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Abstract

This perspective provides an overview of how risk can be effectively considered in physiological 

control loops that strive for semi-to-fully automated operation. The perspective first introduces the 

motivation, user needs and framework for the design of a physiological closed-loop controller. 

Then, we discuss specific risk areas and use examples from historical medical devices to illustrate 

the key concepts. Finally, we provide a design overview of an adaptive bidirectional brain–

machine interface, currently undergoing human clinical studies, to synthesize the design principles 

in an exemplar application.
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The advent of ‘smart’ systems technology is revolutionizing many facets of everyday life – 

from self-driving cars to digital home assistants. However, experiences from this nascent 
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field also provide lessons on the need for the inclusion of risk management in the core 

system design. Lessons range from the innocuous, such as algorithms exhibiting odd 

behavior like spontaneously laughing digital assistants, to the severe such as automotive 

crashes resulting from compromised algorithms, or overconfidence in the automated 

system’s capabilities. As the medical field adapts similar automated technologies [1–3], it is 

worth considering how engineers and clinical scientists can work together to mitigate risks 

with deploying intelligent systems through thoughtful system design.

The motivation for ‘smart’ systems

The emerging field of bioelectronic medicines is diverse, with many examples that motivate 

intelligent systems that respond more appropriately to physiological signals. These systems 

range from established cardiac pacemakers with remote monitoring and emergent artificial 

pancreases that aim to mimic beta cell dynamics, to nascent brain stimulators for epilepsy 

with adaptive or closed-loop control. Here we use the term adaptive control to refer to 

systems that respond to a sensory signal, but do not have an explicit feedback loop such as 

motion-adaptive stimulation [4], while closed-loop control we define as a system with a 

desired set-point and a response loop that tries to maintain this set-point such as an artificial 

pancreas [5]. While sometimes used interchangeably, the difference can impact the risk 

profile, and we attempt to apply the nomenclature carefully. For those interested in more 

formal reviews of automaticity levels, we refer you to papers such as [6]. In spite of the 

application diversity and nuances in implementation, the high-level aims are similar for 

many smart systems. These aims include applying technology such as sensors, machine 

learning and modeling to efficiently find an optimal therapy or to improve therapy efficacy 

and reduce side effects, all while striving to lower the burden on the clinical practitioner and 

the patient consumer.

Deep brain stimulation (DBS) emerged in the 1990s as a neurosurgical intervention for 

movement disorders [7]. The principle behind DBS is to implant electrodes into deep brain 

structures such as the basal ganglia and thalamus to modulate the pathological activity 

causing disabling symptoms through application of electrical pulses (charge or current). The 

clinical personnel that perform programming of stimulation settings (amplitude, frequency 

and pulse width of the electrical current) base their decisions on guidelines and the 

observable behavioral responses and verbal response of patients [8].

While effective strategies exist for selection of stimulation parameters [8], the parameter 

space is large and it is time consuming and clinically infeasible to evaluate each of the 

thousands of individual stimulation parameter combinations that may be useful, or optimal, 

to a given patient. The survey approach can also be problematic in disease states such as 

epilepsy, where the episodic nature of symptoms of the disease makes an immediate 

observation of the therapeutic effect of electrical stimulation unlikely. This is further 

complicated by the fact that self-reported seizure diaries from patients are often inaccurate 

for consciousness impairing seizures. In effect, the physician is ‘flying blind’ when adjusting 

therapy. Even for established therapies like tremor, the introduction of new segmented 

electrodes further increases programming complexity, placing a greater burden on the 

clinician. In addition, fixed tonic stimulation, often called ‘open loop’ stimulation, assumes 
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that the therapy settings derived in the acute clinical setting serve the patient well for the 

variations seen outside of clinic; variations in pharmacology, sleep states and other patterns 

are difficult to capture. Due to these issues, the therapeutic benefit currently achievable with 

DBS can be strongly dependent on the intuitive skill and experience of the clinician 

performing the stimulation parameter selection [9].

These challenges motivate technical solutions that can automatically optimize DBS 

parameters to match the underlying pathology. Studying the neurophysiological signatures 

of neurological disorders, and the effects of brain stimulation, would enable objective 

monitoring of fluctuations in the severity of the disorder, and treatment options that can be 

tailored to the current clinical condition of the patient. A ‘smart’ DBS system could 

theoretically initiate stimulation and/or adapt its stimulation parameters based on 

information extracted from brain signals. The guiding hypothesis is that a DBS system 

capable of detecting the pathological activity, and providing stimulation in an adaptive 

manner, would provide improved symptom suppression, reduce adverse effects of 

continuous stimulation and prolong battery life. This in turn could significantly improve the 

lives of those suffering from neurological disorders.

However, adding automaticity to an implantable brain stimulator can create new issues for 

delivering therapy. Potential hazards include under- or overstimulation due to a 

compromised system that puts the patient at risk. To help mitigate these risks systematically, 

we adopt a framework from regulations originally developed for the ‘physiologic 

controllers’. Physiologic controllers are defined as ‘devices that try to control a 

physiological parameter through feedback’. An intuitive example of such a system is an 

infant incubator where the physiologic control system regulates body temperature using a 

sensor placed on the infant and adjusts the incubator conditions accordingly. While the 

standards are prescriptive on where they must be applied, we believe that the intuition gained 

from framing a smart system in these terms are useful for a broad range of medical device 

designs.

Frameworks to guide ‘smart’ system design

The design of an ‘intelligent’ implant requires thoughtful consideration for the 

characteristics of the integrated bioelectronic–physiological system. These considerations 

are well-captured by a series of technical standards for the safety and essential performance 

of medical electrical equipment published by the International Electrotechnical Commission 

(IEC): IEC 60601, 1–10, ‘General requirements for basic safety and essential performance’ 

– collateral standard: requirements for the development of physiologic closed loop 

controllers [10]. Using this guidance as a set of design best practices for adaptive and 

closed-loop responsive medical equipment can help ensure robust operation of a broad class 

of bioelectronic systems.

Referencing Figure 1, the base bioelectronic system can be modeled as a physiological 

closed-loop controller with several key subcomponents. The specific terminology derives 

from the IEC standard, and provides a common language for assessing a system. The core 

functional blocks of the system are highlighted in blue.
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Walking through these block definitions, the patient transfer element is the physiological 

system that the device is trying to modulate, such as a discrete network of the nervous 

system. The patient transfer element also includes the disease-specific considerations. For 

example, the risks associated with the treatment of essential tremor are quite different than 

those of a cardiac defibrillator. A designer needs to consider the nuances of the particular 

condition, and their relative impact on technology-derived risks. The actuator is the 

transduction mechanism by which the bioelectronic system can influence the physiologic 

system. Examples include electrical stimulation, ultrasound stimulation, transcranial 

magnetic stimulation or pharmacological agents, including anesthesia. The measurement 

transfer element is the sensing transducer for detecting a physiologic variable of interest. 

Examples include bioelectric amplifiers for measuring local field potentials or action 

potentials, skin impedance, inertial signals, saturated oxygen or interstitial glucose. The 

command transfer element is the mapping between the desired clinical state and a 

corresponding variable in the algorithm, translated into the same units as the measuring 

transfer element and related to where the measurements can be taken. Examples include 

mapping core body temperature to a target temperature, glucose levels to a desired safe 

window or a minimum heart rate in a cardiac pacemaker. The comparison element is the 

block that compares the measured signal against the desired value from the command 

transfer element. From a control theory perspective, this element estimates the ‘error’ term 

for feedback mechanisms. The control transfer element is the block that appropriately 

adjusts the actuator based on the difference between the measured response and the 

command set-point and can include feedback compensation and similar engineering 

methods to try and maximize the capability of the overall feedback loop. The patient 

disturbances capture potential mechanisms that might indirectly influence the control system 

performance. Typical examples can include drug interactions, circadian rhythms and 

physical exertion. Similar to the patient transfer element, disturbances usually require 

disease-specific considerations in the analysis.

Building intuition: mapping historical examples of risk mitigation to the 

framework

Using the framework as a guide, we can consider: how a physiologic-based control system 

can introduce new risks, and the actions the designer can take to help mitigate these risks. 

‘Risk’, when used in the context of medical device design and regulations is formally 

defined by the International Standards Organization (ISO) for the application of risk 

management to medical devices (ISO 14971 ‘Application of risk management to medical 

devices’). Risk is defined to be a ‘combination of the probability of occurrence of harm and 

the severity of that harm’; harm is further defined as a ‘physical injury or damage to the 

health of people, or damage to property or the environment’. Note that the ‘physical’ harm 

might present itself in a manner that is difficult to observe. For example, mood side effects 

can arise for brain stimulation in obsessive compulsive disorder which might be difficult to 

directly monitor with existing sensor approaches [11]. Risk analysis can be used to provide a 

comprehensive accounting of risk, and as part of an overall risk management process to 

ensure that risk mitigations are implemented such that risks are reduced to acceptable levels.

Gunduz et al. Page 4

Bioelectron Med (Lond). Author manuscript; available in PMC 2021 April 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Drawing again from the IEC 60601-1-10 framework, additional blocks focused on risks and 

mitigations are highlighted in brown in Figure 2. We illustrate the core concepts underlying 

risk and medication using existing medical devices.

First, we consider user-centric intuition for the system, and the need to provide a mental 

model of the control algorithm. The purpose of the mental model of algorithm operation is 

to help the practitioner intuitively set up the physiologic controller’s parameters, test its 

operation and resolve issues. For example, a rate response, feed-forward pacemaker has a 

monotonic mapping of pacing rate to activity levels derived from an embedded motion 

sensor, with a clinician-defined lower and upper pacing rate limit configured in accordance 

to the ‘actuation limit’ consideration [12,13]. The mental model is relatively straightforward: 

as the patient moves more, you expect the pacing rate for driving their heart should increase 

to provide the needed cardiac output. The inertial sensor in the device (the measurement 

transfer element) detects the patient’s motion, the comparison element then maps the level of 

motion to a desired stimulation state. If a clinician wishes to test or configure the system, 

they can ask the patient to change activity and confirm that the pacing level modulates as 

expected. Mental models can also have a physiological basis and seek to directly mimic or 

replace biological functions. For example, control algorithms for the artificial pancreas use 

dynamic models of pancreatic β cells to help improve their performance [5,14,15]. The 

clinician can test the performance of this system with challenges (food consumption, 

activity), and confirm that the insulin delivery provides the appropriate glucose dynamics. 

Careful consideration of the mental model can help to clearly define key risks associated 

with the physiologic control loop by: specifying the intended uses cases for the system, 

defining the human factors of those use cases and identifying the potential hazards.

For risks associated the measuring transfer element, we must focus on how the sensors 

might cause errors in estimating the patient’s state, and the impact of these errors. For 

example, the designer should understand the expected intra- and interpatient variability. 

Disease-specific considerations should be included with population characterization to 

capture the expected breadth of input signals. The goal is to ensure the physiologic loop’s 

measurement has the required dynamic range, signal-to-noise and specificity for the 

intended patient population. For example, in a cardiac pacemaker or brain interface, this 

might include the variation in frequency content of the electrocardiogram or neural field 

potentials, and their signal power (root-mean-square in relevant frequency bands). The 

variability of signals might require parametric tuning of the signal processing chain and 

detection classifiers on a disease- and patient-specific basis. Another consideration is 

detecting when a sensor might be faulty and the measurement transfer element 

compromised. Mitigations for this can include an independent self-test of the sensor, such as 

those common in micromachined accelerometers [16], calibration of the sensor [17], 

redundant sensor systems that provide robustness to a single fault [18–20] or fallback to 

established safe stimulation parameters when potentially adverse conditions such as 

electrical interference are detected. Ideally, these mitigations are hidden from the 

practitioner, and do not add to their burden, which might negatively impact compliance. 

However, it is critical to provide a system over-ride for patients and physicians where 

stimulation can be disabled or switched to the predetermined ‘safe operating’ parameters.
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When considering the patient transfer element, the aim is to understand how the physiologic 

control loop interacts with the patient’s physiology and the risks that are associated with 

biophysical interactions. In practice, the transfer elements require a disease-specific analysis. 

One example is the impact of response latency on the controller’s performance. Latency 

issues can come from many sources: the temporal dynamics between when an actuation 

adjustment is made, when this actuation adjustment impacts the physiological system, and 

when the response might be measured by the sensors. Characterizing and designing for these 

delays is important, as excess controller bandwidth or sensitivity (gain) can result in 

undesirable feedback dynamics, such as physiology-controller oscillations. For example, in 

an artificial pancreas, several minutes might pass before the bolus of insulin takes effect in 

the body, and several more minutes before the change in blood sugar is perceptible in a 

subcutaneous glucose sensor placed in the interstitial layer [21,22]. These dynamics can set 

a limit on the capacity of the system to correct transient perturbations, and motivate 

feedforward estimates in the model. Latency considerations also lead to considerations for 

sensitivity and specificity requirements, which are also dependent on which disease state is 

being treated. More specifically, the disease state will guide the relative penalty for type I 

(false positive) versus type II (false negative) errors. For example, the fast response timing 

for a cardiac defibrillator is crucial to maintain blood oxygenation. A fast response time 

might also suggest a need for high specificity and low latency. These must be balanced 

against the patient impact of false detections and excessive shocks [23,24]. Given the 

significance of a missed defibrillation shock, the clinician would probably bias an algorithm 

to avoid a type II error for a defibrillation at the expense of type I errors. But even type I 

errors must be kept to an acceptable level for patient acceptance. A similar latency challenge 

exists for responsive neurostimulators for epilepsy, where the designer wishes to intervene as 

soon as possible to abort a seizure. The lower impact of false-positive (type I) errors results 

in a bias toward higher sensitivity, and lower specificity, to minimize the latency to an 

intervening intervention compared with a cardiac defibrillator [25–27]. Interestingly, the use 

of hypersensitive seizure detectors with associated marked increase in false-positive seizure 

electrical stimulation has proven useful and are not clinically penalized since the stimulation 

is subthreshold, in other words, below patient perception [20–22]. An example where a type 

I error can result in a negative outcome can be found in epilepsy, where electromagnetic 

interference or other physiological artifacts might result in excess stimulation for the patient 

and more rapidly deplete the battery [28]. In sum, the bioelectronic designer must trade-off 

several considerations for sensitivity, specificity and latency for their specific application – 

one design does not necessarily serve all needs [1].

Given its direct control of the actuator, there are several risk considerations for the control 

transfer element. For example, it is essential to define an actuation limit to contain the 

impact of either excessive or marginal stimulation. More specifically, the designer should 

consider the impact of actuation levels on the disease-specific physiology of the patient 

transfer element; note that these can include both higher and lower limits. Returning to the 

artificial pancreas example, the clinician might want to limit the maximum flow rate of 

insulin into the body to avoid an overdose, or limit the cumulative insulin dose given over a 

specified window [5,14,29,30]. As an example of a lower limit, a cardiac pacemaker might 
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enforce a minimum pacing rate to ensure a patient will always have the minimal cardiac 

output required to maintain consciousness [12].

Another consideration for the control transfer element is the definition of a fallback ‘safe’ 

mode. Despite a designer’s best efforts, one of the physiologic controller’s core elements 

might encounter an issue that undermines performance. This can arise when the 

measurement transfer element is compromised in some manner. An example of this would 

be excessive electromagnetic interference saturating a bioelectronic amplifier and thereby 

leading to misleading information. EMI has in the past been a problem with cardiac 

pacemakers due to interactions with security wands, microwaves and muscle artifact, and 

more recently includes the impact of MRI scanners [31–35]. The role of the fallback mode is 

to allow the physiologic controller to enter a well-defined state with a known safety profile. 

For example, in the case of a cardiac pacemaker, a fallback mode would be a predetermined 

pacing rate deemed acceptable to the patient for most situations. This situation might occur 

when the amplifier’s detection floor rises above a threshold indicating cardiac classification 

is likely compromised [36].

A final consideration for the control transfer element is a mechanism for providing state 

indicators. The goal of the state indicator is to provide critical information on the operating 

mode of the control loop. Given the potential diversity of users, the presentation of this 

information should include human factors considerations, so that the information is 

meaningful and actionable. These considerations might also be disease-state dependent. For 

example, in a typical neurostimulator, the parameter settings for stimulation and state of 

stimulation are available to both the clinician and the patient, with the data shared being 

dependent on the specified user. While in other use cases, such as cardiac pacemakers, the 

patients generally do not have a mechanism to interact with the implant parameters directly. 

To provide state information, cardiac devices could historically communicate via an 

embedded auditory signal [37], which the patient could feel, that signaled the need to call a 

clinician. The limited specificity of this approach could still warrant periodic check-ins [37]. 

Modern systems are moving to wireless telemetry and remote updates to provide this 

information directly to the clinician, who then reviews and interprets the diagnostic data and 

engages the patient as needed [38,39]. In particular, this can be very useful in mitigating 

risks caused by different system faults, such as an electrode break detected by automated, 

periodic impedance checks that are logged and if aberrant, passed to the physician via 

remote communication [40]. In spite of its benefits, a potential hazard of high-level 

automaticity in state indicators is complacency; designers need to consider the human 

factors of error checking in their system validation process [41].

A broader consideration for transfer elements, modes and limits is the use of software in 

modern systems. IEC 62304: ‘Medical device software – software life cycle processes’ 

establishes that, when considering hazards that can arise from misoperation of a given 

software element, the probability that the software will eventually misoperate is 100%. For 

this reason, it is often necessary to implement portions of the control transfer element, 

fallback mode and actuation limit in hardware, or in separate, well-segregated software 

elements. Hardware elements may be capable of providing fallback mode behavior 

independent of software elements. Actuation limits may be implemented as a characteristic 
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limit of the hardware. Software elements may also be implemented on separate processors. 

Software elements may be segregated through use of an operating system that provides 

features such as memory management, guaranteed CPU access and user-space drivers that 

can be restarted if faults are detected. For example, lock-step processor architectures can be 

used to provide detection of CPU faults in order to trigger entry into a fallback mode.

Finally, the designer should consider how to understand user error, what causes these errors 

and ultimately try to avoid them. These aims can be achieved by providing mechanisms for 

training and fault analysis. Typical design approaches include providing data logs on device 

usage for training and algorithm ‘debug’. The inclusion of a patient- or algorithm-enabled 

data recorder can help to understand either how the physiologic control algorithm performs 

in real-world environments for training purposes, or capture failure events that require 

modification of the algorithm or additional patient warning. For example, modern cardiac 

systems store several detected events including the physiological signals, classifier states and 

actuation settings for assessing field performance [38,39]. These recordings also create a 

database for continuous algorithm refinement. Additional data logs can include 

complementary signal sources that assist with understanding the patient environment. For 

example, the Neurovista seizure prediction system included a microphone on the patient 

controller that would turn on when the system detected a seizure; this additional information 

helped to separate seizures with clinical manifestations from those without [42]. These 

mechanisms have similarities to the ‘black box’ recorders used on airplanes, which help to 

analyze scenarios that led to a crash and apply this new understanding to either fix a design 

error or provide additional training to avoid a similar scenario in the future.

An integrated ‘smart’ system case study: bidirectional brain–computer 

interfacing for treating essential tremor

To pull together the key design elements of a robust physiologic control algorithm, we 

present a complete system example that illustrates an integrated approach to risk 

management and mitigations using the IEC 60601, 1–10 based framework we described 

above. The exemplar is an adaptive deep brain stimulator for the treatment of essential 

tremor [43], which is one of a family of recent bi-directional brain–machine interfaces being 

explored for neurological disorders [44–48]. As motivated earlier, the aim of this approach is 

to improve therapy efficacy, minimize side effects, improve battery performance, while 

reducing the clinical and patient burden. The prototype uses the investigational Activa™ PC 

+ S system [49], along with the Nexus firmware update to apply embedded algorithms for 

stimulation therapy titration [44], both provided by Medtronic PLC. As shown in Figure 3, 

sensing leads were placed over the motor cortex to detect motor intentions through event-

related desynchronization, while stimulation leads are placed in the thalamus to provide 

electrical actuation that eliminates tremors. The goal of this system was to use motor 

commands from the cortex to adapt thalamic stimulation in real-time, based on the subject’s 

immediate movement intentions. In order for the subject to exit the clinic with this adaptive 

system running, we applied design mitigations consistent with our proposed framework.
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Starting with human factors, we establish a mental model of the control algorithm for 

helping assess the user model and defining potential risks. The mental model for this 

specific control algorithm is that the patient’s movement intentions directly control the 

electrical stimulator’s output, as illustrated in Figure 4. The intent to move is signaled by 

event-related changes in local field potentials that can be detected from the motor cortex; 

specifically, the variations of spectral power within specific frequency bands over specific 

regions of the brain, similar to electrocortical brain–computer interfaces [50,51]. When the 

perturbations of spectral oscillations signal that motor planning is in process, the control 

transfer element turns on the stimulation actuation; when the oscillations return to the resting 

state, the control transfer element turns stimulation off. As mentioned earlier, the mental 

model and associated risks are disease specific. For this essential tremor application, the 

motivation for implementing this specific control approach is to prevent tremors during 

intended motion, while avoiding side effects from stimulation like dysarthria, habituation 

and excess power consumption during rest [52].

Since the measurement of the patient’s intentions will control the stimulator directly, we 

need to ensure a robust measuring transfer element. While the cortical signal for motion 

detection, the measurement element, is well characterized from classical brain–computer 

interface research [46–48,50,51], there is interpatient variability in specific parameters. This 

variability requires patient-specific tuning the band power and detection levels in the 

embedded comparison and control transfer elements. In addition, intrapatient variability due 

to physiological state (e.g., awareness, sleep) was factored into the design, including the 

ability to fine-tune adjustments for patient-specific thresholds [49]. An additional mitigation 

included the use of a manual fallback mode, which included both the ability to turn the 

stimulator off or revert to an open-loop continuous stimulation mode that was clinically 

assessed to be tolerable to the patient, in other words, the fallback mode. A patient 

programmer allowed for this intervention at home. A final risk mitigation for the 

measurement transfer element was the ability to implement a continuous ‘self-test’ monitor 

to ensure the bioelectrical amplifier did not saturate. The concern is that if the amplifier 

saturates, then the brain oscillation that signifies the resting state would disappear and create 

a type I error (false positive for motion). The impact of the type I error in this case would be 

to the hold the stimulator in a perpetual stimulation on state. As shown in Figure 5, a 

continuous test tone is injected into the signal chain at a discrete frequency (105 Hz) outside 

of the physiological bands of interest. The clinician could check that with all expected 

settings, this tone was preserved and that the signal chain is operating correctly. If this tone 

is compromised, alternative signal chain parameters are required for proper operation. Note 

that this approach can be implemented automatically with an embedded algorithm to 

generate an automated fallback mechanism out of the clinic. This automated fallback 

concept is similar to approaches used with cardiac pacemakers, which can sense an 

excessive disturbance in the signal chain, and fallback to a safe mode of open loop pacing to 

avoid unintended cessation of pacing therapy.

Optimizing the interaction of the adaptive stimulator and patient transfer element requires a 

careful balance of latency requirements. The overarching goal of the physiologic closed-loop 

algorithm is to prevent tremor during intended motion. A concern with a physiological 

control algorithm is the time it takes to turn the stimulator on when needed. If the algorithm 
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takes too long to respond, we create a transient type II error where breakthrough tremor 

might appear and be an annoyance to the patient. While if the algorithm is biased to be 

highly sensitive to respond quickly, the benefits of adaption might be lost due to type I 

errors. Latency in this therefore implicitly reflected in the trade-off between sensitivity and 

specificity. Since today’s open-loop systems are 100% sensitive and relatively nonspecific, 

essentially on all the time, the clinician can err on the side of providing acceptable latency at 

the expense of the occasional false positive for motion intention (e.g., bias for type I errors 

vs type II errors). The selection of the measurement approach also presents performance and 

risk trade-offs. For example, a potential advantage of cortical sensing over wearable 

accelerometers is that the latency of the sensing is reduced as cortical intention signals 

precede overt motion [51], providing a head start to stimulation ramping. However, cortical 

sensing has the trade-off of requiring another electrode in the system [45].

Latency also factors into the design of the control transfer element’s actuation limits for both 

the amplitude and the transition rate for stimulation. Specifically, the control of thalamic 

stimulation should be bounded to set levels to prevent adverse side effects. Of concern for 

thalamic stimulation is an overly rapid stimulation-ramping rate or excessive stimulation, 

either of which might drive side effects [52,53]. To prevent these occurrences, the clinician 

programming computer defines the safe operating region in the clinic, under direct 

observation. These parameters can then be downloaded to the device as protected variables 

that set hard limits for the embedded algorithm. If for some reason the embedded algorithm 

attempts to exceed these limits, the control element’s explicit command value is ignored, and 

the predefined, clinician-specified limit value provided to the stimulator output is used 

instead. Similar algorithm limitations restrict the ramping rate of stimulation to avoid 

undesirable paresthesia.

Even with these control transfer element limits in place, we still implemented a fallback 

mode as a final risk mitigation in case of an unforeseen issue. With a finite probability that 

the patient’s biomarker variability or situation might lead to inappropriate algorithm 

performance, the bidirectional BMI uses a patient controller with a preloaded stimulation 

program defined by the clinician as ‘safe’ open-loop stimulation. Before the embedded 

algorithm can operate independently, the implant verifies that this program is configured. 

Once operational, a patient can press a button that immediately diverts to this fallback state. 

In addition, an interrogation by any clinician programmer also drives the embedded 

algorithm to this fallback mode. This mitigation ensures that in an emergent situation a 

clinician naive to the research is dealing with standard neurostimulator operation that aligns 

with their own mental model of how the typical system should operate. Once the patient is 

ready and the hazard no longer present, they can use their programmer to reenter the 

automated feedback state. In the future, there might be additional reasons to enhance the 

fallback feature. For example, systems that integrate wearable sensors or apply distributed 

algorithms might be sensitive to dropped telemetry packets. When this occurs, the algorithm 

might be unable to assess the appropriate action to take; for these cases, the system can enter 

the fallback state until the connection is reestablished, and sensing is recovered.

The patient’s handheld programmer is also useful for providing state indicators and can 

provide a user interface for patients to interact with the system. The programmer conveys the 
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state of the control element, clearly differentiating whether the system is in fallback mode or 

running in adaptive stimulation mode. However, state indicators can also employ direct 

physiological feedback through imbedded sensory feedback. For example, in pilot 

experiments, some patients preferred having a small amount of transient paresthesia – the 

side-effect sensation from rapid stimulation ramp rates indicating stim turning on and off – 

as means to signal a transition state is occurring in the device. The patients can use this 

sensation as an indicator that the algorithm is in transition, which provides assurance that the 

algorithm is ramping up stimulation as they initiate a task. This type of sensory feedback 

through stimulation could prove useful for many brain–machine interface applications, and 

is an active area of inquiry [54,55].

Finally, to support training and fault analysis, we used embedded data logs configured in the 

implant. Configuring the algorithm requires mapping the signals from the cortex to patient 

state. Telemetry streaming allows for uploading signals in the four states of stim on/off 

combined with motion on/off, to allow for calibration of the algorithm for embedded 

operation. In addition, patient-triggered data recorders allow for gathering snapshots of data 

when the algorithm is not functioning correctly or patients are showing other symptoms 

[46]. These embedded data logs provide the ability to refine the algorithm based on faults or 

disturbances in the home environment [47]. Finally, the prototyping environment allows for 

the clinician to train and validate the algorithm in the clinic using a computer-in-the-loop, 

providing confidence that the algorithm will function properly when the physiologic 

algorithm is embedded in the device before allowing the patient to leave the clinic for at-

home testing [3].

The methods described in this section allowed for execution of a clinical study with an 

automated, adaptive brain stimulator with subjects out of the clinic for 6 months. The results 

of this study are currently being compiled, but the relevant observation for this perspective is 

that no adverse events where reported during the protocol. In addition, the methods 

described here are generalizable to other disease states, and were applied for Tourette 

disorder [56], Parkinson’s disease [47], and are currently being applied to epilepsy systems 

[57].

Summary

This technical perspective provided an overview of design methods for intelligent 

bioelectronic systems based on a physiologic closed-loop model of control. While 

implementing these design methods does not guarantee safety and reliability, by following a 

systematic process of design control for each specific use case, identifying risk and design 

mitigations the designer can maximize the robustness of the intelligent system in real-world 

deployment. The design principles developed in this brief are quite generalizable, as 

demonstrated by the historical examples and reinforced by our case study exploring the 

design of a bidirectional brain–machine interface operating as an automated, adaptive deep 

brain stimulator; similar ideas guide the design for state-of-the-art automated anesthesia 

machine (anesthesia) and ‘artificial pancreas’ devices [5,14,30].
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Conclusion

In conclusion, the system designer needs to plan intentionally for limiting the potential 

downside of intelligent medical systems, while also exploiting the upsides, especially when 

exploring novel technology or novel scientific concepts. To paraphrase the English 

statesman Benjamin Disraeli, “Be prepared for the worst, but hope for the best.”

Future perspective

The field of ‘smart’ biomedical systems is fuelled by the need for improved therapies 

delivered with less clinical and economic burden. Complementary market forces such as 

consumer electronics, large-scale algorithm processing and data sciences, increased 

investments in medical research, and social demographics all catalyse the shift to more 

capable medical devices. We foresee the continued integration of implants and wearables 

that rely on both local and distributed computing resources. Such systems will allow for 

digital phenotyping replacing or augmenting in-clinic practice, and provide an objective 

method for tracking disease. Platform systems with these capabilities will drive ’device-

enabled precision medicine’ through physiology-based biomarker discovery for neurological 

and psychiatric diseases gathered in natural settings. Precision medicine methods applied to 

devices should enable patient-specific adaptive stimulation, and accelerate therapy 

optimization while reducing care burden.

We also see the need for improved design mitigations in the future, as systems become more 

automated. First, the need for enhanced training: as these systems become ubiquitous, more 

systematic clinician training becomes crucial. Recent examples from transportation highlight 

the need for intuitive mental models that the user can rely on when using automated 

controls, and that guide intervention if a patient is at risk. Second, engaging patient 

feedback: as systems are deployed into natural settings, there is a need for scalable systems 

where patients and consumers can provide feedback to clinicians on control system 

performance. This feedback will enhance the training set for improving performance from 

the user’s perspective. Such data can enable a third area for improvement, algorithm design: 

as these systems expand into multi-modes of actuation and sensing, clinicians may be able to 

optimize more than one clinical parameter (e.g., in Parkinson’s disease, alleviating both 

hyperkinetic and hypokinetic movement while protecting cognition). This level of design 

motivates a control layer in ‘parameter’ space, and considerations of additional configuration 

aids using techniques from reinforcement learning that help automate the parameter 

selection process in light of clinician and patient goals. Finally, the expansion of therapies 

into mood disorders and anxiety prompt the need for consideration of the ethics of 

automated neural control, with special attention to informed consent and transparency in 

protocol development.
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Executive summary

The motivation for ‘smart’ systems

• Medical devices are beginning to use sensors and algorithms to automate the 

delivery of therapies.

• Automaticity has the potential to improve therapy outcomes, reduce side 

effects and offload clinical and patient burden.

• However, automaticity also brings new risks that need to be addressed by the 

system designer.

Frameworks to guide ‘smart’ system design

• Regulations exist for physiologic controllers, and apply to many automated 

closed-loop systems such as incubators and syringe pumps.

• The guidance documents for these systems are also useful for guiding 

implantable medical devices and systems.

• The application of a physiologic control framework provides a common 

design language for designing automated bioelectronic systems and managing 

risks.

Building intuition: mapping historical examples of risk mitigation to the framework

• Existing medical devices with embedded automaticity provide specific 

examples of how the framework can be applied in practice.

• The cardiac pacemaker, artificial pancreas and neuromodulators provide 

implicit examples of design choices that align with the intent of regulatory 

guidance, which can be made explicit through the use of the design 

framework.

• These predicate designs provide examples of both core design elements and 

key risk considerations and mitigations for single-fault failures.

An integrated ‘smart’ system case study: bidirectional brain–computer interfacing 
for treating essential tremor

• An exemplar design from a state-of-the-art investigational study is presented 

as an example of a system that was designed within the framework.

• Specific design steps and risk mitigations are described that highlight key 

elements of the physiologic control framework.

• The brain-interfacing example integrates all elements of the framework into a 

single unified system, which can be used as a reference template for 

bioelectronic medical systems with automaticity and feedback.
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Figure 1. The base model for an ‘intelligent’ bioelectronic system using the nomenclature of the 
International Electrotechnical Commission standard 60601-1-10 for establishing safety and 
essential performance in physiologic closed-loop systems.
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Figure 2. An enhanced model for an ‘intelligent’ bioelectronic system using the nomenclature of 
the International Electrotechnical Commission standard 60601-1-10 for establishing safety and 
essential performance in physiologic closed-loop systems; risk mitigations are added with the 
brown boxes.
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Figure 3. Cortical–thalamic lead placement for an adaptive neurostimulator.
Cortical sensing electrodes (measurement element) are circled in red, while depth 

stimulation electrodes in the thalamus (actuation) are circled in blue.
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Figure 4. The mental model for the physiologic controller using cortical sensing to drive a 
thalamic lead – when the patient ‘thinks’ about motion to pour a cup of coffee, the stimulator 
turns on; when he stops thinking about motion, the stimulator turns off.
By limiting stimulation to the motion state, therapy side effects and battery usage might be 

better managed.
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Figure 5. The use of a test tone to monitor the integrity of the measurement transfer element 
(biopotential amplifier).
The 105 Hz tone is injected in parallel to the physiological signal and should always be 

present. If it disappears due to a combination of excessive channel mismatch, stimulation 

gain and amplification, the tone is compromised and corrective actions should be taken, such 

as turning down the gain or entering a fallback mode. This example was provided by 

Medtronic PLC for training purposes.
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