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Abstract

Background: The present study aimed to investigate the underlying role of interferon-regulatory factor 2 (IRF2)-ino-
sitol polyphosphate-4-phosphatase, type-Il INPP4B) axis in the regulation of autophagy in acute myeloid leukemia

(AML) cells.

Methods: Quantitative real time PCR (QRT-PCR) and western blot were performed to determine the expression
levels of IRF2, INPP4B and autophagy-related markers in AML cell lines. Autophagy was assessed by elevated Beclin-1
expression, the conversion of light chain 3 (LC3)-I to LC3-Il, downregulated p62 expression and green fluorescent pro-
tein (GFP)-LC3 puncta formation. The colony formation and apoptosis assays were performed to determine the effects

of IRF2 and INPP4B on the growth of AML cells.

Results: [RF2 and INPP4B were highly expressed in AML cell lines, and were positively correlated with autophagy-
related proteins. Overexpression of IRF2 or INPP4B stimulated autophagy of AML cells, whereas inhibition of IRF2

or INPP4B resulted in the attenuation of autophagy. More importantly, IRF2 or INPP4B overexpression reversed
autophagy inhibitor, 3-methyladenine (3-MA)-induced proliferation-inhibitory and pro-apoptotic effects, while IRF2 or
INPP4B silencing overturned the proliferation-promoting and anti-apoptotic effects of autophagy activator rapamycin.

Conclusion: IRF2-INPP4B signaling axis attenuated apoptosis through induction of autophagy in AML cells.
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Background

Acute myeloid leukemia (AML) is a hematopoietic
malignancy characterized by the abnormal proliferation
of undifferentiated myeloid precursors and impaired
hematopoiesis [1]. As the most common type of acute
leukemia in adults, AML develops rapidly, resulting in a
low long-term survival rate, and its incidence increases
with increasing age. Although 50-75% patients with
AML have a response to chemotherapy, relapse repre-
sents the major cause of treatment failure [2]. So far, the
pathogenesis of AML has not been fully elucidated.
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It has become increasingly clear that autophagy might
be involved in a variety of multiple biological processes
(e.g., cell survival, aging and death) and implicated in
metabolic diseases, tumors, degenerative diseases, aging
and infection [3, 4]. Several lines of evidence suggest that
autophagy and apoptosis share a signaling-dependent
regulated process that allows the degradation of some
cellular proteins in autophagosomes essential for main-
taining cell homeostasis and organelle renewal [5]. At
present, autophagy is generally regarded as a regulatory
mechanism of defense and a survival response to stress
[6]. Apoptosis, known as a form of programmed cell
death, is a critical component in discarding unsalvage-
able cells or inhibiting overgrowth. Autophagy, on the
other hand, initially attempts to save the injured cells.
However, autophagy behaves oppositely and cooperates
with apoptosis following metabolic stress subsequently
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accelerates cell death [7, 8]. Therefore, the imbalance
between autophagy and apoptosis potentially leads
to tumorigenesis. Liu and colleagues reported that
autophagy-related gene 5 (Atg5)-dependent autophagy
contributed to AML development [9]. Watson et al.
demonstrated that loss of Atg5 resulted in an identical
hematopoietic stem and progenitor population (HSPC)
phenotype as loss of Atg7, confirming a general role for
autophagy in HSPC regulation [10]. Moreover, Folkerts
et al. showed that knockdown of Atg5 inhibited myeloid
leukemia maintenance [11], indicating that targeting
autophagy might provide new therapeutic options for
treatment of AML.

The interferon regulatory factor (IRF) proteins family
are the crucial factors in immunoregulation, cell prolif-
eration regulation, hematopoietic stem cell development,
lymphocyte differentiation and cellular response that is
involved in tumorigenesis [12]. The IRF2 gene, a member
of IRF family, is located on chromosome 4. Our previ-
ous study [13] demonstrated that shRNA-mediated IRF2
knockdown suppressed cell growth and colony formation,
down-regulated the level of anti-apoptotic factor Bcl-2
and up-regulated the protein levels of apoptotic proteins
Bax and the cleaved caspase 3 in AML cell lines OCI/
AML-2, OCI/AML-3, and THP-1 cells. Further investi-
gation showed that IRF2 upregulated inositol polyphos-
phate-4-phosphatase, type-II (INPP4B) expression via
binding to INPP4B promoter, which in turn inhibited cell
apoptosis in AML cells. Nevertheless, the detailed mech-
anism by which INPP4B inhibited AML cell apoptosis
remained unclear. As was mentioned above, we hypoth-
esis that IRF2 might regulate cell autophagy through
interacting with INPP4B, thereby affecting the growth
and apoptosis of AML cells, and ultimately participating
in the induction of AML development.

Materials and methods

Cell lines

AML cell lines (OCI/AML-2, OCI/AML-3, Kasumi-3,
PL-21, MV-4-11, CESS, Kasumi-1, BDCM and THP-
1) purchased from American Type Culture Collec-
tion (ATCC, Manassas, VA, USA) were maintained in
a-minimal essential medium (MEM) supplemented with
10% fetal bovine serum (FBS), 100 U/mL penicillin and
100 pg/mL streptomycin (all from Invitrogen, Carlsbad,
CA, USA) at 37 °C in humidified 5% CO, and 95% air.

Transient transfections and treatments

Full-length IRF2 and INPP4B were amplified and cloned
into the pcDNA3.1 expression vector which was then
stably transfected into OCI/AML-2 or THP-1 cells for
IRF2 and INPP4B overexpression, while small interfer-
ence RNA (siRNA) targeting IRF2 (si-IRF2) and INPP4B
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(si-INPP4B) oligos and control siRNA (si-Ctrl) were
used to construct the knockdown models and nega-
tive controls, which were all designed and synthesized
by Shanghai GenePharma Co., Ltd. (Shanghai, China).
The qRT-PCR and western blotting were used to detect
the transfection efficiency. Additionally, the protein lev-
els of autophagy-related genes Beclin-1, microtubule-
associated protein light chain 3 (LC3)-I, LC3-II and
p62 were also examined. The green fluorescent protein
(GFP)-LC3 puncta formation was also evaluated by
immunofluorescence.

OCI/AML-2 and THP-1 cells were transfected with
IRF2, INPP4B, si-IRF2, si-INPP4B or their negative con-
trols for 48 h using Lipofectamine 2000 (Invitrogen)
after treatment with autophagy inhibitor 3-methylad-
enine (3-MA; 10 mmol/L; Sigma-Aldrich, St. Louis, MO,
USA), autophagy activator rapamycin (10 pg/L; LC Labo-
ratories, Woburn, MA, USA) or 0.1% dimethylsulfoxide
(DMSO; Sigma-Aldrich) for another 24 h. Cells were
collected for determining the expression of autophagy-
related proteins, autophagosome accumulation, prolif-
eration and apoptosis.

Immunofluorescence

OCI/AML-2 or THP-1 cells following transfection
with IRF2, INPP4B, si-IRF2, si-INPP4B or their nega-
tive controls were seeded into a 35 mm diameter petri
dish covered with a glass slide (microscope cover glass,
18 x 18 mm) at a density of 8 x 10* cells/mL and main-
tained at 37 °C with 5% CO, for 24 h. These cells were
transiently transfected with GFP-LC3 plasmid using
Lipofectamine 2000 (Invitrogen) according to the manu-
facturer’s specification. After 48 h of posttransfection, the
slides were rinsed with PBS for three times, fixed in 4%
paraformaldehyde for 10 min, washed again with PBS for
three times, and sealed with anti-fluorescence quenching
mounting medium (15 pL). Fluorescence levels of GFP-
LC3 were detected by using laser confocal microscopy
(CLSM; Leica, Wetzlar, Germany; magnification 60x).
To quantify autophagic cells, we counted the number
of autophagic cells demonstrating GFP-LC3 dots (> 10
dots/cell) among 200 GFP-positive cells.

RNA extraction and PCR analysis

Total RNA was extracted from AML cell lines using Trizol
reagent (Invitrogen), and reversely transcribed into cDNA
using the SuperScript III kit (Invitrogen) according to the
manufacturer’s protocol. The relative quantification of
IRF2, INPP4B, Beclin-1 and LC3 mRNA expression lev-
els were determined using Real-Time Quantitative PCR
SYBR Green kit (Takara, Tokyo, Japan) on an ABI 7500
Real-Time PCR system (Applied Biosystems, Carlsbad,
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CA, USA) and calculated by the 2722 method. GAPDH
served as an internal control.

Western blot

Total protein was separated from AML cell lines using
Radio-Immunoprecipitation Assay (RIPA) buffer (Santa
Cruz Biotechnology, Santa Cruz, CA, USA), incubated
with 6% sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE; Beyotime, Shanghai, China)
and transferred to polyvinylidene fluoride (PVDF) mem-
branes (Bio-Rad, Hercules, CA, USA). Afterwards, the
membranes were blocked with tris buffered saline tween
(TBST; 1.5 mM Tris, 5 mM NaCl, 0.1% Tween20) con-
taining 5% skim milk at room temperature for 1 h and
probed with primary antibodies against IRF2, INPP4B,
Beclin-1, LC3-1, LC3-II and p62 (1:1000 dilution; all from
Cell Signaling Technology, Boston, MA, USA) at 4 °C
overnight. The secondary antibody was horseradish per-
oxidase-labeled antibody (1:5000), and B-actin was used
as an internal control. Band intensities were standard-
ized and the relative density was analyzed on a Molecular
Imager ChemiDoc XRS System (Bio-Rad Laboratories,
Hercules, CA, USA) using enhanced chemiluminescence
reagent (Thermo Scientific, Shanghai, China).

Cell proliferation assay

The proliferation of OCI/AML-2 and THP-1 cells was
assessed by colony formation assay. Approximately 5000
cells were seeded in 35 mm plates and incubated at 37 °C
for 9 days. Subsequently, these cells were washed twice
with PBS, and stained with 0.1% crystal violet (Beyo-
time, Shanghai, China) for 15 min at room temperature.
The number of colonies was counted under an inverted
microscope (Leica).

Cell apoptosis assay

Cell apoptosis was analyzed by flow cytometry using
Annexin V-FITC apoptosis detection kit (BD Biosciences;
San Jose, CA, USA) according to the manufacturer’s pro-
tocols. OCI/AML-2 and THP-1 cells following transfec-
tion or different treatments were collected, washed with
cold PBS and stained with binding buffer containing
Annexin V-FITC and propidium iodide (PI) at 4 °C under
darkness for 15 min. Finally, cells were recorded using
flow cytometry (Beckman Coulter, Fullerton, CA, USA).

Statistical analysis

Data were presented as mean =+ standard deviation (SD)
and analyzed using SPSS 22.0 (IBM, Armonk, NY, USA).
Two or more data sets were compared using Student’s
t-test or one-way analysis of variance, with P <0.05 being
considered statistically significant. Correlation analysis
was performed using the Spearman’s rank test.
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Results

IRF2 and INPP4B were positively correlated

with autophagy-related genes in AML cells

We firstly analyzed the mRNA expression patterns of
IRF2, INPP4B, Beclin-1 and LC3 in 9 AML cell lines. The
results indicated that the mRNA expression levels of IRF2
and INPP4B were similar to that of Beclin-1 and LC3
(Fig. 1a). In addition, a positive correlation was observed
between the mRNA expression of IRF2 or INPP4B and
Beclin-1 or LC3 (Fig. 1b). Taken together, our data sug-
gested that IRF2 and INPP4B might be involved in the
autophagy of AML cells.

IRF2-INPP4B axis promoted autophagy in AML cells

We next performed in vitro gain- and loss-of-function
experiments in AML cells to investigate whether IRF2
and INPP4B could promote the autophagy of AML cells.
Satisfactory transfection efficiency was obtained after
48 h transfection with IRF2 or INPP4B expression vec-
tor and siRNA targeting IRF2 or INPP4B plasmids as
determined by qRT-PCR (Fig. 2a) and western blotting
(Fig. 2b).

Furthermore, overexpression of IRF2 and INPP4B in
OCI/AML-2 and THP-1 cells resulted in enhanced con-
version of LC3-I into LC3-II, p62 degradation, high levels
of Beclin-1 (Fig. 2c) and increased GFP-LC3-positive cells
(Fig. 2d). In contrast, siRNA-mediated silencing of IRF2
and INPP4B decreased Beclin-1 protein level and LC3-1I/
LC3-I ratio, upregulated p62 (Fig. 3a) and reduced LC3
dots formation (Fig. 3b). Besides, INPP43 knockdown
overturned the effect of IRF2 overexpression on the pro-
tein expression of autophagy-related markers (Fig. 4a)
and the formation of LC3 positive puncta (Fig. 4b). Col-
lectively, these results indicated that IRF2-INPP4B axis
triggered the autophagy of AML cells.

IRF2-INPP4B-induced autophagy inhibited apoptosis

in AML cells

To further determine whether IRF2-INPP4B axis alle-
viated cell apoptosis through activation of autophagy,
we used autophagy inhibitor, 3-MA to block autophagy
process. Colony formation assay revealed that 3-MA sup-
pressed and IRF2 or INPP4B overexpression promoted
cell proliferation of AML cells, while enforced expres-
sion of IRF2 or INPP4B negated the inhibitory effect of
3-MA on the proliferation (Fig. 5a). Moreover, results
from flow cytometry demonstrated that 3-MA promoted
but IRF2 and INPP4B overexpression suppressed AML
cell apoptosis (Fig. 5b). We also turned to autophagy
inducer rapamycin treatment to further establish a func-
tional importance of IRF2 and INPP4B knockdown in
autophagy-related cellular phenotypes. Mechanistic
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analyses further revealed that rapamycin markedly facili-
tated the proliferation of AML cells (Fig. 5¢) and sup-
pressed apoptosis (Fig. 5d), which were reversed by IRF2
or INPP4B knockdown. Jointly, our findings manifested
that IRF2—-INPP4B axis inhibited apoptosis via inducing
autophagy in AML cells.

Discussion

To date, the role of autophagy in AML development has
been poorly investigated. In this work, we first attempted
to understand the potential mechanism that IRF2

regulated cellular apoptosis and autophagy in AML cell
lines, and finally proved that IRF2 induced autophagy
and inhibited apoptosis in AML cells through binding to
INPP4B promoter.

In various kinds of cancers, IRF2 showed its tumor-
suppressive roles, or oncogenic functions. For instance,
IRF2 expression detected by immunohistochemistry was
significantly downregulated in gastric cancer (GC) tis-
sues compared to the nontumor tissues [14]. Yi et al. [15]
found that hepatocellular carcinoma (HCC) patients with
high IRF2 expression had lower serum alpha-fetoprotein
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the vector-transfected cells; *P < 0.05 vs. the si-Ctrl transfected cells

(AFP) levels, tumor differentiation, and vascular inva-
sion and tumor-node-metastasis (TNM) stage. On the
contrary, Sakai et al. [16] demonstrated that IRF2 protein
levels were observably increased in human pancreatic
cancer specimens as compared with the paired normal
areas of the pancreas and were associated with worse
features of tumor infiltration depth and overall survival
(OS). The higher expression of IRF2 were observed in
colorectal cancer (CRC) tissues compared to those in
paired normal tissues and were significantly associated

with distant metastasis and worse OS as well as TNM
stage, indicating that IRF2 functioned as an independent
prognostic factor in CRC [17]. Our present study sug-
gested that IRF2 expression was significantly upregulated
in AML cell lines. More importantly, the expression of
IRF2 was positively correlated with the mRNA expres-
sion of autophagy-related proteins, revealing that IRF2
might be involved in autophagy of AML cells.

Besides, IRF2 is reported to influence the occurrence
and development of some cancers through proliferation,
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apoptosis and metastasis via altering its target genes. For
example, Choo et al. [18] showed that IRF2 knockdown
exhibited the obviously decreased proliferation and cell
cycle and induction of polyploidy, differentiation and
apoptosis in leukaemic cells. Additionally, downregula-
tion of IRF2 significantly decreased cell proliferation of
testicular embryonal carcinoma (NT2) cells by elevating
p53 expression [19]. Overexpression of IRF2 can signifi-
cantly inhibit the non small cell lung cancer (NSCLC)
cell proliferation and invasion [20]. In addition, forced
expression of IRF2 increased the expressions of prolifera-
tion-related genes cyclin D1 and proliferating cell nuclear

antigen (PCNA), suggesting that IRF2 exerted oncogenic
activities in human pancreatic cancer [16]. Our previous
study provided the evidence that IRF2 was an important
regulator of AML cell growth, colony formation and sur-
vival [13]. In accordance with previous reports, our find-
ings revealed that IRF2 overexpression promoted cell
autophagy and proliferation and inhibited cell apoptosis
in AML cell lines OCI/AML-2 and THP-1, whereas IRF2
silencing led to an opposite effect, suggesting that IRF2
plays a crucial role in AML progression via autophagy
induction.
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Compelling evidence has delineated the carcinogenesis
of INPP4B in breast cancer [21], laryngeal cancer [22]
and melanoma [23]. Recently, accumulating evidence
has strongly implied that INPP4B served as independ-
ent prognostic marker and were associated with colony
formation, proliferation and chemotherapy resistance in
AML patients [24-26]. The previous research has elu-
cidated that IRF2 elevated the activity of INPP4B pro-
moter by directly binding to its promoter to increase
INPP4B expression in AML cells [13]. There was a posi-
tive correlation between INPP4B and Beclin-1 as well as
LC3 mRNA expressions in AML cell lines. Besides, the
overexpression of INPP4B promoted cell autophagy and
proliferation and reduced cell apoptosis in AML cells,
while lower expression level of INPP4B by si-INPP4B
significantly promoted cell apoptosis and suppressed
autophagy. Ko et al. found that autophagy inducer rapa-
mycin restricted a feedback loop of NLRP3 inflamma-
some-p38 MAPK-NF-kB pathways in autophagy- and
p62-dependent manners [27]. In addition, previous stud-
ies uncovered that rapamycin, as a mTOR kinase inhibi-
tor involved multiple signaling pathways such as Ras/
MEK/ERK, MAPK, JAK/STAT and Notch-1 pathways
[28, 29]. Thus, in the present study, the silencing of IRF2
or INPP4B could partially but not completely reverse the
apoptosis-promoting effect of rapamycin.

Conclusions

In summary, we provided the first demonstration that
IRF2-INPP4B axis inhibited the apoptosis of AML cells
via inducing autophagy in vitro, and thus may be a new
target for gene therapy in AML.
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