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Abstract: The endocannabinoid system (ECS) is an endogenous signaling system formed by specific
receptors (cannabinoid type 1 and type 2 (CB1 and CB2)), their endogenous ligands (endocannabi-
noids), and enzymes involved in their synthesis and degradation. The ECS, centrally and peripherally,
is involved in various physiological processes, including regulation of energy balance, promotion
of metabolic process, food intake, weight gain, promotion of fat accumulation in adipocytes, and
regulation of body homeostasis; thus, its overactivity may be related to obesity. In this review, we
try to explain the role of the ECS and the impact of genetic factors on endocannabinoid system
modulation in the pathogenesis of obesity, which is a global and civilizational problem affecting
the entire world population regardless of age. We also emphasize that the search for potential new
targets for health assessment, treatment, and the development of possible therapies in obesity is of
great importance.

Keywords: endocannabinoid system; obesity; cannabinoid receptors; obesity pathogenesis; obe-
sity genes

1. Introduction

According to the World Health Organization (WHO), obesity is defined by a body
mass index (BMI) higher than or equal to 30 kg/m2. Although the BMI is not an ideal
diagnostic tool, it is widely used in clinical practice as well as in assessing the prevalence
of obesity worldwide. However, it should be noted that the BMI uses only height and body
weight, which could be misleading when muscle tissue is overgrown [1]. Therefore, the
waist-to-hip ratio (WHR) should be measured to assess the location of adipose tissue [2].
In recent years, more accurate techniques, such as bioelectrical impedance analysis (BIA)
or gold-standard dual-energy X-ray absorptiometry (DXA), have become more common,
allowing a more precise evaluation of adipose tissue [3].

Within a few decades, obesity has become a global problem. Currently, almost 2
billion individuals worldwide suffer from overweight, and over 650 million are obese
(Figure 1) [4]. In Poland, 21.3% of adults suffered from obesity in 2016, with a slight pre-
dominance of men. On the other hand, in the U.S., 36.2% of the population, predominantly
women, suffer from obesity [5]. In fact, the prevalence of obesity has almost tripled since
1975 [6], and it is estimated that by 2030, half of the world’s population will be over-
weight [7]. Currently, obesity, especially among children, is vastly increasing in developing
countries, particularly in urban areas. Interestingly, the prevalence of obesity is more than
30% higher among children living in developing countries than among children living

Nutrients 2021, 13, 373. https://doi.org/10.3390/nu13020373 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-4388-286X
https://orcid.org/0000-0002-6586-3611
https://orcid.org/0000-0001-6995-090X
https://orcid.org/0000-0001-5601-7002
https://orcid.org/0000-0002-3647-5070
https://orcid.org/0000-0001-5122-8003
https://doi.org/10.3390/nu13020373
https://doi.org/10.3390/nu13020373
https://doi.org/10.3390/nu13020373
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13020373
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/2072-6643/13/2/373?type=check_update&version=2


Nutrients 2021, 13, 373 2 of 24

in developed countries [8]. It is essential to note that 75% of people with excessive body
weight in childhood will suffer from overweight or obesity in adult life [9]. The pathogene-
sis of obesity is complex and has not been investigated thoroughly enough, although it is
accepted that behavioral, genetic, and biological factors, including intestinal microbiota or
even intrauterine growth, have been associated with the development of obesity [8,10,11].

There is evidence of a link between intestinal microbiota and obesity. It has been
discovered that microbiological changes in the intestine constitute a risk factor for obesity
among humans [12]. In addition, bariatric surgery partly improves excessive body weight,
associated with intestinal dysbiosis, and the changes in the intestinal microbiota composi-
tion have been associated with positive results following the surgery, i.e., with weight loss
or metabolism improvement [11].

Figure 1. Percentage of people with obesity in different regions of the world [13–17].

However, the direct cause of obesity is excessive calorie intake. Nearly 3 million
people in the world die of obesity-related comorbidities each year [5]. Furthermore, obesity
is associated with a higher incidence of cardiovascular disease, including heart failure,
which is the main cause of death globally.

One of the elements responsible for the body’s nutrition and metabolic state is the
food-intake-regulating system, involving numerous hormones, cytokines, and other trans-
mitters, such as insulin, leptin, ghrelin, glucocorticosteroids, and endocannabinoids [18].
Food intake is regulated at both central and peripheral levels [19]. Central regulation is
responsible for nutritional (pro-nutritional) behavior and the resulting feeling of pleasure,
whereas peripheral regulation is based on the modification of lipogenesis, adipogenesis,
glucose metabolism, and lipoprotein metabolism, in which the endocannabinoid system
(ECS) plays a significant role [4,20].

The isolation of ∆9-tetrahydrocannabinol (∆9-THC) in 1964 was a milestone in dis-
covering the endocannabinoid system [21]. Studies on ∆9-THC led to the identification
of the first cannabinoid receptor, i.e., cannabinoid receptor type 1 (CB1R) in the rat brain,
which was classified as a G-protein-coupled receptor (GPCR) [22]. In the following years,
CB1R was found in many species, including humans [23]. In 1993, a second cannabinoid
receptor, cannabinoid receptor type 2 (CB2R), also classified as a GPCR, was discovered in
spleen macrophages [24]. It is worth mentioning that other types of cannabinoid receptors,
nonCB1 and nonCB2 orphan GPR55 and TRPV1 receptors, have been reported so far, which
may explain the pathway that has not been fully understood [25–27]. However, to date,
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no genetic polymorphism changes in GPR55 and TRPV receptors have been identified in
terms of their role in determining obesity. Only in vivo studies on the role of GPR55 in
energy and glucose homeostasis have been performed in GPR55-/- mice, which revealed
that GPR55 knockout, at least partially, increased adiposity and insulin resistance due to
reduced physical activity [28]. A similar observation was confirmed for the TRPV receptor,
where the authors evaluated the effect of capsaicin on the browning program in white
adipose tissue (WAT) by the activation of TRPV1 channels to prevent diet-induced obe-
sity in wild-type and TRPV1(-/-) mouse models. They successfully demonstrated that
activation of TRPV1 channels by dietary capsaicin results in the browning of WAT, thus
prevent obesity, which implies that TRPV could become a promising new target to combat
obesity [29]. This fact was confirmed by Christie et al. in 2018, which indicates that TRPV
may be involved in energy homeostasis and the control of food intake, appetite, and energy
expenditure. This, in turn, strongly suggests that its dysregulation may be involved in
the development of obesity. The mechanisms causing dysregulation have not been fully
understood, but interactions with the ECS may, to some extent, explain the role of TRPV in
this dysregulation [30].

The discovery of cannabinoid receptors allowed one to identify its endogenous
cannabinoids, such as the endogenous partial agonist anandamide (AEA) and the en-
dogenous full agonist 2-arachidonylglycerol (2-AG) [31], with a greater affinity for CB1 and
CB2 than AEA [32,33], or virodhamine (CB1 receptor antagonist and CB2 receptor agonist)
derived from arachidonic acid and ethanolamine [34].

The abovementioned AEA and 2-AG are the best-known endocannabinoids, although
other ECS neurotransmitters, such as 2-arachidonyl glyceryl ether (2-AGE), N-arachidonoyl
dopamine (NADA), oleamide (cis-9,10-octadecanoamide (ODA)), N-arachidonylglycine
(NAGLy), palmitoylethanolamide (PEA), stearoylethanolamide (SEA), and oleoylethanolamine
(OEA) [33], should also be mentioned, since they all have an affinity for cannabinoid-
like G-coupled receptors. The endocannabinoid system is also formed by synthesizing
and degrading enzymes, such as AEA-synthesizing enzymes (N- acylotransferase (NAT),
N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD), and fatty acid amide
hydrolase (FAAH)) and 2-AG-regulating enzymes (diacylglycerol lipase (DAGL) and
monoacylglycerol lipase (MAGL)) [33,35]. Moreover, it has been recently discovered that
glycerophosphodiester phosphodiesterase 3 (GDE3) acts as an ecto-enzyme and converts
bioactive lysophosphadylinositol (LPI) to monoacyloglycerols (MG), including 2-AG, and
activates CB1R as well as CB2R signaling in mammalian cultured cells [36,37].

CB1R is primarily located in the central and peripheral nervous systems, i.e., in
the cerebral cortex (neocortex), with a high accumulation in the cingulate cortex, and
the frontal and motor cortex. It is also present in the olfactory structures of the brain
and the hippocampus, where the accumulation is exceptionally high, as well as in the
amygdala, striatum, cortex, deep cerebellar nuclei, brain stem, spinal cord, diencephalon,
and hypothalamus, where, in contrast, its accumulation is relatively low [38]. It should be
noted that CB1R is the most common receptor of GPCRs in the mammalian central nervous
system (CNS) [39,40]. Besides, CB1R is found in adipocytes and muscles, adrenals, pancreas,
liver, gastrointestinal cells, and other tissues [41]. CB2R is formerly considered a peripheral
receptor due to its location in spleen macrophages. However, cannabinoid receptor type
2 has also been found in some parts of the brain, such as the striatum, hypothalamus,
cerebral cortex, hippocampus, amygdala, and substantia nigra [41,42]. Nevertheless, the
immune system is the primary location of the CB2 receptor. The CB2 receptor was found
in macrophages, including osteocytes, osteoclasts, Kupffer cells, and B lymphocytes, and
in each organ with immune cells, including the cardiovascular system, gastrointestinal
tract, and reproductive system, and plays an important role in inflammatory processes
(Table 1) [43–46].



Nutrients 2021, 13, 373 4 of 24

Table 1. Presence of CB1R and CB2R in human tissues [47–49].

Concentration Tissue CB1R CB2R

Adrenals + + 0
Appendix + + + +

Bone marrow Low +
Brain + + + + 0
Colon + Low

Duodenum + Low
Endometrium + Very low

Esophagus + Very low
Fat + + + 0

Gall bladder +
Heart Low 0

Kidney Very low 0
Liver 0 Very low
Lung + + Low

Lymph node + + + + +
Ovary + 0

Pancreas Very low 0
Placenta + + Very low

Prostate gland + Low
Salivary gland + Very low

Skin + Very low
Small intestine + Low

Spleen + + + +
Stomach + +

Testis + Low
Thyroid + Low

Urinary bladder + +
RNA-sequencing. RPKM, reads per kilobase million. 0, absent; very low, concentrations equal and below 0.03
RPKM; low, concentrations in the range of 0.119–0.031 RPKM; +, concentrations in the range of 0.582–0.200 RPKM;
+ +, concentrations in the range of 1.272–1.089 RPKM; + + +, concentrations in the range of 3.665–2.735 RPKM;
+ + + +, concentration equal to 6.155 RPKM; CB1R—cannabinoid receptor type 1; CB2R—cannabinoid receptor
type 2.

2. Role of the Endocannabinoid System in Metabolic Process Regulation

Endocannabinoids are involved in the physiological regulation of the body’s homeosta-
sis, stimulating food intake and hunger, as well as shifting energy balance toward energy
storage [50], by means of acting on peripheral tissues, such as adipocytes, hepatocytes, islet
cells, the gastrointestinal tract, and skeletal muscles (Figure 2).

2.1. Adipose Tissue

The ECS promotes fat storage in adipocytes by intensifying adipogenesis and acts
directly by increasing triacylglyceride (TAG) production. It has been shown that the block-
age of CB1R decreases adipocyte proliferation, while adipocyte differentiation is directly
preceded by multiple increases in AEA and 2-AG levels in mice [51,52]. CB1R stimulation is
accompanied by an increase in peroxisome proliferator-activated receptor gamma (PPAR-γ)
receptors, which play an essential role in adipocyte proliferation and increase the size and
quantity of TAG in adipocytes of diet-induced obese mice [51,53]. Additionally, CB1R
activation decreases adiponectin expression and increases leptin expression in mouse white
adipose tissue (WAT) [54].
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Figure 2. Schematic illustration of the endocannabinoid system role in the regulation of metabolic processes. CB1R—
cannabinoid receptor type 1; CB2R—cannabinoid receptor type 2; CNR1—endocannabinoid type 1 receptor gene; CNR2—
endocannabinoid type 2 receptor gene; FAAH—fatty acid amide hydrolase; NAPE-PLD—N-acyl phosphatidylethanolamine
phospholipase D.

2.2. Lipogenesis and Lipolysis

CB1R activation in mice stimulates the expression of PPAR-γ and lipoprotein lipase,
which increases the availability of substrate for TAG production, stored in adipocytes [55].
Moreover, CB1 inhibits adenylate cyclase activity, which inhibits the activity of 5′AMP-
activated protein kinase (AMPK), and further of AMPK-associated lipolysis, which reduces
fatty acid synthase (FAS) inhibition and lipolysis. CB1R stimulation also directly increases
FAS expression. On the other hand, CB1R increases glucose uptake into the adipose tissue
by directly affecting glucose transporter type 4 (GLUT4) in adipocytes. These activities
under physiological conditions are regulated by autocrine mechanisms in the adipose
tissue. However, under pathological conditions, these actions cause dyslipidemia, i.e.,
mainly an increase in TAG and low-density lipoprotein (LDL) in the serum, and play a
crucial role in developing insulin resistance (IR) [20].

2.3. Brown Adipose Tissue

CB1R is present in brown adipose tissue (BAT) adipocytes. Previous studies suggest
that CB1R activation in BAT is based on the inhibition of signals from the sympathetic
nervous system (SNS), which decreases thermogenesis [56]. Moreover, peripheral CB1R
blockade in BAT can provide a new approach to treating obesity and lowering cardiovas-
cular risk. In fact, chronic CB1R antagonism has been associated with activation of BAT
thermogenesis and weight loss in diet-induced obese mice and rats by both peripheral
and CNS-located CB1R [56,57]. As Eriksson et al. demonstrated, CB1R can be a promising
surrogate biomarker for BAT, which would be helpful in further investigation of the activa-
tion and regulation of BAT and energy expenditure [58]. Similar results were obtained in
the study by Boon et al., where CB1R blockade with rimonabant in mice enhanced energy
expenditure and reduced dyslipidemia [59]. However, EC signaling via CB1R could also
provide new approaches to treating obesity and improving metabolism in humans [60].
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2.4. Liver

As mentioned earlier, CB1R is expressed in the liver, promoting the synthesis and stor-
age of TAG [61]. The activation of CB1R in wild-type mice resulted in increased expression
of sterol regulatory element-binding protein-1c (SREBP-1c) and subsequent expression
of related lipogenic enzymes, e.g., FAS and acetyl-CoA carboxylase. Under pathological
conditions, it significantly contributes to the development of non-alcoholic steatohepatitis
(NASH), further hepatic fibrosis, and dyslipidemia or dyslipoproteinemia [62–64]. More-
over, CB1R activation causes an expansion of the adipose tissue in the liver, which causes
IR [65]. In contrast, the ECS inhibits adiponectin expression, which stimulates liver AMPK
and fatty acid entrance into mitochondrial oxidation pathways. It proves that in addition
to the direct effect on liver metabolism, the ECS also indirectly decreases the oxidation of
fatty acids in the liver in vivo [66]. Furthermore, CB2 is also expressed in hepatocytes, and
CB1R antagonists and CB2 agonists protect the liver from toxic failure [67].

2.5. Skeletal Muscles

The action effect of CB1 in the muscles is associated with the regulation of glucose
uptake through the modulation of insulin sensitivity. Under physiological conditions, the
activation of CB1 in mice results in a decrease in glucose uptake and oxygen consumption
by inhibiting fatty acid oxidation [68,69].

2.6. Pancreas

It has been demonstrated that CB1R and CB2 are present in alpha and beta islet
cells, although their stimulation has a different result. The activation of CB1 increases
insulin secretion from beta cells and glucagon from alpha cells in mice. CB2 stimulation
decreases insulin secretion from beta cells and glucagon from alpha cells. These data sug-
gest, therefore, that the glucose plasma concentrations induced by the ECS are not directly
associated with pancreatic hormones; however, they are associated to a greater extent with
the modulation of peripheral insulin sensitivity dependent upon the ECS [20,70,71].

2.7. Gastrointestinal Tract

The ECS reduces the feeling of satiety, which increases the frequency and quantity of
food intake. Simultaneously, the ECS decreases gastric juice secretion, intestinal peristalsis,
and bowel content passage. This, in turn, results in a higher absorption of nutrients, which
could lead to weight gain and further obesity. These processes are influenced by receptors
located in the gastrointestinal tract (GT) and the peripheral nervous system [72–74]. In fact,
a high-fat diet-specific increase of AEA and 2-AG in the jejunum suggests the presence of
positive feedback loops. The inhibition of this loop could reduce the consumption of fat-rich
products, thus providing a therapeutic solution [75,76]. Furthermore, endocannabinoids
are also produced in the gastrointestinal tract, e.g., in the small intestine. On the basis of
the mice model, it has been indicated that after 24 h fasting, the level of AEA in the GT
increases sevenfold, which can affect the nutritional status, energy balance, lipoprotein
metabolism, glucose homeostasis, and even nutritional behavior [39,72].

3. Mechanisms of Hunger and Satiety in Obesity

Obesity and its comorbidities, such as coronary heart disease, hypertension, gout,
diabetes, or several types of cancers, result from excessive accumulation of adipose tissue,
which stems from consuming much more energy than is necessary [77]. However, specific
homeostasis helps to maintain proper body weight for a longer period. An increased calorie
density of widely available foods can disrupt homeostasis, hence leading to obesity [78].
Interestingly, the balance system is more sensitive to hunger than to satiety, since in the past
it was difficult to predict whether and when the next meal will be consumed. Therefore,
a tolerance for excessive caloric intake is essential for the development of obesity and
metabolic disorders. In fact, appetite is regulated by a system of central and peripheral
signals that can modulate the individual reaction to the provided nutrients. A central con-
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trol of food intake is controlled by the hypothalamus, brain stem, neuropeptide signaling
systems, and monoaminergic, and endocannabinoid systems. A peripheral control of food
intake involves gastrointestinal satiation signals through hormones like cholecystokinin
(CCK), glucagon-like peptide 1 (GLP-1), and neuropeptide Y (NPY). Signals are transmitted
to the solitary nucleus (SN) in the brain stem through the vagus nerve. Satiety, associated
with a portion size, suppresses hunger and ends food intake. Physiological and psycholog-
ical mechanisms release signals from different gastrointestinal tract locations, including
the stomach, proximal and distal parts of the small intestine, and colon, to the brain [79].
Generally, satiety is defined as a period between meals without the feeling of hunger [80],
which is impacted by both long-term signals from body energy storage and short-term
signals from the gastrointestinal tract [81]. NPY constitutes an essential neurotransmitter
in the brain, increasing during hunger and decreasing during a meal [82]. In the course
of weight regain among people with obesity, its role is particularly essential, since body
weight reduction reduces leptin concentrations and activates NPY, which is associated
with hyperphagia and decreased energy usage. On the other hand, proopiomelanocortin
(POMC) has an anorexigenic effect. Therefore, mutations in POMC are associated with
increased food consumption and the development of obesity [83].

Endocannabinoids (EC) are anabolic lipid mediators responsible for increased food
consumption, energy storage, and lower energy expenditure. They are essential in regulat-
ing hormonal and metabolic changes in obesity. For instance, in the mice brain, a selective
CB1 receptor agonist suppressed food intake [84]. Additionally, the amount of CB1in the
hypothalamus decreased following exposure to leptin. Thus, the orexigenic effect of CB1has
been associated with the function of the peripheral neuronal system, regulated by leptin
and associated with the development of overweight and obesity [85]. In fact, leptin reduces
calcium inflow and further inhibits EBC synthesis, which reduces appetite [86]. Moreover,
EC can also modulate energy intake through peripheral mechanisms not associated with
appetite. This confirms the resistance to weight gain induced by diet in CB1 −/−mice as
compared to wild-type mice fed with the same diet [62].

Taste, flavor, or texture stimulates food intake, but they are also essential in achieving
the feeling of satiety. As food consumption progresses, signals from the GT (extending
stomach wall, ghrelin, peptide hormones) and an increase in glucose levels lead to food
consumption termination. However, food palatability stimulates further consumption
and can increase a portion intake by 40% in comparison to taste-neutral products [87].
Waiting for a meal or eating time is associated with faster satiety [88]. Furthermore, mental
work and sleep deprivation negatively affect satiety and increase the amount of consumed
food by means of unstable glycemia and cortisol levels [89]. Moreover, the low*satiety
phenotype, i.e., one of the phenotypes of appetite, which favors obesity has been found [90].
In addition, meal composition affects satiety, and according to research data, high-protein
meals ensure higher satiety during body weight reduction [91]. In healthy, normal-weight
individuals, the consumption of a high-protein diet is associated with higher and longer
satiety during the day than the consumption of a diet with a regular amount of protein [92].
In fact, the consumption of protein products with carbohydrates stimulates GLP-1, which
increases insulin secretion. Additionally, satiety following high-protein consumption is also
associated with increased energy expenditure, which further increases oxygen consumption
and body temperature, as well as promoting satiety [93].

4. Microbiota, Hunger, and Satiety in Obesity

Intestinal microbiota are a complex population of various microorganisms that can
positively affect the human body. However, microbial changes may promote the devel-
opment of several diseases, in particular metabolic diseases. Microbial changes affect the
mechanisms of hunger and satiety, produce neuroactive substances and short-chain fatty
acids (SCFA), and thus regulate nutritional behaviors associated with food consumption.
Lactobacillus and Bifidobacterium strains are known to produce gamma-aminobutyric acid
(GABA) [94], whereas L. reuteri produces histamine, and L. plantarum produces acetyl-
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choline [95]. Furthermore, intestinal microorganisms can also moderate intestinal per-
meability and bile acid metabolism. In fact, studies on mice have shown that probiotic
supplementation decreases hunger [96]. The brain–gut axis affects appetite and, therefore,
affects the energy state of the host [97,98]. The concentration of catecholamines increases
under the influence of β-glucuronidase, produced by bacteria, which can also affect sati-
ety [99]. Additionally, gut bacteria can also modulate serotonin production, which affects
gastrointestinal motility and intestinal peptide secretion [99].

A lower response to sweet and greasy flavor was observed in obesity, resulting
in increased appetite for these flavors and their higher consumption [100]. Saccharine-
sensitive rats have a different intestinal microbiota composition than rats less vulnerable to
saccharine [101]. The activation of the immune system causes a decrease in taste receptor
cells and taste buds in the tongue [102]. These changes in people with dysbiosis are initiated
by the Toll-like receptor and interferon receptor (IFN) types I and II [103], and a similar
effect is observed following the influence of lipopolysaccharides (LPS). On the other hand,
the administration of LPS to mice results in lower expression of sweet taste receptors
and a lower response for saccharose [104]. Moreover, dysbiosis among individuals with
obesity increases intestinal permeability, serum lipopolysaccharide levels, and enhances the
synthesis of CB1R and the expression of macrophages [105]. Furthermore, it increases the
inflammatory state, the infiltration of pro-inflammatory macrophages in the adipose tissue,
and the accumulation of adipose tissue. Conversely, the antagonists of CB1R decrease
intestinal permeability and LPS levels [106].

In a study by Maria Isabel Queipo-Ortuñ, higher amounts of Proteobacteria and
Bacteroidetes and lower amounts of Actinobacteria and Firmicutes were observed in rats
fed a restrictive diet. Additionally, an increase in Lactobacillus and Bifidobacterium was
observed in the group with physical activity. In fact, a positive correlation between the
amount of Bifidobacterium, Lactobacillus, and leptin and a negative correlation between
Clostridium, Bacteroidetes, Prevotella, and leptin were observed. On the other hand,
ghrelin was negatively associated with the number of Bifidobacterium and Lactobacillus
and positively associated with Bacteroidetes and Prevotella [107].

5. Cannabinoids/Endocannabinoid Control of Food Intake

ECS activity in the central nervous system—mostly in the limbic system and
hypothalamus—is well documented. The endocannabinoid system plays an essential role
in connecting gastrointestinal tract activity and the body’s energy economy [50]. The ECS
works by increasing both appetite and the motivation to seek food. This mechanism is
regulated by nourishment and anorexigenic transmitters produced by the hypothalamus,
e.g., corticotropin-releasing hormone (CRH), melanin-concentrating hormone (MCH), and
hypocretin [108,109].

It is assumed that the ECS operates at the cellular level by inhibiting neuronal stim-
ulation and transmitters secretion into the synaptic gap [110]. The EC level in the hy-
pothalamus is physiologically regulated by hormones reflecting the organism’s metabolic
conditions, e.g., leptin, ghrelin, cholecystokinin, and glucocorticosteroids. The use of
cannabinoids increases food intake [111]. Studies on rodents have indicated that those with
60% deficiency of CB1R in the hypothalamus are less sensitive to a non-nutritive effect of
rimonabant (a selective agonist of CB1R, previously used as an anti-obesity treatment and
then excluded due to multiple adverse reactions, mostly psychiatric). Interestingly, it has
been suggested that the leptin effect in the hypothalamus is mostly associated with ECS
signaling, since no leptin-induced appetite suppression effect was observed in rodents.
Moreover, in another study, ghrelin also reduced this effect [54,112].

It has been suggested that several neuronal connections, directly related to eating
behaviors, change their function from stimulation to obesity inhibition. Therefore, EC’s
presynaptic inhibiting effect on the expression of transmitters stimulates the expression
of pro-nourishing transmitters [54]. Considering that leptin negatively regulates the ex-
pression of CB1R in the hypothalamus and the fact that leptin resistance is common, leptin
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resistance impairs negative leptin control of the ECS at the hypothalamus level, causing an
increase in subsequent pro-nourishing behaviors [4,85,113]. Moreover, the administration
of the reverse CB1R agonist restores leptin sensitivity and has an anti-obesity effect in
mice [114]. Other rodent studies revealed an increase of 2-AG in the hypothalamus follow-
ing a high-fat diet (regardless of chronic or acute stimulation). The selective activation of
CB1R in the central nervous system resulted in resistance to obesity induced by a high-fat
diet. Moreover, the inactivation of CB1R in the central and sympathetic nervous systems
caused an increase of thermogenesis [54,74,85,115,116].

The role of the limbic system in the control of food intake is mainly based on hedonistic
fulfilment and needs—in this case, the estimation of taste and related behaviors. The
nucleus accumbens, where endocannabinoid and opioid receptors are found, plays the
most crucial role in assessing food type. Additionally, the nucleus accumbens has a unique
link with the lateral hypothalamus, where the ECS performs a significant function [117,118].
In fact, it has been proven that dopamine activity in the nucleus accumbens is associated
with the classification of hedonistic impulses and that CB1R blockage in this structure
inhibits dopamine expression in response to pleasurable food [117,119]. Furthermore,
the vagus nerve contains CB1R, CCK, and leptin receptors and is also responsible for
maintaining homeostasis. It transfers information from organs to the locus coeruleus
concerned with the regulation of digestive processes. CCK is secreted from the duodenum
during eating and reduces food intake via the vagus nerve. In addition, leptin negatively
regulates CB1R levels, also in vagus nerve endings, which suggests another theoretical
ECS-related mechanism of reducing food consumption [85].

Moreover, chronic activation of CB1R may increase processes associated with hyper-
lipidemia, diabetes, or cardiovascular events among hedonic patients with obesity [20,120].
Furthermore, several dietary factors, e.g., dietary secondary metabolites, can affect the ECS,
and high-calorie and high-fat diets can modulate the CB1/CB2 ratio and, thus, enhance
food intake in several cases [121,122]. EC can also moderate food reward, whereas EC
agonists can increase the palatability and hedonic value of food [123]. Interestingly, there
is a possible 6-n-propylthiouracil (PROP) taste sensitivity association with the BMI, lipid
parameters, and circulating endocannabinoids. Therefore, lower concentrations of AEA or
2-AG in normal-weight nontasters versus normal-weight supertasters can counteract the
excess adipose tissue accumulation. In contrast, obesity can disrupt the abovementioned
adaptive mechanism, since Carta et al. also noted an opposite correlation between plasma
AEA and 2-AG concentrations, as well as the PROP phenotype. As a result, nontasters had
62% higher levels of endocannabinoids than supertasters [124]. It is worth mentioning that
the ECS is also dysregulated in eating disorders, and EC dysregulation can be a modulating
factor of rewarding binge-eating or self-starvation; however, data regarding this issue
remains limited [125].

6. Genetic Determinants of Obesity in the Context of the Endocannabinoid System

The endocannabinoid system contributes to food control consumption through central
and peripheral mechanisms. The ECS is involved in lipid and glucose metabolism control,
lipogenesis stimulation, and visceral fat accumulation [126–129]. Since genetic factors
modified by the environmental factors control body weight maintenance, genetic variants
affecting the ECS may be essential subjects in the pathophysiology of obesity.

It is frequently suggested that the main factor contributing to varying degrees of
obesity susceptibility may be epigenetics and gene expression [130–132]. First studies
concerning the role of DNA methylation in obesity were conducted in 2013 by Xu et al., in
which the authors identified several CpG sites and DNA methylation variances associated
with obesity in young African Americans [133]. Most importantly, it was demonstrated
that differential methylation and differential variability can determine the risk of obesity in
approximately 70%in humans. Since then, research regarding the role of DNA methylation
and histone modification in obesity has been initiated [133–139].
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On the basis of these studies, researchers managed to identify tissues (adipose tissue,
blood, skeletal muscle stem cells) and genes (ABCC3, GRB10, H19, MOGAT1, PDGFA,
PRDM16, PRKCE, ATP10A, IRS1, JARID2, KCNQ1, ABCG1, FAM123C, FHL2, KLF14, PHOS-
PHO1, ZNF518B, ADCY5, CDKN1A, FTO, INS, KCNQ1, PDE7B, PDX1, PPARGC1A, SEPT9,
SOCS2, TCF7L2) associated with obesity and related phenotypes (BMI, waist circumfer-
ence). The determination of obesity susceptibility genes can contribute to the explanation
of weight regulation mechanisms, food intake control, and fat distribution, potentially
indicating new approaches to preventing and treating obesity [140].

Recent studies have shown that the endocannabinoid system can also be epigenetically
modulated by drugs, alcohol, and diet. These modulations mainly include the CNR1 gene
but also the hydrolyzing enzyme FAAH. The epigenetic modulations mechanisms concern
global and gene-specific DNA methylation changes, histone acetylation and deacetylation,
and the production of specific miRNAs [141–146].

It has been demonstrated that peripheral ECS activity is epigenetically modulated
by diet. It turns out that the compound affecting the epigenetic modulation of CNR1
expression in vivo and in vitro is the commonly used extra virgin olive oil (EVOO), as
evidenced by the ~50% reduction in CpG methylation status of the CNR1 promoter and
expression of CB1R modulators, i.e., miR23A and mir-301a (involved in the pathogenesis
of colorectal cancer) in rats exposed to short- and long-term dietary EVOO. Moreover,
Francesco et al. showed that EVOO and its phenolic components were able to selectively
regulate CNR1 gene expression in Caco-2 cells due to the hypermethylation of the CNR1
promoter. Interestingly, the frequency of CNR1 methylation is also quite high in human
colorectal cancer and reaches about 77% and seems to be a relevant mechanism for cancer
progression [147]. A study by Pucci et al. revealed a significant and selective increase
in CNR1 gene expression in high-fat-diet rats at the beginning of obesity development
and after 21 weeks of high dietary exposure, with a simultaneous selective and significant
decrease in DNA methylation at specific CpG sites in both gene promoters in overweight
rats [148]. In fact, CB1R is present in human subcutaneous adipocytes, encoded by the
CNR1 gene, alterations in which, related to obesity traits, are frequently described in the
literature. It is well established that CB1R activation leads to an increase in energy storage,
which occurs via an increased motivation to consume food and to decreased satiety [149].
Increased levels of CB1R and endocannabinoids are observed during adipocyte differen-
tiation. According to Ravinet Trillou et al., CNR1-deficient mice were lean and resilient
to diet-induced obesity [150]. The dysregulation of the endocannabinoid system seems
to play a crucial role in human obesity [149], which can be demonstrated by significant
abdominal fat accumulation [151], as well as the fact that CNR1 gene variants are associated
with an increased appetite, BMI, waist circumference, and skin-fold thickness, and even
the appearance of metabolic syndrome [152,153]. The important role of the ECS in the
pathophysiology of obesity can be proven by the fact that a blockade of CNR1 by means
of rimonabant leads to a significant reduction in food intake and weight loss [154,155].
Moreover, these findings indicate that CNR1 gene antagonists improve glucose and lipid
homeostasis, which occurs independently of weight loss, implying that CNR1 gene vari-
ability may contribute to obesity-related metabolic disorders in view of human obesity.

Benzinou et al. studied 26 single-nucleotide polymorphisms of CNR1, in which 12
showed nominal evidence of association with childhood obesity, class I and class II, and
class III adult obesity. The study was conducted on 5750 patients and demonstrated that
CNR1 gene variants increases the risk of obesity and modulates the BMI in the European
population [152]. The impact of CNR1 genetic diversity on the BMI was also confirmed by
other researches, who demonstrated that the rs1049353 mutant allele is associated with a
lower BMI in European populations [156–158]. Moreover, it was found that in Caucasians
suffering from anorexia or bulimia, the T allele is much more frequent in both homo- and
heterozygous individuals than in healthy individuals [159]. Interestingly, homozygotes
with the rs1049353-mutated allele correlated with a higher WHR and waist circumference
(WC) in obese men and were associated with an increase in childhood obesity [160].
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Consequently, it may suggest that CNR1-specific variants may constitute key elements in
the understanding of the CB1R impact on feeding, fat accumulation, and susceptibility
to increased adiposity. A previous review paper [143] regarding the role of ECS genetic
polymorphisms in relation to obesity and diabetes was already published in 2019 by Doris
et al. On the basis of the data from their review, we attempted to present an up-to-date
table describing the associations between ECS obesity-related genes’ single-nucleotide
polymorphism (Table 2) However, it is important to bear in mind research reports, such
as Muller’s group, investigating eight polymorphic sites of the CNR1 gene (rs9353527,
rs754387, rs6454676, rs806379, rs1535255, rs2023239, rs806370 and rs1049353), which do
not confirm any association of the variants studied with regard to obesity in children and
adolescents [161].

Table 2. Associations found between a single-nucleotide polymorphism in ECS obesity-related genes.

Gene Polymorphism Nucleotide
Change

Amino Acid
Change Association Ref

CNR1
rs1049353
(exonic) c.1359G>A p.Thr453=

Associated with a specific macronutrient’s
intake, low-cholesterol and fat-saturated intakes

in Caucasian females
[162]

Associated with higher fat
but not with a metabolic syndrome in

postmenopausal Polish women
[163]

Associated with an increased waist-to-hip ratio
and waist circumference in obese Caucasian men [164]

Associated with a greater weight loss and a
decrease in the BMI [165]

Associated with childhood obesity [166]

Associated with obesity risk and
BMI modulation [152]

Associated with a lower BMI [156]

Associated with BMI modulation and
body weight [167]

Associated with visceral and intermuscular
fat mass [158]

Associated with a lower BMI and fat mass
[168]

Associated with lower insulin levels

CNR1
rs806378
(intronic) c.-63-4495G>A -

Associated with antipsychotic-induced weight
gain in schizophrenia patients [169]

Associated with altered gastric functions
or satiation [170]

CNR1
rs806381
(intronic) c.-64+9621T>C -

Associated with obesity-related phenotypes in
Polish postmenopausal women. [163]

Associated with a visceral fat mass [158]

Associated with childhood obesity in the
French cohort

[152]
Associated with an increased BMI in the adult

Swiss cohort

Associated with metabolic effects [171]
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Table 2. Cont.

Gene Polymorphism Nucleotide
Change

Amino Acid
Change Association Ref

CNR1
rs806368
(3’UTR) c.*3475A>G -

Associated with obesity in Japanese men [172]

Associated with an increased BMI and
waist circumference [168]

Associated with triglyceride levels

[173]
CNR1 rs806370

(intronic) c.-63-1275G>A - Associated with circulating levels of HDL-C

CNR1 rs806369
(intronic) c.-63-1122A>G - Associated with triglyceride levels as well as the

total cholesterol level

FAAH
rs324420

(missense) c.385C>A p.Pro129Thr

Associated with increased obesity [168]

Associated with a risk factor in
overweight/obesity in whites, blacks,

and Asians
[174]

Associated with overweight/obesity but not
with binge-eating disorder in Caucasian females [175]

Associated with overweight/obesity in
Iranian individuals [176]

Associated with an increased BMI [165]

Associated with larger improvements in glucose,
total cholesterol, low-density lipoprotein

cholesterol, body mass, and waist circumference
in Spanish individuals

[177]

Associated with insulin improvement and
HOMA-R levels with a high-polyunsaturated-fat

hypocaloric diet following weight loss
[178]

CNR2 rs35761398
(missense) c.188_189delAAinsGGp.Gln63Arg Associated with childhood obesity and the age

of menarche in Italian obese girls [179]

The fact that the endocannabinoid system is closely related to the control of metabolism
and energy balance has already been well documented. Due to the pressure in the brain,
the CB1 receptor has been mainly considered as controlling glucose and lipid metabolism.
Although its level of expression in peripheral cells was deficient, it appeared to influence
increasing obesity. It can also be evidenced by the fact that the genetic ablation of CNR1
leads to weight loss, as well as selective blocking of the CB1 receptor, which leads to reduced
food intake and body weight loss. Nevertheless, following the CB2 discovery as a peripheral
receptor and its identification in different brain regions, including the hippocampus, the
approach was changed [42,180,181]. CNR2 was rarely examined in view of obesity, since
its locations in the liver, adipose tissue, and pancreatic islet cells have only recently been
defined [4]. Romero-Zerbo et al. showed that the overexpression of cerebral CB2R affects
body weight modulation, leading to a lean phenotype in mice [182]. Additionally, CB2
agonists can reduce food intake in lean mice, simultaneously improving weight gain
and obesity-related inflammation in diet-induced obese mice [183]. It turns out that the
frequently studied variant CB2, Q63R, which affects the reduction in CB2R function, is also
associated with human nutrition disorders, eating behavior, and energy homeostasis.

Moreover, its genetic ablation leads to adiposity development [184]. Rossi et al. ana-
lyzed the effect of rs35761398 (Q63R) on CB2Ron obesity modulation in Italian children
and adolescents. They found that the less functional missense variant R63 was significantly
associated with a high z-score body mass index. Additionally, they showed that the CB2R
reverse agonist AM630 increased inflammatory adipokine release and fat storage, whereas
the JWH-133 agonist reversed all effects related to obesity [185]. In turn, Ketterer et al. in-
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vestigated five tagging SNPs of the CNR2 locus (rs2229579, rs3123554, rs9424398, rs4625225,
rs2501392) concerning the association with the BMI, weight, total body fat as a measure
for adiposity, and the WHR as an estimation of body fat distribution. They observed a
significant association of rs3123554 with weight (P additive inheritance model = 0.0062), as
well as a lower BMI and body fat. Interestingly, the association with the BMI was limited to
females, which may constitute evidence of the identified interactions between the ECS and
sex hormones [186]. Other studies have also highlighted the role of the rs3123554 minor
allele in the body weight, insulin and leptin higher levels, triglycerides, and homeostatic
model assessment—insulin resistance (HOMA-IR) based on the example of the Spanish
cohort [187]. Summarizing all the reports described above, we can conclude that CB2R
may constitute a new pharmacological target for the treatment of obesity in the future.
However, as the role of CB2 is still not fully understood, it requires intensive research.

Analyzing genes encoding enzymes involved in the synthesis or the degradation of
endocannabinoids (FAAH, MAGL, DAGL, and NAPE-PLD), we found that any available
studies described the association of MAGL and DAGL polymorphism and their role in the
incidence of obesity, whereas FAAH was defined as an obesity-related factor. Sipe et al.
showed that a naturally occurring missense polymorphism rs324420 (c.C385A) and the
A/A genotype were associated with overweight and obesity in 2667 white (P = 0.005)
and black (P = 0.05) subjects but not in Asians [174]. Yagin’s findings confirmed these
results and demonstrated that the prevalence of the c.385A allele was more frequent in
overweight/obese individuals, and the changes in the FAAH gene were associated with
higher anthropometric indices, as well as the A/A genotype, which significantly increased
the risk of obesity in Iranian women [176]. Moreover, the association of rs324420 with
an increased risk of obesity and higher triglyceride levels was demonstrated in different
European cohorts [175,187–190]. Additionally, Balsevich et al. demonstrated that an
endocannabinoid-dependent signaling mechanism contributes to the hyperphagic actions
of leptin, which increases FAAH activity and reduces AEA signaling in hypothalamic
regions, leading to a reduced food demand. This mechanism is also modulated by the
genetic variant C385A of the FAAH gene. It follows, therefore, that reducing leptin
susceptibility to leptin in individuals with a mutated 385A allele may lead to an increased
risk of developing obesity with the related metabolic complications [191].

On the other hand, we found reports that presented contradictory results, suggesting
that FAAH gene polymorphism and mutant allele carrying were not related to overweight
or obesity. Jansen et al. found no correlation between FAAH 385A allele Danish subjects
and the BMI, WHR, WC, and HOMA-IR [192], as well as Papazoglou et al., who did not
confirm the link to severe obesity with or without the diagnosis of metabolic syndrome in
Greeks [193]. Nevertheless, rs324420 was associated with elevated anandamide levels in the
Brazilian population, which may prove to support the cannabinoid antagonist treatment
strategies in overweight-related disorders [194].

NAPE-PLD encodes one of the enzymes of endocannabinoid synthesis and participates
in the production of anandamide, a CNR1 agonist. NAPE-PLD and other ECS components
are the subject of research in terms of drug targets in the treatment of several diseases,
including obesity and metabolic comorbidities. Wangensteen et al. showed strong evidence
that a common haplotype in NAPE-PLD (rs13232194, rs17605251, rs11487077, rs12540583,
rs6465903) was associated with severe obesity. Additionally, they observed that one SNP,
rs17605251, in NAPE-PLD was nominally associated with BMI in Norwegians [195].

7. Summary and Conclusions

The importance of the endocannabinoid system in regulating metabolic pathways
in the human body is increasingly becoming the subject of research. The discovery of
CB1 and CB2 receptors, their agonists, and their antagonists has enabled research on the
potential role of the EC system in various physiological and pathological processes, such
as appetite regulation, energy balance, food intake, fat deposition, hepatic lipogenesis, and
glucose homeostasis. This indicates that the ECS can be overactive in obese patients, thus
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promoting metabolic processes resulting in weight gain, lipogenesis, insulin resistance, and
dyslipidemia. Therefore, innovative new obesity treatments are highly desirable, and block-
ing the endocannabinoid system seems to be a crucial solution. Studies demonstrated that
selective CB1R agonists can be used for the pharmacological treatment of obesity. Rimona-
bant was introduced in the European Union in 2006 and was tested in three randomized
clinical trials. The study was entitled Rimonabant in Obesity (RIO), in which its influence
on body weight reduction among 5588 overweight (BMI > 27 kg

m2 ) and obese patients with
comorbidities (dyslipidemia and hypertension) was assessed [196]. A significant weight
reduction, an improvement in the serum lipid profile (RIO-lipids), an increase in HDL
cholesterol, and a decrease in TG were observed [197]. Furthermore, in the RIO-Diab
clinical trial, an improvement in insulin sensitivity and glycemic control and a decrease
in fasting glucose levels, the HOMA-IR index, and glycated hemoglobin levels were also
demonstrated [198]. Although RIO trials proved the safety of rimonabant, the approval
was rejected, since it induced symptoms of depression as well as anxiety and resulted in
other side effects (nausea, emesis, diarrhea, vertigo, and headaches). The negative influence
of rimonabant on the gastrointestinal tract is associated with the blockade of CB1R [199]. At
this point, it is worth mentioning that individuals with obesity have an increased risk of the
more severe course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in-
fection [200,201]. The use of rimonabant in order to decrease inflammation, a vital hallmark
of obesity and SARS-CoV-2 infection, could provide a potential beneficial treatment in
terms of a severe COVID-19 course [202]. Therefore, rimonabant use should be considered
in clinical trials for patients with SARS-CoV-2 infection [203]. Although rimonabant was
withdrawn from the market, attempts on testing other CB1R second-generation antagonists
were made. URB447, i.e., a CB1R and CB2R antagonist, decreased the intake of food and
body weight in mice (also peripherally) and was similar to rimonabant with regard to the
polar surface and other physicochemical properties [204]. AM6545 was referred to as the
neutral antagonist due its limited penetration to the brain [205], and its administration
increased leptin sensitivity and the metabolic profile in obese mice, although it presented
limited oral bioavailability. BPR697, reported by studies in the Health Research Institutes
(NHRI) in Taiwan, exhibits a low brain-to-plasma concentration ratio (B/P = 1/23), similar
to rimonabant [206]. BPR697 induced weight loss in diet-induced obese mice, without
altered food intake, and decreased hepatic lipid accumulation. N-cyclohexyl-4-[1-(2,4-
dichlorophenyl)-1-(p-Ttolyl)methyl]piperazine-1-carbo amide exhibited a lower B/P ratio
than rimonabant, although it presented a similar effect on weight loss in diet-induced
obese mice [207]. AJ5012 and AJ5018 were created due to a structural change in rimon-
abant. Nevertheless, although their B/P ratio was significantly lower than rimonabant,
their ability to decrease adipose tissue inflammation was similar to rimonabant. However,
their oral bioavailability remains to be investigated [208]. According to Matthews et al., a
peripherally selective tetrahydroindazole derivative (2p compound), used in diet-induced
obese mice, showed a beneficial effect on plasma glucose [209]. Zhang et al. discovered a
new class of 6-benzhydryl-4-amino-quinolin-2-ones [210]. The 6a compound presented a
long half-life following oral and intravenous administration; however, due to high affinity
to rimonabant, it presented time-dependent brain accumulation. Nevertheless, this obser-
vation could be understated due to the use of non-perfused brains. The administration
of the 6a compound resulted in weight loss and increased insulin sensitivity, even when
lower doses were administered. These results are promising, although the neuropsychiatric
safety of these compounds should be investigated further.

Taranabant is a CB1R inverse agonist the effectiveness of which was proven in preclin-
ical trials—it resulted in effective weight loss in diet-induced obese rats when 30% of CB1R
was occupied [211]. Phase III clinical trials on humans were stopped in 2008 due to the high
level of CNS side effects, mainly depression and anxiety [212,213]. In recent years, many
CB1R-selective drugs have been withdrawn at different phases of clinical trials. Drinabant,
a highly selective CB1R agonist, presented anti-depression and food-limiting effects in
animal models and reached phase IIb clinical trials, but it was shortly withdrawn since it
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induced symptoms of severe psychiatric disorders in humans [211,214,215]. Failures of
clinical trials limited the studies on humans, and currently, CB1R agonist are usually tested
in laboratory conditions.

In the study by Radiszewska et al. on Wistar rats, a stimulation of peripheral CB1R by
its agonist (WIN 55,212-2) had an anorexigenic effect and induced activity of exendin-4, a
peptide agonist of the glucagon-like-peptide 1 [216]. It suggests a double activity of the
ECS and could be used in the pharmacotherapy of obesity.

Studies conducted by Palomba et al. indicated that the activation of CB1R resulted in
overexpression of PPAR-γ in adipocytes, thus suggesting a potential role of thiazolidine-
diones in this mechanism [51,217].

Taking into consideration the undeniable role of CB1R in the development of obesity
and the role of CB1R agonists in obesity treatment, it is essential to further develop the
research on CB1R-active substances, which have great potential in the treatment of obesity
and obesity-related comorbidities.

It has been proven that exogenous factors are not the only elements responsible for the
dysregulation of nutritional homeostasis. Our review presented evidence that there is a link
between ECS gene polymorphisms and the risk of obesity. Research on ECS dysfunction
could provide more precise knowledge of both the pathogenesis and the mechanisms of
obesity, as well as provide new therapeutic programs. Previously introduced ECS-related
therapeutic programs have been withdrawn due to mental disorders they resulted in;
however, the endocannabinoid system remains the subject of numerous research studies.
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of COVID-19? Obes. Rev. 2020, 21, 13083. [CrossRef]

201. Popkin, B.M.; Du, S.; Green, W.D.; Beck, M.A.; Algaith, T.; Herbst, C.H.; Alsukait, R.F.; Alluhidan, M.; Alazemi, N.; Shekar, M.
Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020,
21, e13128. [CrossRef]

202. Briand-Mésange, F.; Trudel, S.; Salles, J.; Ausseil, J.; Salles, J.-P.; Chap, H. Possible role of adipose tissue and the endocannabinoid
system in coronavirus disease 2019 pathogenesis: Can rimonabant return? Obesity 2020, 28, 1580–1581. [CrossRef]

203. Quarta, C.; Cota, D. Anti-obesity therapy with peripheral CB1 Blockers: From promise to safe(?) practice. Int. J. Obes. 2020, 44,
2179–2193. [CrossRef]

204. LoVerme, J.; Duranti, A.; Tontini, A.; Spadoni, G.; Mor, M.; Stella, N.; Xu, C.; Tarzia, G.; Piomelli, D.; Tarzia, G. Synthesis and
characterization of a peripherally restricted CB1 cannabinoid antagonist, URB447, that reduces feeding and body-weight gain in
mice. Bioorganic Med. Chem. Lett. 2013, 11, 639–643. [CrossRef]

http://doi.org/10.1002/syn.20714
http://doi.org/10.1210/jc.2015-4381
http://www.ncbi.nlm.nih.gov/pubmed/27294325
http://doi.org/10.1002/oby.20573
http://www.ncbi.nlm.nih.gov/pubmed/23839870
http://doi.org/10.1016/j.endinu.2017.06.001
http://www.ncbi.nlm.nih.gov/pubmed/28895540
http://doi.org/10.1111/jhn.12297
http://www.ncbi.nlm.nih.gov/pubmed/25682784
http://doi.org/10.1186/1471-2350-11-2
http://www.ncbi.nlm.nih.gov/pubmed/20044928
http://doi.org/10.1159/000178157
http://doi.org/10.1073/pnas.1802251115
http://doi.org/10.1007/s00109-006-0139-0
http://doi.org/10.1055/s-0028-1087169
http://doi.org/10.1371/journal.pone.0142728
http://doi.org/10.1038/oby.2010.219
http://www.ncbi.nlm.nih.gov/pubmed/20885390
http://doi.org/10.1001/jama.295.7.761
http://doi.org/10.1016/S0140-6736(06)69571-8
http://doi.org/10.1111/j.1742-1241.2006.01210.x
http://doi.org/10.1111/obr.13083
http://doi.org/10.1111/obr.13128
http://doi.org/10.1002/oby.22916
http://doi.org/10.1038/s41366-020-0577-8
http://doi.org/10.1016/j.bmcl.2008.12.059


Nutrients 2021, 13, 373 24 of 24

205. Cluny, N.; Vemuri, V.; Chambers, A.; Limebeer, C.; Bedard, H.; Wood, J.; Lutz, B.; Zimmer, A.; Parker, L.; Makriyannis, A.; et al. A
novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause
malaise, in rodents: Peripheral CB antagonist reduces food intake. Br. J. Pharmacol. 2010, 161, 629–642. [CrossRef] [PubMed]

206. Vijayakumar, R.; Lin, Y.; Shia, K.-S.; Yeh, Y.-N.; Hsieh, W.-P.; Hsiao, W.-C.; Chang, C.-P.; Chao, Y.-S.; Hung, M.-S. Induction of fatty
acid oxidation resists weight gain, ameliorates hepatic steatosis and reduces cardiometabolic risk factors. Int. J. Obes. 2012, 36,
999–1006. [CrossRef] [PubMed]

207. Gao, L.; Li, M.; Meng, T.; Peng, H.; Xie, X.; Zhang, Y.; Jin, Y.; Wang, X.; Zou, L.; Shen, J. Asymmetric synthesis and biological
evaluation of N-Cyclohexyl-4-[1-(2,4-Dichlorophenyl)-1-(p-Tolyl)Methyl]Piperazine-1-Carboxamide as HCB1 receptor antagonists.
Eur. J. Med. Chem. 2011, 46, 5310–5316. [CrossRef] [PubMed]

208. Han, J.H.; Shin, H.; Park, J.-Y.; Rho, J.G.; Son, D.H.; Kim, K.W.; Seong, J.K.; Yoon, S.-H.; Kim, W. A novel peripheral cannabinoid 1
receptor antagonist, AJ5012, improves metabolic outcomes and suppresses adipose tissue inflammation in obese mice. FASEB J.
2019, 33, 4314–4326. [CrossRef] [PubMed]

209. Matthews, J.M.; McNally, J.J.; Connolly, P.J.; Xia, M.; Zhu, B.; Black, S.; Chen, C.; Hou, C.; Liang, Y.; Tang, Y.; et al. Tetrahydroinda-
zole derivatives as potent and peripherally selective Cannabinoid-1 (CB1) receptor inverse agonists. Bioorganic Med. Chem. Lett.
2016, 26, 5346–5349. [CrossRef] [PubMed]

210. Zhang, Y.-M.; Greco, M.N.; Macielag, M.J.; Teleha, C.A.; DesJarlais, R.L.; Tang, Y.; Ho, G.; Hou, C.; Chen, C.; Zhao, S.; et al.
6-Benzhydryl-4-Amino-Quinolin-2-Ones as potent cannabinoid type 1 (CB1) receptor inverse agonists and chemical modifications
for peripheral selectivity. J. Med. Chem. 2018, 61, 10276–10298. [CrossRef]

211. Vemuri, V.K.; Janero, D.R.; Makriyannis, A. Pharmacotherapeutic targeting of the endocannabinoid signaling system: Drugs for
obesity and the metabolic syndrome. Physiol. Behav. 2008, 93, 671–686. [CrossRef]

212. Aronne, L.J.; Tonstad, S.; Moreno, M.; Gantz, I.; Erondu, N.; Suryawanshi, S.; Molony, C.; Sieberts, S.; Nayee, J.; Meehan, A.G.; et al.
A clinical trial assessing the safety and efficacy of taranabant, a CB1R inverse agonist, in obese and overweight patients: A
high-dose study. Int. J. Obes. (London) 2010, 34, 919–935. [CrossRef]

213. Kipnes, M.S.; Hollander, P.; Fujioka, K.; Gantz, I.; Seck, T.; Erondu, N.; Shentu, Y.; Lu, K.; Suryawanshi, S.; Chou, M.; et al.
A one-year study to assess the safety and efficacy of the CB1R inverse agonist taranabant in overweight and obese patients with
type 2 diabetes. Diabetes Obes. Metab. 2010, 12, 517–531. [CrossRef]

214. Reggio, P.H. Toward the design of cannabinoid CB1 receptor inverse agonists and neutral antagonists. Drug Dev. Res. 2009, 70,
585–600. [CrossRef]

215. Lee, H.-K.; Choi, E.B.; Pak, C.S. The current status and future perspectives of studies of cannabinoid receptor 1 antagonists as
anti-obesity agents. Curr. Top. Med. Chem. 2009, 9, 482–503. [CrossRef] [PubMed]

216. Radziszewska, E.; Bojanowska, E. Effects of glucagon-like Peptide-1 receptor stimulation and blockade on food consumption and
body weight in rats treated with a cannabinoid CB1 receptor agonist WIN 55,212-2. Med. Sci. Monit. Basic Res. 2013, 19, 6–11.
[CrossRef] [PubMed]

217. Palomba, L.; Silvestri, C.; Imperatore, R.; Morello, G.; Piscitelli, F.; Martella, A.; Cristino, L.; Di Marzo, V. Negative regulation of
leptin-induced reactive oxygen species (ROS) formation by cannabinoid CB1 receptor activation in hypothalamic neurons. J. Biol.
Chem. 2015, 290, 13669–13677. [CrossRef] [PubMed]

http://doi.org/10.1111/j.1476-5381.2010.00908.x
http://www.ncbi.nlm.nih.gov/pubmed/20880401
http://doi.org/10.1038/ijo.2011.171
http://www.ncbi.nlm.nih.gov/pubmed/21894162
http://doi.org/10.1016/j.ejmech.2011.08.030
http://www.ncbi.nlm.nih.gov/pubmed/21937154
http://doi.org/10.1096/fj.201801152RR
http://www.ncbi.nlm.nih.gov/pubmed/30566396
http://doi.org/10.1016/j.bmcl.2016.09.025
http://www.ncbi.nlm.nih.gov/pubmed/27671496
http://doi.org/10.1021/acs.jmedchem.8b01467
http://doi.org/10.1016/j.physbeh.2007.11.012
http://doi.org/10.1038/ijo.2010.21
http://doi.org/10.1111/j.1463-1326.2009.01188.x
http://doi.org/10.1002/ddr.20337
http://doi.org/10.2174/156802609788897844
http://www.ncbi.nlm.nih.gov/pubmed/19689362
http://doi.org/10.12659/MSMBR.883726
http://www.ncbi.nlm.nih.gov/pubmed/23291632
http://doi.org/10.1074/jbc.M115.646885
http://www.ncbi.nlm.nih.gov/pubmed/25869131

	Introduction 
	Role of the Endocannabinoid System in Metabolic Process Regulation 
	Adipose Tissue 
	Lipogenesis and Lipolysis 
	Brown Adipose Tissue 
	Liver 
	Skeletal Muscles 
	Pancreas 
	Gastrointestinal Tract 

	Mechanisms of Hunger and Satiety in Obesity 
	Microbiota, Hunger, and Satiety in Obesity 
	Cannabinoids/Endocannabinoid Control of Food Intake 
	Genetic Determinants of Obesity in the Context of the Endocannabinoid System 
	Summary and Conclusions 
	References

