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Abstract

Background: Over the past 50,000 years, shifts in human-environmental or human-human interactions shaped
genetic differences within and among human populations, including variants under positive selection. Shaped by
environmental factors, such variants influence the genetics of modern health, disease, and treatment outcome.
Because evolutionary processes tend to act on gene regulation, we test whether regulatory variants are under
positive selection. We introduce a new approach to enhance detection of genetic markers undergoing positive
selection, using conditional entropy to capture recent local selection signals. Results We use conditional logistic
regression to compare our Adjusted Haplotype Conditional Entropy (H|H) measure of positive selection to existing
positive selection measures. H|H and existing measures were applied to published regulatory variants acting in cis
(cis-eQTLs), with conditional logistic regression testing whether regulatory variants undergo stronger positive
selection than the surrounding gene.
These cis-eQTLs were drawn from six independent studies of genotype and RNA expression. The conditional
logistic regression shows that, overall, H|H is substantially more powerful than existing positive-selection methods
in identifying cis-eQTLs against other Single Nucleotide Polymorphisms (SNPs) in the same genes. When broken
down by Gene Ontology, H|H predictions are particularly strong in some biological process categories, where
regulatory variants are under strong positive selection compared to the bulk of the gene, distinct from those GO
categories under overall positive selection. . However, cis-eQTLs in a second group of genes lack positive selection
signatures detectable by H|H, consistent with ancient short haplotypes compared to the surrounding gene (for
example, in innate immunity GO:0042742); under such other modes of selection, H|H would not be expected to
be a strong predictor.. These conditional logistic regression models are adjusted for Minor allele frequency(MAF);
otherwise, ascertainment bias is a huge factor in all eQTL data sets. Relationships between Gene Ontology
categories, positive selection and eQTL specificity were replicated with H|H in a single larger data set. Our
measure, Adjusted Haplotype Conditional Entropy (H|H), was essential in generating all of the results above
because it: 1) is a stronger overall predictor for eQTLs than comparable existing approaches, and 2) shows low
sequential auto-correlation, overcoming problems with convergence of these conditional regression statistical
models.

Conclusions: Our new method, H|H, provides a consistently more robust signal associated with cis-eQTLs
compared to existing methods. We interpret this to indicate that some cis-eQTLs are under positive selection
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compared to their surrounding genes. Conditional entropy indicative of a selective sweep is an especially strong
predictor of eQTLs for genes in several biological processes of medical interest. Where conditional entropy is a
weak or negative predictor of eQTLs, such as innate immune genes, this would be consistent with balancing
selection acting on such eQTLs over long time periods. Different measures of selection may be needed for variant
prioritization under other modes of evolutionary selection.

Background
In the post-genome era, major research initiatives are
directed towards identifying non protein-coding genetic
variants with an effect on the expression of nearby
genes: cis-expression quantitative trait loci (cis-eQTLs)
[1,2]. In parallel, comparative analysis [3] of humans
and other primates, as well as human populations, has
revealed categories of genes evolving under different
selective pressures [4,5]. For example, the phylogenetic
p-values program phyloP [6] has been used to show that
disease markers in genes involved in central nervous
system (CNS) developmental defects [7] have undergone
positive selection in the human lineage. Humans have
more fixed genetic differences in CNS development
genes, compared to our close primate relatives; there-
fore, phyloP identifies mutations in these CNS develop-
ment genes. The interpretation is that these mutations
conferred differential fitness in the primate ancestors of
modern humans, causing many mutations in such genes
to rapidly accumulate and fix. Conversely, other genes
and especially regulatory regions show human-lineage
specific purifying selection [8], leading to a loss of
ancestral diversity. Therefore, it might be expected that
different selection measures would be more or less use-
ful in different genes or regulatory features.
In this report, we explore positive selection signatures

not in disease genes/markers arising from our pre-
human ancestors, but in the cis-eQTLs within/adjacent
to genes. Positive selection in this report is confined to a
relatively recent timeframe, and is controlled for the
human population positive selection level on the entire
gene and sub-gene location (exon, intron, intergenic
region, flanking within 1kB of promoter or terminator, or
untranscribed region/UTR). The positive selection signals
used here are measured using allele frequencies and link-
age-related properties within and between human popu-
lations via the results of the 1,000 Genomes Project [9].
Detecting a controlled association between positive selec-
tion and cis-eQTLs is technically challenging from a sta-
tistics standpoint, because it introduces considerable
dependencies (co-linearity) between the prediction (posi-
tive selection, allele frequency, sub-gene region) and stra-
tification (gene) variables. The effort is justified because
eQTLs, both cis [10] and trans [11] have shown consider-
able relevance to human disease. Methods to prioritize
such variants have considerable practical consequences,

since most disease heritability is driven by regulatory
markers outside of coding regions [12,13].
In order to fit statistical models of cis-eQTLs within

genes, we introduce a new measure of positive selection,
termed Adjusted Conditional Haplotype Entropy (H|H).
Conditional entropy is commonly used in information/
linguistics approaches [14], but also sees use in diverse
bioinformatics applications [15,16]. Among existing mea-
sures, this conditional entropy is most closely related to
the integrated haplotype score (iHS) of Voight et al. [17],
however, in the results below we will show that H|H pro-
vides two crucial advantages. First, H|H is a significantly
stronger predictor of cis-eQTLs than other measures,
and second, H|H values can vary widely even between
nearby markers. H|H is a measure of haplotypes but it
depends on an individual marker: for example, a minor
variant leading to a selective sweep of the pre-existing
major haplotype would result in a very low conditional
entropy and thus a very high H|H score, but it would be
in linkage to other major haplotype markers that would
have very low H|H scores. This divergence between
nearby markers and even markers in moderate linkage
allows for models incorporating H|H to converge when
models utilizing other positive selection measures do not.

Results and discussion
Overall research design
The chief goal of this manuscript is to identify measures of
positive selection which are able to pick out cis-eQTLs,
against a background of non-eQTL markers within an
individual gene. However, such measures of positive selec-
tion are not uniform throughout the genome. In particu-
lar, positive selection signatures are concentrated in
certain gene ontology (GO) [18] categories. Therefore,
different measures of positive selection may be appropriate
to pick out eQTLs in different GO categories, and this
appropriateness could easily be counter-intuitive - genes
under positive selection could have a high background
level of positive selection, meaning positive selection mea-
sures might not be useful in picking out eQTLs within
genes which are highly selected overall. Therefore, the sec-
ondary goal of this manuscript is to identify differences in
which positive selection measures may be most appropri-
ate to identify eQTLs in different GO categories. To test
for such difference, we add interaction terms our models;
this is not a GO enrichment test. GO enrichment tests

Handelman et al. BMC Genomics 2015, 16(Suppl 8):S8
http://www.biomedcentral.com/1471-2164/16/S8/S8

Page 2 of 13



implemented in panther [19] are also reported in the sup-
plement (in additional file 1), but these may not have the
desired interpretation. This manuscript also reports a new
measure of positive selection which is designed to support
this application, chiefly by being as non-smooth as possi-
ble (and thus able to distinguish eQTLs from non-eQTLs
which are close by on the chromosome.) Figure 1 illus-
trates the underlying problem: the goal is to find a statisti-
cal model which uses positive selection measures to
distinguish eQTLs (the one orange hourglass, in Figure 1)
from all of the non-eQTL markers in the same gene (all
other symbols). The conditional logistic regression adjusts
for the relevative prevalance of eQTLs in different genes
(for example, the gene shown in Figure 1 only has one
eQTL in the Zeller 2010 data set.) Our statistical approach
has two phases. In the first (hypothesis-generation) phase,
seven modestly-powered QTL data sets from either Lym-
phoblastic Cell Lines (LCLs), Monocytes or human liver
[20-25] are used to pick prediction variables, and,

categories of genes in which positive selection scores
differentiate cis-eQTLs from the surrounding gene. In
the statistical tests of this hypothesis-generation phase,
other measures of positive selection where either not
strong predictors of eQTLs; or, attempts to utilize mea-
sures other than H|H failed because the statistical mod-
els did not converge. However, because we cannot
guarantee that the statistical model generated by this
first stage is not subject to over-fitting, or alternatively
to cherry-picking, we test that statistical model in a sec-
ond phase. In this second (hypothesis-testing) phase, we
test specific biological findings in the much larger cis-
eQTL data set which powers the blood eQTL browser
described by Westra et al. [11].
In both phases, conditional logistic regression is used to
fit statistical models to the different cis-eQTL data sets.
GO categories and other measures individually identified
in the hypothesis-generation phase are tested as a group
in the hypothesis-testing phase.

Figure 1 Example showing positive selection predictors and eQTLs for a single gene. This figure shows the input to the conditional
logistic regression associated with a single gene (Cholesterol Ester Transfer Protein, or CETP) from the Zeller 2010 data set. The purposes of this
figure are to illustrate the prediction problem in a single gene/strata, and to showcase the relative degree of serial auto-correlation (smoothness)
associated with the different predictors. At the top of the figure, each SNP is indicated with a symbol reflecting the location within the gene,
only one, rs1532625, is an eQTL in the Zeller data set (indicated with a large orange hourglass symbol), and it happens to be in an Intron; the
two major splice isoforms of CETP are illustrated at the bottom of the figure for reference. rs1532625 does NOT show any particular sign of
being under positive selection. The conditional logistic regression used in this manuscript is fit to eQTLs such as rs1532625, with genes such as
CETP treated as individual strata (equivalent to a 1-to-many case-control matching in a clinical trial.) In this data set CETP contains only a single
eQTL but this is not always the case. Four predictors used in this manuscript are scaled to empirical Z-scores in order to fit on the same chart; a
fifth potential predictor (composite of multiple signals, cms), very powerful in other contexts, is also shown to illustrate the issue with auto-
correlation. Conditional logistic models depend on a degree of independence among the predictors - because the cms score (blue line) has
such a strong serial auto-correlation (as would any positive selection measure that is smoothed in a window of any size), it is not independent
of the within-gene location (symbols at the top) which are used as an independent predictor. Even Fst (the green line) shows too much serial
auto-correlation to converge in the Mangravite data set, which was part of the motivation in developing H|H. The other three positive selection
measures, including H|H, are highly non-smooth, so they can be fit to logistic models where individual strata contain short regions of DNA.
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Hypothesis-testing phase in the Chicago QTL Browser
data
For purposes of hypothesis generation, seven diverse
eQTL data sets (drawn from six independent high-
throughput studies) were chosen from those deposited in
the Chicago QTL genome browser [26] (http://hsb.upf.
edu/), and reduced to their overlap with the set of Geno-
type-Tissue Expression (GTEx) [27] candidate QTLs.
These candidate QTLs are a superset including all GTEx
QTLs as well as other non-QTL markers for which
GTEx performed statistical tests; these are chosen by
GTEx as a representative panel to test for effects, and not
because of prior evidence that they are indeed eQTLs.
Genes (or intergenic regions, defined here as more than
1kB from any promoter or transcriptional terminator)
containing no eQTLs were removed independently in
each data set. The focus is on hypothesis generation,
parameter selection and model specification, rather than
on producing a rigorous finding. These seven eQTL data
sets were chosen because they contained at least 10,000
eQTLs after overlap with the GTEx candidates. The
seven data sets chosen are listed in Table 1 along with
summary statistics of those data sets after they were
reduced to the overlap with the GTEx set of candidate
QTLs.
When statistical models were fit to these individual

data sets, the results were quite heterogeneous (see
below in this section). Therefore, GO biological-process
categories were used to test whether the inter-data set
heterogeneity might be explained by differences in the
underlying biology of the genes for which eQTLs were
detected by the different approaches. Alternative, non-
exclusive explanations for heterogeneity among these
data sets include: source tissue differences, participant
population differences, and sample size/ascertainment
bias differences, any or all of which might reasonably
affect the extent to which eQTLs appear more positively
selected than nearby markers. In order to produce a
preliminary hypothesis on this question, each gene was

assigned to a single biological-process GO category,
chosen among the available GO assignments (see meth-
ods), with genes assigned to multiple GO categories
assigned to the single GO category containing closest-
to-125 ENCODE [28] genes. This is an ad hoc approach
that produces single assignments to biologically relevant
GO categories; it was driven by inspection of the GO
categories of most interest to our research group. Size-
filtering of some kind is standard in any study of GO
categories [29]. Note that this is not a GO enrichment
test, and is neither intended nor expected to give a valid
GO enrichment result, but to test for an interaction
between GO category and our QTL predictors. So, for
example, these results cannot be interpreted to indicate
in which GO categories QTLs are especially common.
The reduction to a single GO assignment for each gene
is both a simplifying assumption and a technical
requirement for the type of model fitting that is used in
the hypothesis-generation phase; the GO category size
of 125 was chosen by inspection - GO categories con-
taining more than 200 genes were generally not biologi-
cally informative (e.g. the most extreme case, GO
0008150, biological process), while GO categories below
size 50 are unlikely to have enough representatives in
our data to detect an association, especially an associa-
tion which is reproduced in several data sets containing
a non-overlapping combination of genes. Small GO
categories are often not-represented at all in many of
our data sets. This procedure will be biased to detect
effects from larger GO categories, but the statistical test
should still be valid, in the same way that a non-uni-
formly distributed error rate (e.g. in a GWAS, assigning
50% of the errors to the 5% of the markers which are in
coding regions)
This may introduce a bias into the types of GO cate-

gories which are selected in this hypothesis-generation
phase; yet another reason why the hypothesis-testing
phase was required. The GO assignment reduction is not
carried out in the hypothesis-testing phase, so the

Table 1. Chicago QTL browser data sets

Dataset Notes Number of eQTLs/total Num. Genes (Regions) Total GTEx Markers

Mangravite 2012 [20] LCLs; candidate genes 42,550/49,937 2,064 (2,030) 385,836

Montgomery 2010A [21] LCLs; RNA-seq; exons 12,691/13,965 2,755 (2,155) 1,389,595

Montgomery 2010B [21] LCLs; RNA-seq; transcripts 3,881/4,748 934 (706) 493,074

Schadt 2007 [22] Liver 2,558/2,694 1,523 (857) 862,416

Stranger 2007 [23] LCLs 12,751/15,067 1,309 (961) 289,863

Veyrieras 2008 [24] LCLs 13,730/15,939 1,437 (1016) 296,696

Zeller 2010 [25] Monocytes 36,371/39,923 5,532 (3,931) 1,398,426

For each Dataset with primary reference: Notes on the sample in which eQTLs were measured; the Number of eQTLs below their significant threshold and which
are also present in the GTEx candidate panel (out of the total number of QTLs passing the threshold in the source data set); the Number of Genes (and
intergenic Regions, each of which was analysed as if a gene) which contained at least one eQTL present in both data sets; and, the Total GTEx Markers present
in those genes, whether they are eQTLs in the corresponding data set or not.
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hypothesis-testing phase should be free of any bias intro-
duced by this favoritism.
In each of the seven data sets, conditional logistic

regression was used to fit six statistical models, each
with gene/intergenic region as a stratification variable,
which are given in Table 2.
Except for our Adjusted Haplotype Conditional

Entropy (H|H), all of the values in the formulas for
Table 2 are taken from the 1,000 Genomes Selection
Browser [26], and converted to a sum of logs (P value
when reported, but MAF is similarly transformed
although it is not a p-value) across thousand genomes
populations on a per-SNP basis. Identification as an
eQTL is treated as a random variable, with a logistic
distribution fit on a per-gene basis to an effect from one
or more of the following variables that are included in
the formulas in Table 2: Adjusted Haplotype Condi-
tional Entropy (H|H, the new measure introduced in
this manuscript), the absolute value of the differential
allele frequency (|ΔDAF| [30]), the differential allele fre-
quency (ΔDAF [30]), the change in integrated haplotype
heterozygosity (ΔiHH [17]), the coancestry coefficient
(F-statistic or Fst [31]) the integrated haplotype score
(iHS [17]), the minor allele frequency (MAF), and the
location within the gene of an individual SNP (either
flanking, UTR, intronic or exonic; or, for intergenic
regions, intergenic); if an individual parameter is fit

independently in each singletized GO term, it is
appended to indicate such an interaction (with × GO).
The results of the fits for the formulas in Table 2 are

given in Table S1 (in the supplement, additional file 1).
The parameter values in Table S1 are summarized and
interpreted in the next few paragraphs, and typical values
for the Z-scores of the individual components are given
in Table 3. As shown in Table 3 H|H is generally a much
stronger predictor than other positive selection measures,
with much higher Z-scores of consistent sign; ΔiHH and
iHS are both weaker predictors, and the relationship
between the sign of the value and whether or not a mar-
ker is an eQTL actually changes between data sets.
Minor allele frequency is the strongest predictor, and

heavily modulates the predictive power of all other pre-
dictors (results not shown; this is an expected conse-
quence of sample size constraints/ascertainment bias
within the individual source studies.) Otherwise, only
one pair of predictors interact (change substantially in
predictive power when both are included): |ΔDAF| and
Fst. For |ΔDAF|, two Z-scores are given in Table 3:
without (before the slash) and with (after the slash) Fst
in the model. Fst is a good predictor but does not con-
verge on the Mangravite data set, indicative that the
measure is overly smooth (see Figure 1).
Model 6 is underlined in the list above because it is

used for hypothesis generation; Model 6 includes only

Table 2. Conditional logistic models

Model Formula

1 eQTL ~ H|H + |ΔDAF| + ΔDAF + ΔiHH + Fst + iHS + MAF + location

2 eQTL ~ H|H + |ΔDAF| + ΔDAF + ΔiHH + iHS + MAF + location

3 eQTL ~ H|H + |ΔDAF| + ΔDAF + ΔiHH + Fst + iHS + MAF × GO + location

4 eQTL ~ H|H + |ΔDAF| + ΔDAF + Fst + MAF × GO + location

5 eQTL ~ H|H + |ΔDAF| + ΔDAF + MAF × GO + location

6 eQTL ~ H|H × GO + ΔDAF + MAF × GO + location

Each of the formulas above is fit to an intercept (a) and to one or more effect sizes (b, one associated with each term).

Table 3. Summary of t-statistic Z-scores from conditional logistic model fits

Dataset Z-score H|H Z-s. |ΔDAF| Z-s. Fst Z-s. ΔiHH Z-s. iHS

Mangravite 2012 22 6/NA NA 0 8

Montgomery 2010A 13 3/5 -4 1 -2

Montgomery 2010B 8 2/4 -3 3 -2

Schadt 2007 2 1/1 -1 1 0

Stranger 2007 8 -2/4 -8 -3 -2

Veyrieras 2008 8 0/0 -13 -3 -1

Zeller 2010 19 2/7 -7 2 0

For each Dataset, the average value of the Z-score across all Models (1-5 from Table 2, rounded to the nearest whole number.) Two averages are given |ΔDAF| -
Models 2 and 5 before the slash; Models 1, 3 and 4 after the slash. For H|H, a positive number indicates a positive value is a strong predictor for eQTLs, for the
other measures, an extreme negative value indicates that a low log p-value is a strong predictor for eQTLs. ΔiHH and iHS are intended to be measures of positive
selection. With the exception of |ΔDAF| (which changes substantially depending on whether Fst is included in the model), these Z-scores do not change greatly
among Models 1-6 in Table 2, indicating that these predictors are largely independent.
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our Adjusted Haplotype Conditional Entropy (fit on a per
GO term basis), Minor Allele Frequency (likewise), and
Differential Allele Frequency (fit to each data set as a
whole). Other positive selection measures either were
weak predictors in one or more data sets (ΔiHH and iHS;
|ΔDAF| unless Fst is also included); or, caused a failure of
the model to converge in some data sets (Fst, ΔDAF if
included as an interaction term), because of excessive
non-independence (referred to as co-linearity in the
logistic regression literature [32]) with either the other
predictors or with the stratification variable. ΔDAF is a
strong predictor and we were able to include ΔDAF in
models that did converge; ΔDAF serves a crucial purpose
in our models because it differentiates the effects of
population bottlenecks from selective sweeps. However,
unfortunately a model including a ΔDAF interaction with
GO terms was tried but did not converge, so ΔDAF was
fit globally. Notably, of the positive selection measures,
only our Adjusted Haplotype Conditional Entropy is a
strong predictor which also converges in all of these data
sets when fit on a per-GO term basis.
Other positive selection measures that report values for

contiguous blocks of gene sequence are highly useful in
gene-prioritization applications [33]; however, they are
generally unsuited for the challenge addressed here, which
is to prioritize variants within genes, and would be
expected to have severe convergence issues, so they were
not considered (Figure 1 illustrates this issue with the
Composite of Multiple Signals [34]). Future applications of
this method would be in a candidate gene context, how-
ever in order to assess the predictive power of the mea-
sure, whole genome results are used. A positive selection
measure that is constant across an individual gene may
identify genes that are in turn eQTL rich, but this would
tend to produce a failure to converge. In any case, in the
currently available data, differences in eQTL richness
between genes cannot be distinguished from ascertain-
ment bias. The conditional information haplotype score
used here was developed in part to address these technical
issues, which are related to the initial observation made by
biologists in our group - that a marker in a long haplotype
might be only a few hundred bases away from a second
marker with which the long haplotype is in weak linkage.
In these data, only our new conditional haplotype informa-
tion has the properties that it is both a strong predictor for
eQTLs and allows a convergent statistical fit in relevant
cases. Therefore, Model 6 was chosen to carry on to the
hypothesis generation step.

GO ID’s at high and low extremes of selection score in
hypothesis-generation data set
A heuristic score was used to combine the results of the
fit to Model 6, for each GO ID in each of the seven
data sets. To generate this heuristic score from the fit of

Model 6 to each permutation, the effect size is moved
one standard error towards 0 (minimum of 0) and then
summed across all 7 data sets. There is an overall asso-
ciation between our H|H and eQTLs; by using the effect
size rather than the Z-score, we avoid identifying indivi-
dual GO IDs solely because they contain many genes.
In order to establish preliminary confidence bounds on

the range of variability for these prediction by GO cate-
gory interactions, Model 6 was also fit to 100 randomly
permuted versions of the data sets above. In each permu-
tation, assignments between genes assigned to each single,
medium-sized GO category, were randomized. In each
permutation, each randomized medium-sized GO category
contained the same number of member genes as the cor-
responding original GO category. By generating the same
heuristic score (sum of effect sizes) in each permutation, a
confidence interval was obtained.
The effect sizes and standard errors for the GO categories

outside of the 90% confidence interval (see Meta-analysis
of conditional logistic regression regression results for
details and justification of this overall approach) are given
in Table 4. The following GO categories, hence Group 1,
were below the 90% confidence interval from the permuta-
tions (that is, in these categories, overall the Conditional
Haplotype Entropy was low for eQTLs compared to other
GO categories):
http://amigo.geneontology.org/amigo/term/

GO:0006367 transcription initiation from RNA polymer-
ase II promoter
http://amigo.geneontology.org/amigo/term/

GO:0006396 RNA processing
http://amigo.geneontology.org/amigo/term/

GO:0008544 epidermis development
http://amigo.geneontology.org/amigo/term/

GO:0042742 defense response to bacterium
While the following GO categories, hence Group 2,

were above the 90% confidence interval from the per-
mutations (that is, in these categories, overall the Condi-
tional Haplotype Entropy, which is generally higher for
eQTLs, was especially-relatively-high for eQTLs com-
pared to other GO categories):
http://amigo.geneontology.org/amigo/term/

GO:0001501 skeletal system development
http://amigo.geneontology.org/amigo/term/

GO:0006869 lipid transport
http://amigo.geneontology.org/amigo/term/

GO:0006936 muscle contraction
http://amigo.geneontology.org/amigo/term/

GO:0007186 G-protein coupled receptor signaling
pathway
http://amigo.geneontology.org/amigo/term/

GO:0009653 anatomical structure morphogenesis
http://amigo.geneontology.org/amigo/term/

GO:0016567 protein ubiquitination
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http://amigo.geneontology.org/amigo/term/
GO:0018108 peptidyl-tyrosine phosphorylation
http://amigo.geneontology.org/amigo/term/

GO:0051056 regulation of small GTPase mediated signal
transduction
Group 1 includes bacterial defense genes which might

be expected to experience balancing selection [35,36],
which would preserve ancient diversity, allowing time for
recombination to produce short haplotypes; since the epi-
dermis serves a largely infection-defense role, we speculate
that balancing selection also acts there in order to main-
tain within-population diversity in pathogen environment.
For the other categories in Group 1, we propose simply
that the last 50,000 years is too short a time frame for
many beneficial mutations to arise in the highly-conserved
core functions of molecular biology [37].
Group 2 is of particular interest because it includes so

many current and emerging drug targets [38,39], as well as
the lipid transport genes which play such a large role in wes-
tern lifestyle diseases [40,41]. Follow-up work will focus on
utilizing these predictions to enrich the variant discovery
activities of the Pharmacogenomics Research Network
(PGRN) [42].
An additional GO term (Cellular Metabolic Process,

GO:0044237) was also above the confidence interval but
we chose to exclude it from the hypothesis-testing phase,
because by our approach it produces a conglomerate
taxon of genes that are simply not well-understood
enough to be assigned to any GO ID with fewer mem-
bers. This is not intended to be a rigorous statistical test
of these associations; instead, these two categories are
tested in a larger, more extensively genotyped hypoth-
esis-testing phase, described next.

Hypothesis-testing phase in the Westra data set/Blood
eQTL Browser
The following variant of Model 6 was then fit to a sin-
gle, substantially larger data set of eQTLs from whole
blood, as a hypothesis-testing phase:

eQTL ∼ H|H × Group + �DAF + MAF × Group + location (1)

This hypothesis-testing differed from Model 6 in the
hypothesis-generation phase above in that:
1) intergenic regions (defined as more than 1kB from

an adjacent gene) were associated with GO IDs, and
thus groups, of both their flanking genes,
2) all genes associated with the GO IDs in Group 1

and/or Group 2 were included (and not just those that
were not also assigned to a second GO ID which had
closer-to-125 members), in order to avoid any biases
that might have been introduced by our size-filtering,
3) the interaction terms were fit to each of Group 1 and

Group 2 (and independently to the few genes and inter-
genic regions that were a member of GO IDs in both),
4) the data set itself includes more eQTLs as a frac-

tion of all markers, including eQTLs having effect sizes
too small to be detected in the Chicago eQTL browser
data sets used for the hypothesis-generation phase.
In this test, shown in Table 5 Group 1 and Group 2

do show statistically significant differences in the effect
size for our Conditional Haplotype Entropy (H|H) mea-
sure (two-tailed P < 0.012 extrapolated from the stan-
dard error of the two t-test results from the conditional
logistic regression). This confirms the biological findings
outlined in the previous section, although Group 1
eQTLs shows no association with H|H at all (rather
than a negative association) and the association in
Group 2 is somewhat smaller than it was in the hypoth-
esis-generation phase data. These differences may be
attributable to some degree of cherry-picking in the
hypothesis-generation phase (Group 2 would be expected
to include GO IDs in which the effect size for H|H
appeared strong by chance, implying that there are many
more categories of GO IDs for which a significant differ-
ence in H|H effect size exists), or may imply that H|H is
a predictor only for strong eQTLs (i.e. having a large
effect on expression), which are in turn readily detected
in the smaller data used in the validation phase above but
swamped by weaker eQTLs in the larger validation data

Table 5. Whole-blood cis-eQTL conditional logistic regression results

Dataset Notes Number of
cis-eQTLs

Num. Genes
(Regions)

Total GTEx
Markers

bH|H ±
sH|H

Westra 2012 -
Group 1

GO:0006367, GO:0006396, GO:0008544, GO:0042742 11,527 324 (441) 108,372 -0.003 ±
0.003

Westra 2012 -
Group 2

GO:0001501, GO:0006869, GO:0006936, GO:0007186, GO:0009653,
GO:0016567, GO:0018108, GO:0051056,

63,269 1,265 (1,810) 598,118 0.005 ±
0.001

Westra 2012 -
Both

In both Group 1 and in Group 2 1,673 17 (57) 18,447 0.006 ±
0.007

Westra 2012 -
TOTAL

RNA extracted from whole blood. 495,268
/923,021

15,742 (14,417) 4,606,410

As Table 1 with two additional columns reporting the effect size (b) and standard error (s) of Adjusted Conditional Haplotype Entropy (H|H) in the hypothesis-
testing phase fit to the statistical model in Eq. 1 using the Westra[11] data set.
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set. These possibilities will need to be distinguished in
future work.
GO enrichment test on normalized likelihoods
The previous results arise from incorporation of interac-
tion terms into regression methods, and do not utilize
existing approaches for GO enrichment. In the supple-
ment (additional file 1), we present the results of an alter-
native approach where positive selection methods are
added to the logistic model, the improvement in model
prediction is assessed on a per-gene basis, and PantherDB
is used to test for an association between model improve-
ment and biological function GO category. This method
finds GO categories containing relatively few genes and a
significant interaction is not detected in the hypothesis-
testing data set. A supplementary report on this alternative
approach can be found in additional file 1.

Conclusions
Our Adjusted Conditional Haplotype Entropy (H|H) will
be distrubted as UCSC Genome Browser tracks [43] from
the Center for Pharmacogenomics webpage (http://phar-
macogenomics.osu.edu/). Conditional entropy indicative
of a selective sweep is a strong predictor of eQTLs for
genes in some medically interesting biological processes
but not in others. In categories of genes where H|H is a
weak or negative predictor of eQTLs, such as innate
immune system genes, this would be consistent with bal-
ancing selection acting on such eQTLs. The evolutionary
signatures underlying eQTLs in different biological pro-
cesses, populations [44] and systems vary widely.

Methods
GTEx candidate SNPs
The GTEx consortium [27] has filtered human genetic
variation for excess linkage disequilibrium, producing a
list of 6,820,472 candidate variations for which GTEx
plans to perform statistical tests in their tissues, which
we downloaded from their ftp site on July 5, 2014.
First, because this list of SNPs has been filtered for D’

[45] values, the risk of over-counting in our statistical
model fits is reduced. Second, we anticipate that tissue-
specific QTLs identified by GTEx will be the most rele-
vant data for future applications that may incorporate
selection as a component.

Adjusted conditional entropy in 1,000 genomes data
For these calculations, 1,000 genomes data [9] release 3
(Nov. 23, 2010) [46] was used, including all single
nucleotide polymorphisms (but not other types of varia-
tion) to which a reference SNP cluster (rs number) [47]
had been assigned. Our method for finding positively-
selected (long) haplotypes is based on information theo-
retical considerations, in particular the Khinchin axiom

for the Shannon entropy, also known as the (Shannon)
entropy decomposition formula [48]; for the purposes of
this manuscript, the Khinchin axiom is used only to jus-
tify the summation of conditional entropy in different
populations of roughly equal size. The formulas below
describe the decomposition of the entropy for a popula-
tion of haplotypes (in a given window), into a total
entropy and a conditional entropy associated with a
minor variant - the conditional entropy associated with
the major variant would also be a part of this decompo-
sition but is not used for our score. Frequency-depen-
dent terms, the total entropy, the conditional entropy
for the minor variant, and also any population-specific
effects are all combined into an ad-hoc linear Adjusted
Conditional Haplotype Entropy (H|H), which has a
mean of 0 in each 1,000 genomes population.
The difference between the total entropy and the con-

ditional entropy given the minor variant quantifies the
influence of the minor variant on the diversity of the
haplotypes in the window. The larger the difference
between entropies, the more conserved (longer) the hap-
lotype that carries the minor variant, consistent with a
recent selective sweep.
First, independently in each population, a window is

established around each marker SNP, m (where m must
be a GTEx Candidate SNP, defined above, but the
SNPs in the window are not so constrained):

bpmin : (
∑

bpmin≥i>m

Hi − 10) is minimized (1A)

bpmax : (
∑

m ¿ i≥bpmax

Hi − 10) is minimized (1B)

(meaning: bpmin and bpmax are chosen such-that the
sum is at least 10 but otherwise as small as possible).
Where Hi is the Shannon entropy [49] at each SNP in

the window (here using the natural log as the base) in
the corresponding 1,000 genomes population. The sum
of Hi in the window would correspond to entropy of the
window if the individual positions were all mutually
independent. The value of 10 was chosen arbitrarily in
order to make the results computationally tractable.
This gives a window that will be shorter around mar-

kers in more variable regions of the genome, and for the
same markers will be shorter in more genetically diverse
populations; this is intended to account for background
differences in haplotype lengths between populations
and regions.
Within this window, each 1,000 genomes chromosome

is assigned to a haplotype, containing all the markers
from bpmin to bpmax excluding the original marker m.
Given that each haplotype J is observed in some fraction
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n*J of the 1,000 genomes participants in population p,
we define H*pm:

H ∗ pm = −
∑

J:n∗J>0

ln
(
n∗J

) × n∗J (2)

(this is the true entropy of the window - zero minus the
sum over all haplotypes J in the population of the haplo-
type frequency times the log haplotype frequency).
Further, given that each haplotype J is observed in some
fraction of the n’J of the 1,000 genomes participants in
population p who are carrying the minor variant at m,
we define H’pm:

H’pm = −
∑

J:n’J>0

ln
(
n’J

) × n’J (3)

Finally, these entropies are summed across all 1,000 gen-
omes populations, and adjusted in order to account for the
linear contribution of the log of the minor allele frequency
(note that this factor also replaces the frequency weight
which would apply for the true entropy decomposition) to
give the Adjusted Haplotype Conditional Entropy (H|H);
Np is the number of chromosomes in population p, NMp is
the number of major allele carrying chromosomes in
population p, and mp is the number of minor allele carry-
ing chromosomes in population p.

H|Hm = −
∑

all p:NMp>5

H ∗ pm − H’pm − αp − βMp ln
(
NMp

) − βmp ln
(
Nmp

)
(4)

ap, bMp, and bmp are chosen empirically so that the
average value of this sum, in each 1,000 genomes popu-
lation, would be 0; see Table 6 below. The intent is that
the adjusted conditional entropy would be more inde-
pendent of both the minor allele frequency and the
number of populations in which the SNP is found, both
of which are better expressed using the minor allele fre-
quency and differential allele frequency measures.

Chicago eQTL browser data sets
Via the Chicago eQTL browser (http://eqtl.uchicago.
edu/cgi-bin/gbrowse/eqtl/) we obtained the seven QTL
data sets listed in Table 1.
These data sets were used only in the hypothesis-gen-

eration phase.

Westra/Blood eQTLs
Via the blood eQTL browser maintained by the authors
(http://genenetwork.nl/bloodeqtlbrowser/) of a study
[11] primarily focused on potential disease consequences
for trans-eQTLs, we obtained cis-eQTLs from a very
large (5,311 participants in their discovery phase, with
an additional 2,775 participants in their replication
phase) study of expression genetics in whole human
blood. These cis-eQTLs are used only in our hypoth-
esis-testing phase.

1,000 Genomes Selection Browser results
A variety of diversity and positive selection genetics
measures are made available via the 1,000 Genomes
Selection Browser [26]. The entire data set was down-
loaded on January 10, 2014.
Of these, ΔDAF [30], |ΔDAF| [30], ΔiHH [17], Fst [31],

and iHS [17], along with minor allele frequency (MAF)
were used in at least one model in the hypothesis-genera-
tion phase. In the final model and in the hypothesis-testing
phase, only ΔDAF and MAF were used. Positive selection
measures that report results in windows (including the
Composite of Multiple Signals [34] score, distributed else-
where) were not used because preliminary results indi-
cated that the gene-based Conditional logistic regression
would not converge.

Covariates incorporated using Annovar and the UCSC
Table Browser
The results from the previous sections were matched to
genes and within-gene location using Annovar [50]
which in-turn utilizes 2013 ENCODE data [28]. Once
mapped to gene symbols, gene ontology [18] IDs are
mapped using the UCSC table browser [51] with tables
downloaded on or after September 25, 2014.
To account for differential eQTL frequencies in differ-

ent locations within genes [10], the within-gene locations
included in the Annovar distribution were converted into
four distinct location categories as follows:
exonic, ncRNA_exonic exonic
UTR3, UTR5, ncRNA_UTR3, ncRNA_UTR5 UTR
intronic, splicing, ncRNA_intronic, ncRNA_splicing

intronic
upstream, downstream flanking

Table 6. Empirical adjustments in conditional entropy

Population Α bm bM
ASW 4.9 -0.74 -0.22

CEU 5.8 -0.54 -0.52

CHB 6.8 -0.50 -0.75

CHS 7.0 -0.51 -0.76

CLM 5.2 -0.54 -0.48

FIN 5.6 -0.53 -0.47

GBR 6.0 -0.56 -0.55

IBS 5.2 -0.81 -0.79

JPT 7.2 -0.56 -0.79

LWK 4.0 -0.64 -0.03

MXL 5.7 -0.49 -0.60

PUR 5.5 -0.58 -0.52

TSI 6.0 -0.53 -0.55

YRI 4.3 -0.65 -0.11

Each cell gives the paramaters for a regression fit across all GTEx candidate
eQTLs for the Adjusted Haplotype Conditional Entropy (H|H) in the
corresponding population, including the intercept (a), the contribution from
the number of chromosomes carrying the minor variant (bm), and the
contribution from the number of chromosomes carrying the major variant (bM).
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For a SNP in multiple categories, the category
higher in the above list is chosen only (e.g. a SNP that
is both in an exon and upstream of the promoter for a
non-coding gene is classified as exonic only).
Upstream and downstream are defined as within 1kB
of the most distal promoter and transcriptional termi-
nators defined in ENCODE; this 1kB distance is the
default for Annovar.
In the hypothesis generation phase, each gene was

assigned to a single GO ID in the biological function
category; when a gene is assigned to multiple categories
(as is generally the case), it was instead assigned only to
the category that was closest to containing exactly 125
genes (with ties broken for smaller categories, so a GO
ID with 100 genes would be preferred to a GO ID with
150). Once this was resolved, all GO ids with 50 or
fewer assigned genes, along with all intergenic regions,
were assigned to a large “OTHER” category.
In the hypothesis testing phase, this mapping to a sin-

gle GO id is not used. Instead, genes were assigned either
to one of the Group 1 GO IDs in a group for which our
haplotype score had a positive association with eQTL sta-
tus in the validation/model selection phase (see Condi-
tional logistic regression below,) to a Group 2 GO IDs
for which our haplotype score had a negative association
with eQTL status in the validation/model selection
phase, to GO categories in both groups, or to neither
group; eQTLs in intergenic regions were assigned to the
group(s) corresponding to the closest flanking genes.

Conditional logistic regression
Conditional logistic regression, as implemented in the
survival package [52] for the statistical programming
language R, is used for all statistical model fitting. The
notation used in the results closely matches the R syn-
tax, with gene assignments from Annovar (see Covari-
ates incorporated using Annovar and the UCSC
Table Browser) used as the stratification variable. Each
intergenic region is treated as an individual and distinct
gene for stratification purposes.

Meta-analysis of conditional logistic regression results
In the Conditional logistic regression above, gene by
gene variability plays a significant role. Therefore, in
order to identify GO categories in which the Adjusted
Haplotype Conditional Entropy reproducibly reported
different extremes, the 1-to-1 mapping of genes to GO
IDs was permuted 100 times (with genes in the OTHER
category, including intergenic regions and genes mapped
to GO IDs with fewer than 50 members after 1-to-1
mapping, not permuted). Within each of the 100 per-
mutations, the statistical model (Model 6, see Results)
was fit to the permuted data.

In both the original data and in each permutation, the
following score was summed across the seven data sets:

If(β > σ )β − σ

If (β < 0 − σ) β + σ

0 otherwise.
(5)

Where b is the effect size, and s is the standard error
in the effect size. The 100 permutations of 94 such GO
IDs produced 9,400 such sums - these were used to pro-
duce a 90% confidence interval, and GO IDs in the ori-
ginal data for which the sum was outside of this
confidence interval, were continued onto the hypoth-
esis-testing phase.

Supplementary enrichment tests
As a supplement to the analysis reported in the main
text, an additional round of analysis, testing for enrich-
ment of extreme changes in likelihood when models
incorporate additional positive selection predictions
according to GO IDs, is reported in additional file 1.

Additional material

Additional file 1: See Conditional Haplotype Information and QTLs
wTemplate Jan 29 - Supplement.pdf See Handelmanetal_Figure1.pdf
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