsA null cells. The exact function of both proteins is not known,
with evidence suggesting they are involved in membrane
trafficking. In mammals, the huntingtin protein is critical for
neuronal function, but like its ortholog, the role of this protein is
not clear. While still having the ability to chemotax, both D.
discoideum cell lines displayed decreased stability of head-to-tail
cell contacts and lacked the normal streaming behavior seen in
wild-type cells. Additionally, the periodic cAMP waves seen
during early aggregation were disrupted, as was visualized
using the cytosolic cAMP indicator, Flamindo2 (Fadil et al.,
2022; Hashimura et al., 2019). Thus, the ability of the cells to
perform signal relay was dramatically inhibited in cells with
defective CV function.

Involvement of PI(4,5)P2 in Polarity Network
and Contractile Vacuole Localization
PI(4,5)P2 has been suggested to be elevated at the cell’s trailing edge in
D. discoideum and in neutrophils (Janetopoulos et al., 2005; Hind

FIGURE 1 | The CV is localized at the rear of migrating cells. (A) Phase contrast image of the CV at the rear of the polarized migrating cell. (B) The same cell as in 1C
expressing Dajumin-GFP moving toward a micropipette filled with chemoattractant cAMP. Arrow indicates the localization of the CV. Courtesy of Fadil et al., 2022.
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et al., 2016; Iijima et al., 2004). PIs are regulated by different
phosphatases and kinases localized at distinct areas in the cell
(Balla, 2013; Choi et al., 2016). Phosphoinositide 3-kinases
(PI3Ks) are the enzymes that convert PI(4)P and PI(4,5)P2 into
PI(3,4)P2 and PI(3,4,5)P3, respectively. PI3Ks localize to the leading
edge of migrating cells, while the phosphatase and tensin homolog
(PTEN), the phosphatase that utilizes PI(3,4,5)P3 has a substrate, and
synthesizes PI(4,5)P2, localizes to the rear of migrating cells
(Devreotes and Janetopoulos, 2003; Funamoto et al., 2002; Kriebel
et al., 2003; Luo et al., 2003). PTEN activity and the sharp localization
at the rear of the polarized cell is, in part, regulated by PI(4,5)P2
bindingmotif at the N terminus of PTEN (Iijima et al., 2004; Nguyen
et al., 2014). Similar morphology has been shown in cells during
cytokinesis and in polarized neutrophils (Janetopoulos et al., 2005;
Lacalle et al., 2007; Lokuta et al., 2007). The net charge of PI(4,5)P2 is
-4, which enables this lipid to contribute to the localization and the
activity of various proteins by interacting with their polybasic clusters
(Ellenbroek et al., 2011). During the process of aggregation, it is
possible that SNARE proteins or other proteins with polybasicmotifs,
link the CV to the plasma membrane, as discussed below, and
contribute to the rearward distribution of the CV to the back of
D. discoideum cells (Fadil et al., 2022) (Figure 1). Interestingly, this
polarized localization can occur in drug treated cells lacking an actin
cytoskeleton or functional microtubule network, suggesting that the
direct interaction with the PM is responsible for CV localization. CVs
were still able to accumulate towards the low side of the
chemoattractant gradient, when cells were in the presence of
drugs that disrupted the actin cytoskeleton, similar to the
movements that can be seen with the reciprocal regulation of
PI3K and PTEN (Janetopoulos et al., 2004). The CV and PI(4,5)
P2 are elevated in areas of the cell where there are not membrane
protrusions (Fadil et al., 2022), which suggests a key role for this lipid
in regulating the CV organelle’s localization. The CV disassembles at
metaphase, when PI(4,5)P2 levels reach an intermediate level across
the entire periphery of the cell, and then begin to reassemble in the
furrow during telophase and the initiation of cytokinesis, as PI(4,5)P2
levels elevate (Janetopoulos et al., 2005). The CVs regenerate during
the final stages of cytokinesis, with primordial CVs often formed on
the trailing edge of the two daughter cells. In budding yeast, the
exocyst components, specifically Sec3 and Exo70 (see below) have also
been shown to localize to the cleavage furrow throughout cytokinesis
(Wu and Guo 2015). Interestingly, in mammalian cells, the exocyst is
also enriched at the cleavage furrow and is under the control of Rab11
andRalA (Fielding et al., 2005; Chen et al., 2006;Neto et al., 2013). The
amplification of PI(4,5)P2 in the back of the cell duringmigration and
in the cleavage furrow during cytokinesis likely contributes to the CV
localization and could provide the proper targeting of proteins needed
for regulating exocytosis. This may also assist in the targeted release of
smaller vesicles, sometimes termed exosomes, that have also have been
postulated to play a role in the release of cAMP at the rear of the cell
(Kriebel, et al., 2018). Therefore, in addition to helping position the
CV within the cell, elevated levels of PI(4,5)P2 appear to regulate CV
fusion with the PM during vegetative growth and at the rear of
migrating cells.

Involvement of PI(4,5)P2 in Contractile
Vacuole Exocytosis
PI(4,5)P2, which is the most abundant negatively charged PI on the
PM, has multiple roles within a cell, coordinating actin dynamics,
contributing to cell polarity and appears to be critical in exocytosis (Di
Paolo and De Camilli 2006; Holz et al., 2000; Martin, 2001; Martin,
2015). PI(4,5)P2 interacts with various positively charged proteins in
the exocyst complex, suggesting a major role for this PI in regulating
the CV organelle’s exocytosis (Essid et al., 2012). This binding of
exocyst subunits to the PMdelivers the vesicles to the targeted PI(4,5)
P2within the PM for the tethering step. It has been demonstrated that
the exocyst subunits Sec3 and Exo70 bind to PI(4,5)P2 at the PM (He
et al., 2007; Liu et al., 2007; Zhang et al., 2008; Shewan et al., 2011;
Pleskot et al., 2015). Furthermore, it is well-established that polarized
exocytosis, which is a multistep vesicular trafficking process, transfers
signals and proteins to specific PM sites, and ismediated by PI(4,5)P2
(He and Guo, 2009). SecA, a D. discoideum homolog of the yeast
Sec1p and themammalianMunc18 protein, localizes to the CV. Cells
with a defect in SecA cannot regulate their osmotic pressure and have
a defect in CV discharge (Zanchi et al., 2010). Sec1p and Munc18
proteins are essential for different exocytosis steps as they interact
with exocytic SNARE proteins during vesicle docking and fusion, also
mediated by PI(4,5)P2 (see below) (Carr et al., 1999; Grote et al., 2000;
Shen et al., 2007; Sudhof and Rothman, 2009). SecA is therefore
necessary for CV fusion to the PM and water discharge. A recent
study suggested that PI(4,5)P2 regulates the trafficking of the CV to
the fusion site and cells with a defect in Dd5P4, the enzyme which
uses the 5-phosphates of PI(4,5)P2 as substrate, displayed inefficient
CV fusion (Luscher et al., 2019).

Exocytosis associated with CV function is regulated by
SNARE proteins. There are four homologs of mammalian
SNAREs present in D. discoideum: vesicle-associated
membrane protein 7 (v-SNARE VAMP7), and three
t-SNAREs, syntaxin 7, syntaxin 8 and Vti1(Bogdanovic
et al., 2000, 2002). It has been reported that VAMP7 and
syntaxin 7 are present in the bladder of the CV. The other two
SNARE proteins, syntaxin 8 and Vti1 have been seen in both
the CV’s bladders and tubular networks (Bennett et al., 2008).
Some of the SNARE proteins have also been identified as
interactors with PI(4,5)P2 (Murray and Tamm 2009).
Clathrin assembly proteins, such as AP180 and AP1, are
also related to CV activity. AP180 null cells show unusual
large CVs and are osmo-sensitive (Stavrou and O’Halloran,
2006). Moreover, AP180 has been reported to interact with
another SNARE, Vamp7B (Wen et al., 2009). AP180 also binds
to PI(4,5)P2, through the NH2-terminal homology domain
known as ANTH (AP180 N-terminal homology) and assists in
clathrin assembly on lipid monolayers (Ford et al., 2001). The
ANTH domain is conserved among all members of the AP180
family (Norris et al., 1995; Ye et al., 1995; Hao et al., 1997; Ford
et al., 2001; Mao et al., 2001; Stavrou and O’Halloran, 2006).
Thus, PI(4,5)P2 has been shown to be a critical regulator of
exocytic events in both D. discoideum and many eukaryotes,
including mammals.
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THE GENERAL ROLE OF PI(4,5)P2 IN
EUKARYOTIC EXOCYTOSIS

In addition to exocytosis being a critical component of CV
dynamics, it is also essential for vesicles to eject their contents
in metazoans. Exocytosis is a membrane trafficking process that
can discharge soluble and insoluble protein contents including
neurotransmitters, hormones, and cytokines, as well as many
other small molecules and metabolites to the extracellular space.
In eukaryotes, this process also mediates the polarized delivery of
vesicular trafficking proteins and lipids to specific PM domains.
As has been mentioned, several studies show that PI(4,5)P2 and
its effectors play critical roles in all steps of exocytosis (Figure 2)
(Cremona et al., 1999; Paolo et al., 2004; Holz et al., 2000; James
et al., 2008; Milosevic et al., 2005; Martin, 2001; Wenk et al.,
2001). To perform this function, secretory vesicles undergo three
defined trafficking steps during exocytosis (Figure 2): the docking
process for recruiting vesicles to the PM, the priming process for
maturing the vesicles, the fusion process to fuse with the PM, and
the release of vesicle contents (Voets, 2000; Rettig and Neher,
2002; Sudhof, 2013; Imig et al., 2014). PI(4,5)P2 is capable of
engaging in a multitude of cellular functions that are temporally
and spatially controlled by the localized distribution of PI(4,5)P2
along the PM (Bai et al., 2004). PI(4,5)P2 has been shown to be
enriched in domains at the PM and at the vesicle exocytosis sites
(Trexler et al., 2016). Furthermore, the recruitment of enzymes
that hydrolyze PI(4,5)P2 at the docking sites results in inefficient
docking of the vesicles to the PM (Cremona et al., 1999;

Honigmann et al., 2013). This initial priming step of
exocytosis is controlled by different proteins and their
effectors such as the Ca2+-dependent activator protein for
secretion (CAPS) and Munc13 (Shin et al., 2010; Kabachinski
et al., 2014; Martin, 2015). These proteins are also regulated by
PI(4,5P)2, with the PH domain of CAPS binding to PI(4,5)P2 for
activation (Grishanin et al., 2004; Kabachinski et al., 2014;
Martin, 2015). SNAREs also interact with PI(4,5)P2 for vesicle
fusion (Martin, 2001; James et al., 2008).

Involvement of PI(4,5)P2 With the Exocyst
Complex
The exocyst complex has been involved in various cellular
processes including exocytosis, cell growth, cytokinesis, cell
migration, primary ciliogenesis and tumorigenesis.
Furthermore, the exocyst protein complex has a crucial role in
polarized membrane protein trafficking (He and Guo, 2009). The
exocyst complex (Figure 2) consists of eight subunits (Sec3, Sec5,
Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84) that mediate the
vesicles’ tethering to the PM and is conserved among the
eukaryotic kingdom (He and Guo, 2009; Yeaman et al., 2001).
Exocyst subunits interact with each other in pairs: such as
Sec3–Sec5, Sec6–Sec8, and Sec10–Sec15 (Guo et al., 2000;
Katoh et al., 2015; Heider et al., 2016; Matern et al., 2001;
Munson and Novick 2006; Vega and Hsu 2001). The exocyst
complex mediates localization and tethering of vesicles to
targeted membranes and enables the assembly of SNARE

FIGURE 2 | Involvement of PI(4,5)P2 in the exocytosis steps. PI(4,5)P2 is required for mediating tethering of vesicles to the PM. In the priming step, PI(4,5)P2
modulates the vesicles priming by interacting with Munc13 and CAPS. PI(4,5)P2 controls vesicles fusion by interacting with SNARE complex.
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complexes before the fusion step (Pfeffer, 1999; Guo et al., 2000;
Waters and Hughson., 2000; Whyte and Munro, 2002). Exo70 is
localized near cell-cell contacts on the PM, meaning that Exo70
can mediate PM interaction in these cells independently of the
remaining exocyst components (Matern et al., 2001). Indeed, the
exocyst needs to interact with the target membrane to achieve
tethering function after the delivery of the vesicles. This process
appears to be mediated by direct binding of Sec3 and Exo70
subunits with PI(4,5)P2 enriched at the inner leaflet of the PM
(He et al., 2007; Liu et al., 2007; Zhang et al., 2008; Shewan et al.,
2011; Pleskot et al., 2015). Exo70 exhibits a positively charged
surface domain at its C-terminus in mammalian cells which
mediates the binding to PI(4,5)P2. Interestingly, the
C-terminal sequence of Exo70 is the most evolutionarily
conserved region of the protein, suggesting this PI(4,5)P2 is
critical for many organisms. The same study has also revealed
that Exo70 can recruit the other exocyst components to the PM
(Liu et al., 2007). Furthermore, studies on yeast have shown that
Exo70 is an effecter of the GTPase Rho3, which plays regulatory
roles in actin organization and exocytosis (Adamo et al., 1999;
Robinson et al., 1999). The disruption of the Exo70–lipid
interaction resulted in exocyst mis-localization and ablation of
the enzyme secretion responsible for yeast cell growth. On the
other hand, disruption of Exo70–Rho3 interaction did not show
any noticeable defects (He et al., 2007). The binding affinity of
Exo70 for PI(4,5)P2 is higher than PI(3,5)P2, PI(3)P or PI(4)P
(He et al., 2007). The other component that mediates the delivery
of the vesicles to the targeted membrane is Sec3. The association
between the amino-terminal PH domain of Sec3 and PI(4,5)P2
mediates Sec3’s localization to the PM (Luo et al., 2014). It has
been reported that the PH domain of Sec3 also interacts with
small GTPases such as Cdc42 and Rho1 (Guo et al., 2000; Zhang
et al., 2001; Zhang et al., 2008). Small GTPases and PI(4,5)P2 can
synergistically influence the exocyst complex’s position and
function at the PM. When both Exo70 and Sec3 are impaired,
it is no longer possible to anchor the exocyst complex to the
targeted membrane (He et al., 2007). Thus, Exo70 and Sec3 bind
to PI(4,5)P2 and function in concert to mediate the association of
the exocyst complex with the PM.

PI(4,5)P2 is the Binding Site for CAPS and
Munc-13
CAPS andMunc-13 are major contributors to the priming step in
exocytosis of synaptic vesicles and dense-core vesicles (Figure 2)
(Wojcik and Brose, 2007; Stevens and Rettig, 2009; James and
Martin, 2013). These synaptic vesicles and dense core vesicles
play an essential role in neuronal communication and brain
development (Rettig and Neher, 2002; Sudhof and Rizo, 2011).
It has been reported that Munc-13 is critical for synaptic vesicle
exocytosis, while CAPS plays a central role in dense-core vesicles
(Augustin et al., 1999; Varoqueaux et al., 2002; Grishanin et al.,
2004; Speese et al., 2007; Liu et al., 2008). Moreover, CAPS and
Munc-13 have been shown to regulate SNARE assembly with the
vesicles and are crucial for exocytosis (Basu et al., 2005; James
et al., 2009; Daily et al., 2010; Khodthong et al., 2011; Ma et al.,
2011; Wang et al., 2017). CAPS and Munc13 proteins have

interconnected C-terminal SNARE protein–binding domains
(Koch et al., 2000; Guan et al., 2008; Pei et al., 2009).
Deleterious mutations in the PH domain of CAPS result in
controlled exocytosis failure (Grishanin et al., 2002). Also,
CAPS interacts with syntaxin-1 near its PI(4,5)P2 binding site,
indicating that PI(4,5)P2 is an essential co-factor for activating
CAPS via binding to its PH domain. On the other hand, Munc13
binds to PI(4,5)P2 in a Ca2+-dependent manner through its C2B
domain (James et al., 2010; Shin et al., 2010). Moreover, a study
on neuroendocrine cells has shown that Munc-13 is cytoplasmic
and translocates to PI(4,5)P2-rich PM domains in response to
Ca2+ influx (Kabachinski et al., 2014; Martin, 2015). In line with
this, Munc13-1-GFP translocation to microdomains was blocked
by overexpression of the high-affinity PI(4,5)P2-binding PH
domain of PLCδ1, demonstrating their affinity for the same
PM site (Kabachinski et al., 2014). Indeed, both CAPS and
Munc13 can promote the recruitment of vesicles to PI(4,5)P2-
rich membranes in a Ca2+-dependent manner (Junge et al., 2004;
Zikich et al., 2008; Kabachinski et al., 2016; Kreutzberger et al.,
2017).

PI(4,5)P2 interacts With SNARE Complex
SNARE proteins are the central components of the fusion step,
the final process in exocytosis vesicle trafficking (Figure 2). All
SNARE family members have a distinctive preserved homolog
stretch of 60–70 amino acids, known as the SNARE motif (Barg
et al., 2010). Among a large number of SNARE proteins, three
complexes were carefully studied and identified. These complexes
are Syntaxin-1, synaptosome-associated protein (SNAP-25), and
synaptobrevin2/vesicle-associated membrane protein 2
(VAMP2) (Barg et al., 2010; Rickman et al., 2010; Bar-On
et al., 2012; Ji et al., 2015). It has been reported that PI(4,5)P2
activates syntaxin-1 promoting assembly with SNAP-25 (Murray
and Tamm 2009). Furthermore, syntaxin interactions with
PI(4,5)P2 play a positive role in vesicle fusion with the
membrane by localizing the protein on the membrane or
promoting SNAP-25 interactions (Van den Bogaart et al.,
2011). Fusion-competent vesicles in PC12 have been suggested
to localize preferentially to PM sites that contain either PI(4,5)P2
domains or PI(4,5)P2 domains co-localized with syntaxin-1
clusters (Van den Bogaart et al., 2011). Other studies
demonstrated that a subset of docked vesicles are actually
present in PI(4,5)P2-enriched areas where exocytosis occurs
under optimal Ca2+ influx conditions (Ji et al., 2015; Ji and
Lou, 2016). Syntaxin-1 interacts with PIs through a
membrane-proximal sequence of basic residues which includes
K260ARRKK265. Importantly, syntaxin-1 clusters were eliminated
by treatment of PC12 cells with the 5-phosphatase synaptojanin-
1. Synaptotagmin1, another calcium sensor for exocytosis, is
anchored to the membrane of secretory organelles which is
mediated by PI(4,5)P2 clusters in plasma domains (Aoyagi
et al., 2005; Gandasi and Barg, 2014; Murray and Tamm,
2009). Moreover, the interaction between PI(4,5)P2 and
Synaptotagmin increases the excitation-secretion in response
to Ca2+ (Bai et al., 2004). SNARE proteins therefore play a
critical role in the fusion step and are regulated by local
PI(4,5)P2 levels as they modulate vesicle exocytosis.
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DISCUSSION

The contractile vacuole is part of the polarity circuit and is
enriched at the rear of migrating cells, with this localization
being critical for cAMP secretion. PI(4,5)P2 is the most abundant
PIs in the PM and has been shown to be elevated at the rear of the
cell and in areas reciprocally regulated with PI(3,4,5)P3 and
membrane protrusions. PI(4,5)P2 has multiple roles in the cell,
and is intimately involved in membrane trafficking, endocytosis
and exocytosis. The regulatory factors governing exocytosis are
highly conserved across species and as highlighted in this review
are relevant to many mammalian cell trafficking pathways. The
rear CV enrichment and exocytosis described here may be related
to this migracytosis mechanism recently described which has
been implicated in cell-cell communication in mammalian cells.
Migrasomes exist in many cell types such as normal rat kidney
cells, macrophages, primary neurons, human breast cancer cells,
and embryonic stem cells (Ma et al., 2015). Migracytosis is a cell
migration-dependent mechanism for releasing cellular contents
by migrasome organelles which localize at the rear of the cell and
play a potential role in cell-cell communication.

PI(4,5)P2 pathway dysregulation and failure of proper
exocytosis has been identified in many different diseases
such as Lowe syndrome, neuronal disorders and various
forms of cancer (Dannemann et al., 2012; Kim et al., 2017;
Prosseda et al., 2017; Raghu et al., 2019). Lowe
oculocerebrorenal syndrome, a congenital disease
characterized by low IQ, and defective kidney proximal
tubule resorption, is caused by a defect in the OCRL gene.
OCRL is an inositol polyphosphate 5-phosphatase that
hydrolyzes the 5-phosphate of PI(4,5)P2 into PI4P
(Prosseda et al., 2017). Interestingly, a recent study in D.
discoideum has shown that OCRL-like protein of D.
discoideum, Dd5P4, is recruited to the CV membrane upon
the kiss-and-run exocytic event (Luscher et al., 2019).

Therefore, it is possible that the exocytic function of ORCL
contributes to the pathological process of Lowe syndrome.
Chediak-Higashi syndrome (CHS) is an autosomal human
disorder characterized by immunodeficiency and the
formation of giant lysosomes or lysosome-related
organelles. In D. discoideum, the homolog to one of the
Chediak-Higashi syndrome (CHS) proteins is LvsA, which
interestingly enough labels the CV bladder and remains
associated throughout the discharge phase until fusion with
the PM (Gerald et al., 2002). In addition, it also seems
plausible that the localized fusion that occurs with CV
discharge is correlated with the small extracellular vesicles
documented during D. discoideum streaming (Kreibel, et al.,
2018). Extracellular vesicles are critical for many aspects in
tumor progression (Xavier et al., 2020), so studying these
processes is of utmost importance. Given that PI(4,5)P2 levels
are critical to so many processes in the cell, there are certain to
many critical roles and potential therapeutic interventions
that can be performed by regulating PI(4,5)P2 levels.
Understanding the basic function of PI(4,5)P2 in CV
ejection or neurotransmitter release may even help with
diseases of the brain. PI(4,5)P2 levels are decreased in the
brain of Alzheimer’s patients, for instance, although the exact
role in Alzheimer’s disease has yet to be elucidated (Stokes
et al., 1978; Arancio., 2008). There are many steps in CV
localization and function where PI(4,5)P2 seems to be
required, so understanding the basic functions to their
targeting and function should enhance our understating of
exocytosis-related diseases.
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