
Research Article
Constructing and Validating a Pyroptosis-Related Genes
Prognostic Signature for Stomach Adenocarcinoma and Immune
Infiltration: Potential Biomarkers for Predicting the
Overall Survival

Jingmin Xu,1 Ke Chen,2 Zhou Wei ,3 Zixuan Wu ,3 Xuyan Huang ,3 Minjie Cai ,4

Kai Yuan ,5 Peidong Huang ,5 Jing Zhang,6 and Shuai Wang 7

1Yantai Hospital of Traditional Chinese Medicine, Shandong Province, China
2Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou,
510655 Guangdong, China
3Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China 510006
4Shantou Health School, Shantou, Guangdong Province, China 515061
5Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China 650500
6Department of Pediatrics, Shandong Second Provincial General Hospital, Shandong, China
7Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China

Correspondence should be addressed to Shuai Wang; 332002160@qq.com

Received 4 July 2022; Accepted 10 September 2022; Published 26 September 2022

Academic Editor: Jayaprakash Kolla

Copyright © 2022 Jingmin Xu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Stomach adenocarcinoma (STAD) is a kind of cancer that begins in the stomach cells and has a poor overall survival
rate. Following resection surgery, chemotherapy has been suggested as a curative method for stomach cancer. However, it is
ineffective. Pyroptosis, a kind of inflammatory programmed cell death, has been shown to play a significant role in the
development and progression of STAD. However, whether pyroptosis-related genes (PRGs) can be utilized to predict the
diagnosis and prognosis of gastric cancer remains unknown. Method. The research measured at predictive PRGs in STAD
samples from TCGA and GEO. Lasso regression was used to build the prediction model. Coexpression analysis revealed that
gene expression was linked to pyroptosis. PRGs were found to be overexpressed in high-risk individuals, implying that they
could be used in a model to predict STAD prognosis. Result. Immunological and tumor-related pathways were discovered
using GSEA. In STAD patients, the genes GPX3, PDGFRL, RGS2, and SERPINE1 may be connected to the cancer process. The
levels of expression also differed between the two risk groups. Conclusion. The purpose of this study is to identify and verify
STAD-associated PRGs that can effectively guide prognosis and the immunological milieu in STAD patients as well as offer
evidence for the development of pyroptosis-related molecularly targeted therapeutics. Therefore, PRGs and the link between
immunological and PRGs in STAD may be therapeutic targets.

1. Introduction

Gastric cancer (GC), a disease with a wide range of manifes-
tations, is the fifth most frequent cancer and the third biggest
cause of cancer-related deaths globally. The most frequent

histologic form of gastric cancer, stomach adenocarcinoma
(STAD), is a fast developing, aggressive, and malignant GC
that accounts for 95 percent of all gastric tumors. Several pre-
vious studies have found that Helicobacter pylori infection
causes 90% of STAD cases [1]. Many researchers have
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recently proposed that STAD could also be brought about by
autoimmunity, other bacteria, and their metabolites (such as
N-nitroso compounds or acetaldehyde) [2]. STAD research
has advanced to the point where it may be regarded as a col-
lection of uncommon illnesses that risk human health [3].
Currently, the treatment of this disease is as important in
the field of tumor research [4]. Chemotherapy is a significant
factor of tumor treatment, but because chemotherapy drugs
are cytotoxic and seem to have a lot of side effects, long-
term use will cause major problems for patients. Repeated
use can easily result in tumor cell drug resistance, reducing
the curative effect [5]. Despite this, the absence of precise bio-
markers for early tumor diagnosis, as well as restricted pre-
clinical models, has impeded successful STAD therapeutic
treatment [6, 7]. As a result, there is an urgent need to iden-
tify novel and reliable biomarkers for the early identification
and prognosis of STAD. Finding treatment targets for STAD
and elucidating the molecular identification of diagnostic
biomarkers are critical for basic and clinical STAD research.

One of life’s most fundamental challenges is cell death.
The capacity to avoid cell death, which is a characteristic

of cancer, not only contributes to the formation of cancer
but also plays a significant role in the development of thera-
peutic resistance, recurrence, and metastasis [8]. The ulti-
mate objective of cancer therapies like radiation,
chemotherapy, and immunotherapy, which has recently
made great progress, is to maximize tumor cell death while
causing the least amount of injury to normal tissues. Tumor
cells’ innate genetic and epigenetic heterogeneity, as well as
metabolic flexibility and other variables, provide greater
adaptability to adverse tumor settings, resulting in treatment
resistance and spread potential [9]. Pyroptosis is a double-
edged sword that plays a twofold role in modifying tumor
growth due to the ongoing activation of the inflammasome.
Pyroptosis aids in the formation of a tumor-suppressive
immunological milieu by unleashing inflammatory chemi-
cals capable of directly destroying cancer cells and galvaniz-
ing an anticancer immune response [10]. Pyroptosis, a
highly immunogenic form of cell death, induces local
inflammation and draws inflammatory cell infiltration,
offering a good chance to reduce immunosuppression of
tumor microenvironments (TME) and stimulate a systemic
immune response in the treatment of solid tumors [11]. In
rare cases, triggering pyroptosis can directly kill tumor cells.
According to new study, pyroptosis has a role in cancer for-
mation, differentiation, invasion, and late metastasis as well
as tumor sensitivity to immune medication therapy [12].
Pyroptosis-related chemicals have a crucial oncogenic func-
tion in the development of gastric cancer.

Immune checkpoint inhibitor (ICI) profiles in STAD
patients may aid in diagnosing, analyzing, and anticipating
therapy results [13]. The reason and methods of STAD’s
aberrant gene expression and pyroptosis remain unclear at
this time. Understanding how PRGs regulate STAD produc-
tion might result in the development of an indicator that can
be employed as a therapeutic strategy.

2. Materials and Methods

We used the approaches proposed by Zi-Xuan Wu, et al.
2021 [14].

2.1. Datasets and PRGs. The Cancer Genome Atlas was used
to collect STAD gene expression patterns and clinical data
(TCGA) [15]. 375 STADs and 32 normal data were regis-
tered in the TCGA on May 6, 2022. The Gene Expression
Omnibus (GEO) was searched for mRNA expression on
May 6, 2022. Series: GSE84437. Platform: GPL6947-13512.
The GEO was used to maintain 433 STAD cases
[16](Table 1). We also identified 52 PRGs in total [17]
(Table S1).

2.2. DEGs Linked to Pyroptosis and Mutation Rates. Perl
matched and sorted transcription data and human configu-
ration files to acquire exact mRNA data. The gene IDs were
converted into gene names using information from the
ensemble database. The R Limma was utilized to get the
expression data for the PRGs. FDR < 0:05 and jlog 2FCj ≥
1 were used to evaluate if there was a significant change in
PRG expression [18]. The role of differentially expressed

Table 1: Patients’ clinical features.

Variable Number of samples

TCGA

Gender

Male/female 285/158

Age at diagnosis

≤65/>65/NA 197/241/5

Grade

G1/G2/G3/G4/NA Unknown

Stage

I/II/III/IV/NA 59/130/183/44/27

T

T1/T2/T3/T4/NA 23/93/198/119/10

M

M0/M1/NA 391/30/22

N

N0/N1/N2/N3/NA 132/119/85/88/19

GEO

Gender

Male/female 296/137

Age at diagnosis

≤65/>65 283/150

Grade

G1/G2/G3/G4/NA Unknown

Stage

I/II/III/IV/NA Unknown

T

T1/T2/T3/T4 11/38/92/292

M

M0/M1/NA Unknown

N

N0/N1/N2/N3 80/188/132/33
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PRGs that were both up- and down-regulated was investi-
gated (DEGs). We also explored the genetic alterations in
these genes. Cbioportal was used to estimate DEG mutation
frequencies.

2.3. Tumor Classification Based on the DEGs. First, we used
the Limma and ConsensusClusterPlus package to do cluster
analysis, and we separated the prognosis-related PRGs into
two clusters: cluster 1 and 2. Survminer was being used to
study the survival of PRG subgroups, and survival was used
to evaluate PRG’s predictive validity. The pheat map was
used to generate a heat map of the differential gene expres-
sion of prognosis-related PRGs, and the relationship
between PRGs and clinicopathological features was
explored. The limma was used to identify differences in tar-
get gene expression across categories. To study the gene
interaction between STAD target genes and prognostic
PRGs, the limma and corrplot programs were utilized.

2.4. Development of PRGs Prognostic Signature. Every STAD
patient’s risk score was also evaluated. The DEGs were
divided into two groups based on their support for the
median score: low-risk and high-risk. Lasso regression was
shown to be associated with two risk classifications. The
boldness interval and risk ratio were estimated after seeing
the image, and the forest diagram was created as a conse-

quence. Survival curves for the two groups were developed
and compared. To test the model’s accuracy in predicting
survival in STAD, the timeROC was used to generate a com-
parable receiver-operating characteristics (ROC) curve. The
risk and survival status of PRGs were explored using the risk
score’s probability curve. The link between two PRGs
patients was established, as was the relationship between
clinical characteristics and the risk prediction model. Risk
and clinical association analyses were distributed. T-
distributed Neighbor Embedding (T-SNE) and Principal
Component Analysis (PCA) were also examined. To deter-
mine if the prognostic model correctly classified patients
into two risk groups, a representation was constructed to
predict the 1-, 3-, and 5-year OS of STAD patients by the
desegregation of prognosticative signals.

2.5. Functional Enrichment. The associated biological path-
ways were then examined using Gene Ontology (GO). BP,
MF, and CC are controlled by differentially expressed PRGs.
PRGs were further investigated using R based on KEGG
dataset [19]. Filterpvalue < 0:05 was used to evaluate if there
was a significant change in GO and KEGG.

2.6. GSEA Enrichment Analyses. GSEA was used to find
related functions and route alterations in a variety of sam-
ples, while Perl was used to input data. The accompanying
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Figure 1: PRGs’ expressions and interactions. (a) Heat map. (b) PPI network. (c) Correlation network. (d) Mutations.
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score and graphs were used to assess whether the activities
and routes within the different risk categories were dynamic
or not. Each sample was assigned a ‘H’ or ‘L’ label based on
whether it included a high-risk cluster of prognosis-related
PRGs.

2.7. Comparison of the Immune Activity. We examined the
enriched score of immune cells and activities in two risk
groups using the ssGSEA in both the TCGA and GEO
cohorts. We also explored the connection between PRGs,
checkpoints, and m6a.

3. Results

3.1. PRGs That Differ in Expression. Twenty-nine DEGs have
been linked to pyroptosis (23 upregulated, 6 downregulated;
Table S2). (Figure 1(a)). We conducted a protein-protein

interaction (PPI) research, the results of which are given in
Figure 1(b). By setting the minimum required interaction
value to 0.4, we identified that TNF, CASP8, IL18, CASP3,
IL1A, CASP9, PYCARD, HMGB1, GSDMD, and TP53 were
hub genes (Table S3). These genes might be utilized to
create independent STAD prognostic indicators. The
correlation network, seen in Figure 1(c), is made up. We
discovered that the gene mutations were truncating and
missense variants (Figure 1(d)). 15 genes had a 10%
mutation rate, with COL12A1 being the commonly altered
(16%).

3.2. Drug Prediction Models and Sensitivity Analysis. The
drug prediction of the model showed that there were some
genes with significant differences (Figure 2). Furthermore,
the association analysis between DEG expression in the
prognostic model revealed that several genes were
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Figure 2: Drug prediction models.
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substantially linked with medication sensitivity. For exam-
ple, there was a strong association between SERPINE1
expression and Tamoxifen, Simvastatin, Lenvatinib, Niloti-
nib, Dasatinib, Vorinostat, Midostaurin, Bleomycin, and
Pazopanib. These findings suggest possible future medica-
tion development paths (Figure 3).

3.3. Tumor Classification. In TCGA cohort, we conducted a
consensus clustering analysis on 375 STAD sufferers to
investigate the relationships between PRGs and STAD sub-
groups. The intragroup correlations were highest and the
intergroup correlations were weakest when the clustering
variable (k) was adjusted to 2. (Figure 4(a)). A heat map
reflects both the gene expression patterns and clinical char-
acteristics (Figure 4(b), Table S4). PRG subgroups were
used in a survival study to explore the predictive capacity
of PRGs, and cluster 1 had a higher survival rate
(P = 0:005; Figure 4(c)), as shown in Figure 4(c).

3.4. In the TCGA Cohort, a Prognostic Gene Model Was
Developed. Seven important PRGs were found throughout
the COX investigation. These PRGs (GPX3, CD36,
PDGFRL, EGFLAM, RGS2, CYTL1, and SERPINE1) were
found as independent STAD prognostic markers
(Figure 5(a)). The most minor absolute shrinkage and choice
operator Cox regression analysis (LASSO) and the optimal
value were used to build a gene signature (Figures 5(b) and
5(c)). We observed that a patient’s risk score was negatively
connected to STAD patients’ survival using a risk survival

standing plot. The presence of high-risk PRG signatures
was linked to a reduced chance of survival (P < 0:001,
Figure 5(e)). For 1-, 3-, and 5-year survival rates, the AUC
of the unique PRGs signature was 0.631, 0.664, and 0.735,
respectively (Figure 5(f)). Our data analysis revealed that
the great majority of STAD patients lived for less than 5
years, therefore the AUC of less than 0.6 in the fifth year is
a result of this. PCA and t-SNE results indicated that
patients with varying risks were divided into two groups
(Figures 5(g) and 5(h)).

3.5. The Risk Signature Is Externally Validated. We observed
that a patient’s risk score was adversely related to STAD
patient survival. Surprisingly, majority of the novel PRGs
discovered during this research were adversely related with
our risk model, comparable to the TCGA findings
(Figure 6(a)). High-risk PRG signatures were related with a
lower likelihood of survival (P = 0:011, Figure 6(b)). The
AUC of the distinctive PRGs signature was 0.594, 0.613,
and 0.602 for 1-, 3-, and 5-year survival rates, respectively
(Figures 6(c)). Our data analysis found that the vast majority
of STAD patients lived for more than 1 years, resulting in an
AUC of less than 0.7 in the fifth year. The PCA and t-SNE
findings showed that patients with variable risks were effi-
ciently sorted into two different groups (Figures 6(d) and
6(e)). We also created a heat map (Figure 6(e)).

3.6. Independent Prognostic Value of the Risk Model. In
TCGA cohort, COX analysis demonstrated that the PRGs
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signature (HR: 9.629, 95CI: 2.818-32.903), Age (HR: 1.034,
95CI: 1.015-1.053), M stage (HR: 2.212, 95CI: 1.189-
4.115), and N stage (HR: 1.281, 95CI: 1.088-1.508) were pri-
marily independent predictive variables for the OS of STAD
patients (Figures 7(a) and 7(b)). In GEO cohort, COX anal-
ysis demonstrated that Age (HR: 1.022, 95CI: 1.009-1.034),
T stage (HR: 1.609, 95CI: 1.262-2.051), and N stage (HR:
1.526, 95CI: 1.298-1.792) were primarily independent pre-
dictive variables for the OS of STAD patients (Figures 7(c)
and 7(d)). In addition, for the TCGA cohort, we con-
structed a heat map of clinical characteristics (Figure 7(e))
(Table S5-6).

3.7. Enrichment Analysis of Pyroptosis-Related Genes. GO
enrichment analysis revealed 550 core targets, including Bio-
logical processes (BP), molecular functions (MF), and cellu-
lar components (CC). The MF mainly involves actin–
binding (GO:0003779) and enzyme inhibitor activity
(GO:0004857). The CC mainly involves focal adhesion
(GO:0005925) and cell leading edge (GO:0031252). The BP
mainly involves skeletal system development
(GO:0001501), cell growth (GO:0016049), and negative reg-

ulation of hydrolase activity (GO:0051346). In addition, the
main signaling pathways were identified by KEGG enrich-
ment analysis, it revealed the over-expressed genes were
mainly involved in PI3K-Akt signaling pathway
(hsa04151), Proteoglycans in cancer (hsa05205), Focal adhe-
sion (hsa04510), Vascular smooth muscle contraction
(hsa04270), Protein digestion and absorption (hsa04974),
and Amoebiasis (hsa05146) (Figure 8 and Table S7a-b).

3.8. Analyses of GSEA. According to GSEA, the majority of
PRG prognostic signatures controlled immunological and
tumor-related pathways—ecm receptor interaction, comple-
ment and coagulation cascades, hedgehog, tgf beta, jak stat,
and chemokine signaling pathway, etc. Each cluster’s top
six enriched functions or pathways are displayed (Figure 9,
Table 2). The “hedgehog signaling pathway” was the most
enriched, and some of the genes were shown to be positively
associated to H or L. (Table S8a-b).

3.9. Immune Activity Comparisons. We investigated the
enrichment scores of 16 kinds of immune cells and the activ-
ity of 13 immune-related activities in both the TCGA and
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Figure 5: Continued.
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GEO cohorts using the single-sample gene set enrichment
approach (ssGSEA). In the TCGA cohort, IDCs, NK cells,
and Th2 cells did not differ significantly between the two
groups (P > 0:05). Other immune cells generally show
higher levels of infiltration in the high-risk grouping
(Figure 10(a)). APC coinhibition and MHC class I did not
differ significantly between the two groups (P > 0:05). Other
immune-related function generally show higher levels in the
high-risk grouping (Figure 10(b)). When assessing the
immune status in the GEO cohort, similar conclusions were
drawn (Figures 10(c) and 10(d)).

3.10. An Examination of the Relationship between PRGs and
Immunological Checkpoints and m6a. LAIR1, CD274,
HAVCR2, PDCD1LG2, TNFRSF4, and other genes were
expressed differently (Figure 11(a)). When PRG expression
levels were compared between the two-risk groups, FTO
was significantly higher in the high-risk group. While
YTHDF2, RBM15, ZC3H13, METTL3, HNRNPC, and
YTHDC1 were shown to be much more significant in the
low-risk group (Figure 11(b)). The expression of FTO asso-
ciated with m6a modification was higher in the high risk
group, indicating that it may be linked to the malignancy
activity in STAD sufferers. While YTHDF2, RBM15,
ZC3H13, METTL3, HNRNPC, YTHDC1 with m6a modifica-
tions had higher expression in the low risk group, indicating
that they might be tumor suppressors.

4. Discussion

Treating STAD is a severe clinical issue because of its
advanced stage and terrible prognosis. The current state of
precision medicine for STAD is limited by a scarcity of pow-
erful tumor-killing initiators and selective tumor-targeting
therapeutic agents. Recent study has shown that the focused
therapeutic impact of STAD may be successfully increased
by modifying the process of programmed tumor cell death
[20]. Pyroptosis, a recently identified process of pro-
grammed cell death, is gaining prominence in the context

of innate immunity, carcinogenesis, and patient responses
to anticancer therapy [21, 22]. Pyroptosis occurs in
pathogen-infected cells, causing an inflammatory reaction
and cell lysis within the host body [23]. Pyroptosis manifests
itself in malignancies in two ways. On the one hand, the
inflammasome can efficiently promote tumor cell death by
activating the pyroptosis pathway, therefore reducing tumor
cell growth and invasion [24]. It is unknown how it impacts
STAD development by modifying PRGs. We studied the
function of critical proteins and processes in STAD progno-
sis and established a suitable biomarker and anticancer
activity.

In a university Cox regression investigation, PRGs were
found to be strongly linked with STAD prognosis. The
researchers discovered four prognostic PRGs that have been
expressed differently in two-risk persons. Some PRGs were
identified to be highly expressed in high-risk, whereas others
were seen to be differentially expressed in low-risk (P < 0:05
). A survival analysis was used to find the prognostic capac-
ity of PRGs after additional examination into their influence.
Individuals with STAD who had low-risk PRGs survived
longer. The markers GPX3, PDGFRL, RGS2, and SERPINE1
were found to be significantly increased in the high-risk
group, suggesting that all of these markers may be implica-
ted in the malignancy processes for STAD patients and
may be cancer-promoting factors. The findings of the
above-mentioned biomarker suggest some suggestions for
future work, but concrete evidence that they will be respon-
sible for the synthesis of important transcription factors
associated with pyroptosis regulation, such as PD-L1,
GSDMB, and ROS-NLRP3 [25–27], is lacking, necessitating
further exploration.

Compared to normal tissues and cells, Gpx3 expression
was lower in gastric cancer (GC) patients and GC cell lines.
Cai et al. believes that Gpx3 inhibits gastric cancer migration
and invasion by targeting NFкB/Wnt5a/JNK signaling [28].
When GPX3 expression in breast cancer cells and tissues
was compared to normal controls, it was shown to be low.
GPX3 overexpression inhibited breast cancer growth, colony
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formation, migration, and invasion in vitro. Furthermore,
hypermethylation of the GPX3 promoter and suppression
of hsa-miR-324-5p release have been identified as probable
pathways for GPX3 downregulation in breast cancer [29].
Through bioinformatics analysis, Huo et al. discovered

PDGFRL was one of the tumor-associated macrophages
(TAMs). It is vital in the progression of malignant tumors
and performed well in predicting overall survival (OS) in
GC [30]. Cancer cell dormancy and tumor relapse are medi-
ated by RGS2-mediated translational control [31].
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SERPINE1 was found to be significantly upregulated in gas-
tric tissues and associated with poor outcomes in a genome-
scale analysis. As a result, Liao et al. thought of SERPINE1 as
a diagnostic and prognostic biomarker in GC [32]. Because
these PRGs appear to be associated with cancer processes
in STAD patients, these studies highlight the validity and
plausibility of our findings. According to the OS and ROC
analyses of the GSE84437 KM-curves, a PRGs-signature
might be employed as a viable predictive predictor. Only a
few investigations on the gene alterations associated with
pyroptosis have been conducted. More research is needed
to fully understand the mechanics of PRG alteration and
classification, as well as to validate our findings.

KEGG analysis found that the genes were primarily
involved in PI3K-Akt signaling pathway. DHA protects
against hepatic ischemia reperfusion injury by inhibiting
pyrolysis and activating the PI3K/Akt signaling pathway
[33]. Pioglitazone Provides Neuroprotection Against
Ischemia-Induced Pyroptosis by inhibiting the RAGE path-
way by Activating PPAR-ɤ [34]. Consequently, Pyroptosis

is crucial in STAD. In GSEA, the hedgehog signaling path-
way was found to be the most significantly enriched path-
way. Smo and Gli1 genes are components of the hedgehog
signaling pathway, and their over expression can cause
STAD. The degree of expression is linked to the stage and
severity of STAD [35]. Furthermore, studies have shown that
Hedgehog-interactingprotein (HHIP) may inhibit the
growth and proliferation of STAD cell lines by blocking
Hedgehog signal transduction, which may become a new
biological marker for STAD and a new approach for STAD
treatment by targeting the drug target of HHIP formation
[36]. Overactivation of the hedgehog pathway is linked to
the occurrence and progression of STAD, and specific tar-
geted therapy targeting this pathway may become an effec-
tive new measure for clinical treatment of STAD [37].
Taking the aforementioned properties into account, PRGs
may influence STAD cell migration and proliferation via
modulating the nod like receptor signaling pathway.

Furthermore, our technique accurately predicts STAD
patients’ survival. Increases in risk score are linked to higher
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Table 2: The top six enriched functions or pathways.

NAME ES NES NOM p value FDR q value

DNA replication 0.6792336 1.622164 0.054435484 0.67065173

Mismatch repair 0.67632705 1.6375834 0.04192872 0.75468564

Spliceosome 0.6235964 1.8821576 0.014522822 0.47306138

Homologous recombination 0.5929925 1.5829824 0.06329114 0.42215267

Cell cycle 0.5691944 1.8317317 0.024896266 0.3576104

Proteasome 0.557963 1.4626185 0.13636364 0.3447309

Other glycan degradation -0.664515 -1.7258755 0.018480493 0.226103

Alpha linolenic acid metabolism -0.64434105 -1.8918467 0.004106776 0.10805818

Ribosome -0.61395043 -1.4429549 0.18145162 0.4314213

Fructose and mannose metabolism -0.58743125 -1.8711866 0.006085193 0.08654529

Fatty acid metabolism -0.5829716 -1.9166667 0.006097561 0.16615777

Glycosaminoglycan degradation -0.5582348 -1.6052122 0.046511628 0.2974447
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Figure 10: The ssGSEA scores for immune cells and immune function. (a,b) TCGA cohort. (c,d) GEO cohort.
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death rates and a higher high-risk ratio. Based on our find-
ings and data from the literature, PRGs appear to be signif-
icant biomarkers for predicting STAD patient outcomes.
Recent research has discovered a link between several cell
death mechanisms and anticancer immunity. Even in ICI-
resistant tumors, pyroptosis, ferroptosis, and necroptosis
activation in conjunction with ICIs resulted in synergistically
improved anticancer efficacy [38, 39]. De novo pyroptosis in
ICI-resistant cancers can produce an inflammatory milieu
that mediates tumor susceptibility to immune checkpoint
inhibitors (ICI), promoting pyroptosis and inhibiting tumor
growth in autochthonous tumors [40]. Despite the fact that
there has been minimal study on PRGs and STAD, based
on the evidence presented above, it is reasonable to believe
that PRG changes were associated with the onset and devel-
opment of STAD.

There have been a number of publications published in
recent years that examine the association between pyroptosis
and STAD [41, 42]. However, when compared to other stud-
ies, the approach used in this study is novel. To begin, PRGs

in the TCGA database are routinely updated. We have made
further additions to previous articles. Second, TCGA data
were used as the primary analysis, with GEO data included
into the common pattern for model validation. Third, GO
and KEGG analyses, as well as a GSEA analysis, were per-
formed. The conclusions of the two investigations coincided,
which increased trust. Fourth, to increase the trustworthi-
ness of the results, we employed different databases to quan-
tify immune cells and functions.

Our analysis has the following limitations: (1) we will be
unable to obtain sufficient different data sources from other
publically available sites to validate the model’s trustworthi-
ness. (2) We investigated the functional enrichment pro-
cesses engaged in the regulatory networks of distinct risk
groups; however, their particular mechanisms in enabling
pyroptosis require more exploration to corroborate our find-
ings. (3) Although the model was validated in the GEO data-
set, the prediction model developed in this work still has to
be externally and practically verified before it can be used
on clinical patients.
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Figure 11: (a) Expression of immune checkpoints and (b) the expression of m6a-related genes.
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5. Conclusions

In STAD sufferers, 4 expected PRGs were discovered. The
findings contribute to a better understanding of the immu-
nological system’s role in pyroptosis, perhaps paving the
way for new effective treatments and prognostic biomarkers.
Pyroptosis regulation may be a promising therapeutic tech-
nique for improving the result of STAD immunotherapy
and providing a tailored prognostic tool for prognosis and
immune response.
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