
Rev. Med. Virol. 2016; 26: 146–160.
Published online 28 January 2016 in Wiley Online Library

(wileyonlinelibrary.com)
DOI: 10.1002/rmv.1872
R E V I E W

Membrane dynami
infection

Reviews in Medical Virology
*Correspondence aut
Inmunología Celular y
Farmacología, Facultad
(ULL), 38071 La Lagu
E-mail: avalenzu@ull.e
†These authors contrib

Abbreviations used
ADP, adenosine dipho
interacting protein X
enzyme-catalytic, polyp
GEF, Arf-GTP exchang
autophagy-related prote
tor; CD, cluster of differ
complex I and II; CPV
CXCR, C-X-C chem
phatidylinositol 3-kinas
rus; DMVs, double-me
dsRNA, double-strande
mediate compartment;
transport; GALT, gut-a
phate; GTP, guanosine
HDAC6, histone deacet
tein; LC3-I, microtubu
the phosphatidylethano
surface protein; MA, m
MVB, multivesicular b
nizing centre; NCLDV
ative factor; NS5A, non
protein; PI4P5-K Iα, p
phosphatidylinositol-4,5
replication complex; RU
(SAM) and histidine-a

© 2015 The Aut
This is an open
NoDerivs Licens
properly cited, t
cs associated with viral

Laura de Armas-Rillo†, María-Soledad Valera†, Sara Marrero-Hernández
and Agustín Valenzuela-Fernández*
Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección
de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
SUMMARY
Viral replication and spreading are fundamental events in the viral life cycle, accounting for the assembly and egression of
nascent virions, events that are directly associated with viral pathogenesis in target hosts. These processes occur in cellular
compartments that are modified by specialized viral proteins, causing a rearrangement of different cell membranes in in-
fected cells and affecting the ER, mitochondria, Golgi apparatus, vesicles and endosomes, as well as processes such as au-
tophagic membrane flux. In fact, the activation or inhibition of membrane trafficking and other related activities are
fundamental to ensure the adequate replication and spreading of certain viruses. In this review, data will be presented that
support the key role of membrane dynamics in the viral cycle, especially in terms of the assembly, egression and infection
processes. By defining how viruses orchestrate these events it will be possible to understand how they successfully complete
their route of infection, establishing viral pathogenesis and provoking disease. © 2015 The Authors Reviews in Medical
Virology Published by John Wiley & Sons, Ltd.
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INTRODUCTION
Viruses are small structures that lack the metabolic
pathways and structures necessary to ensure their
own survival, relying on their host’s machinery to
replicate their genome and spread their progeny.
Accordingly, viruses have developed strategies to
enter cells and exploit their structures to replicate.
These strategies also serve to evade immune re-
sponses, such as those involving toll-like receptors
and autophagic-mediated antigen presentation [1–4].
Similarly, viruses use the target cell’s main traffick-
ing pathways to ensure their propagation, exploiting
the endosome or vesicular compartments by
recruiting the clathrin, coatomer protein complex
(COPI) I and II (Figure 1), the endosomal-sorting
complex required for transport (ESCRT) and their ac-
cessory proteins (reviewed by [1,2,5]: Figure 2), as
well as small guanosine triphosphatases (GTPases)
[2]. This is evident during neutrophil-mediated
ed by John Wiley & Sons, Ltd.
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Figure 1. Viral factories and virus-triggered autophagic membrane flux for replication and egression. Some viruses achieve replication by
exploiting the cell’s membrane transport pathways, thereby generating membrane organelles named Viral Factories (VFs). These VFs are
organised by different viral proteins, and they represent specialized compartments for viral-gene replication, morphogenesis, export, matura-
tion and release. Moreover, these compartments also serve to override or evade the immune responses directed against viral genomes. Viral
proteins can enter secretory pathways by co-translational translocation into the ER in order for them to be further transported to theGolgi com-
plex, either in vesicles or in a coatomer protein complex (COP) II-dependentmanner. Viral complexes formed inside theVFs communicatewith
vesicles, mitochondria, Golgi cisternae and ER membranes. This interaction allows viral complexes to be transported through the Golgi net-
work to the plasmamembrane and it promotes their final release as viral particles. Alternatively, some viruses take advantage of the host’s au-
tophagic machinery for their own replication and pathogenesis. Viruses first initiate the formation of vesicles that bear key autophagic
proteins, such as Beclin-1 and LC3, capturing portions of membranes from the ER and other cytoplasmic elements. This assembly evolves to-
ward an immature double-membrane vesicle (DMV) that serves as an aggresome compartment to recruit viruses or newly formed viral repli-
cation complexes. Several RNA viruses induce the formation of these autophagosome-like vesicles (also referred to as DMVs) to enhance viral
replication and non-lytic egression, such as poliovirus and CVB3, HIV-1 and HCV. How these viruses trigger the accumulation of
autophagosome-like vesicles and DMVs remains unclear. Some theories involve blocking the fusion of nascent autophagosomes with late
endosomes and lysosomes, as in the case of HIV-1 Nef, which appears to cause autophagosome accumulation by inhibiting their progression
towards more mature stages. Indeed, autophagosome-like vesicles may represent a trafficking pathway for these viruses, connecting to
multivesicular bodies (MVBs), and assuring virus assembly and budding at the cell surface while protecting them from intrinsic antiviral fac-
tors and immune responses. The morphogenesis and release of mature and infectious HBV particles also require Tsg101 and depend on the
ESCRT-MVB system. Under standard conditions the lumen of autophagosomes acidifies after fusion with endosomes that carry vacuolar
(H+)-ATPase (V-ATPase) to form amphisomes. The autophagic membrane flux progresses by fusing with lysosomes in order to form the
autolysosome that contains the former’s proteinases. Poliovirus inhibition of autophagosome formation attenuates viral replication while
inhibiting autolysosome formation, and thus, catalytic activity does not affect the virus. However, degradation of cellular triglycerides by au-
tophagy benefits DENVreplication and autolysosome degradation dampens IFN activation following HCV infection
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phagocytosis, where microorganisms can be cleared
by granule and vesicle secretion [6]. Therefore,
determining how viruses use and rearrange
© 2015 The Authors
Reviews in Medical Virology Published by John Wiley &
intracellular organelles during their biological cycle
is an important goal that will aid the development
of new antiviral strategies, and our understanding
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Figure 2. Virological synapse and spreading. At the virological synapse (VS), some viruses attach structural polyproteins to PIP2-rich
membrane regions of the infected cell for further budding and release into the intercellular space. PIP2 confers fluidity to the cell membrane
and favours virus–cell fusion. These virions then bind to specific receptors in order to infect the neighbouring target cell at the VS, fusing
with its plasmamembrane directly or after surfing on actin-structured filopodia, or being internalized by endocytosis as is believed to occur
with HIV-1. The VS represents an efficient environment for viral budding. It typically arises in PIP2-enriched plasma membrane domains,
where the membrane of the infected cell is polarized towards the synaptic junction through the movement of vesicles governed by the
ESCRT/Alix-Tsg101machinery or byMVBs coordinating the translocation of theMTOC. This scaffolding facilitates subsequent viral infec-
tion and spread from the infected to the nearby uninfected cell. In addition, long membrane nanotubes may also form between
neighbouring cells, promoting viral protein trafficking. Other dynamic membrane events involved in viral infection and spreading are
trogocytosis, Arf6/PIP2-mediated membrane dynamics and exosomal transport. Trogocytosis involves the exchange of cell surface mem-
brane patches that may contain receptor clusters associated to viral particles, while exosomes are vesicles formed fromMVBs that could par-
ticipate in viral infection and spreading between cells
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of these pathologies. Indeed, there is growing evi-
dence that cell’s modify their membranes to defend
themselves against pathogens and infection, alter-
ing their spatial reorganization and vesicle traffick-
ing. In this review, we focus on the importance
of the membrane flux triggered by viruses to
achieve replication and egression, and to ensure
their propagation.

Membrane dynamics during viral replication
Several of the cell’s organelles and membrane
structures are involved in viral replication and in
fact, many viruses use specific cellular compart-
ments to replicate, referred to as viral factories
(VFs: Figure 1). These VFs provide a physical scaf-
fold that brings together elements required for ge-
nome replication and morphogenesis [1,7]. VFs
are usually formed by rearranging the host’s cell
membranes, reorganizing the cytoskeleton and
recruiting specific organelles, like mitochondria
© 2015 The Authors
Reviews in Medical Virology Published by John Wiley &
(reviewed in [8]). These viral driven events involve
the association of replication complexes (RCs) with
ER derived membranes to form a VF. Hence, intra-
cellular membrane dynamics appear to be crucial
for viral replication and survival.
A well-known example of a VF is that used by

vaccinia virus, an enveloped pathogen of the Poxvi-
rus family that replicates in the cytoplasm by as-
sembling small rough ER-derived cisternae into a
microenvironment that resembles a cytoplasmic
mini-nucleus for viral replication [9]. Similarly, the
RCs of Togaviruses associate with endocytic mem-
branes, while Nodavirus RCs associate with mito-
chondrial membranes (reviewed in [1]). Thus,
specific membrane compartments can be used as
VFs by RNA viruses to concentrate viral replicases
and key cofactors, and ensure efficient viral genome
replication [10]. In this context, both rubella virus
(RUBV), a relevant human teratogenic Togaviridae
virus [11], and Semliki forest virus (SFV), a member
Sons, Ltd.
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149Viruses and cell membranes
of the Alphavirus group of this family [12], couple
their RNA synthesis to endosome and lysosome
membranes modified by the association of virus
specific components. The subsequent fusion of
these late endosomes and lysosomes generates cy-
topathic vacuoles (CPVs) [13,14] that are lined with
small vesicular invaginations or spherules (viral
RNA replication sites) [13,14]. CPVs establish com-
plex and reversible contact with endocytotic vesi-
cles through internal membranes interconnected
with transport endosomes [8]. For example RUBV
forms VFs around CPVs via the recruitment of
membrane structures from the ER cisternae, Golgi
stacks and mitochondria [8] (Figure 1). The Golgi
apparatus is a highly dynamic organelle with a
sustained, functional flux of membrane proteins
[15], and it can serve as a morphogenic mould
for Rubiviruses, Coronaviruses, Arteriviruses and
Bunyaviruses [1,8,16,17]. These RUBV factories
connect viral replication with the assembly and
maturation of nascent virions at Golgi membranes,
contributing to the virus escaping from the host
cell’s defences [16].
Some viruses induce the formation of double-

membrane vesicles (DMVs) and/or autophagosomes
for replication [1–4,18,19], such as the positive RNA
viruses of the Flaviviridae family andNidovirales order
[20,21] (Figure 1). The RNApolymerase of the human
poliovirus, a Picornaviridae family member responsi-
ble for poliomyelitis, can also assemble DMVs [22].
Infection by this virus triggers the modification of
different intracellular membrane structures and
organelles (but not mitochondria), converting them
into virus replication vesicles. In fact, poliovirus-
associated DMVs resemble autophagosomes, as
also described for another Picornaviridae family mem-
ber, Coxsackievirus B3 (CVB3 [23,24]: Figure 1).
Autophagosomes are DMVs generated by mem-
brane trafficking and they are related to the catabolic
process of autophagy, which involves the degrada-
tion of cytoplasmic components within lysosomes
[25,26]. Autophagy maintains the organism’s ho-
meostasis by sequestering undesired intracellular el-
ements for lysosomal degradation and recycling
[25,26]. Viruses often use autophagy to complete
their lifecycle and evade immune responses, even
though it is based on catalytic pathways [3,23,24].
Poliovirus, like other positive RNA viruses, has
evolved the capacity to convert autophagy into a
key cellular motor for replication [3,10,23]. During
autophagy, a cytosolic form of the microtubule-
© 2015 The Authors
Reviews in Medical Virology Published by John Wiley &
associated protein 1A/1B light chain 3 (LC3-I) conju-
gates with phosphatidylethanolamine to form
LC3-II and associate with autophagosomal mem-
branes, ultimately producing the degradation of
LC3-II during the late steps of autophagy [27]. Con-
versely, the p62 protein (or sequestosome-1,
SQSTM1) interacts with ubiquitinated proteins,
LC3 and other proteins to ensure the correct degra-
dation of undesired material. LC3-II augments dur-
ing active autophagy when p62 is degraded [28,29].
In this context, Poliovirus or CVB3 infection triggers
the generation of autophagosomes with a higher
LC3-II/LC3-I ratio andwith LC3 foci, structures that
support the RNA RC without promoting lysosome
degradation (evident through p62 stabilization
[23,24]: Figure 1). However, it is unclear whether
these viruses block autophagosome maturation
into amphisomes, avoiding autophagosome fu-
sion with endosomes [30]. Such events override
the appearance of degradative autolysosomes
[31] or they may provoke the formation of
autophagosome-like structures disconnected
from catalytic pathways. It is also thought that
these autophagosomes may ultimately serve as a
membrane scaffold to permit the egression of na-
scent virions from infected cells, preventing cell
lysis [30] (Figure 1).

All HCV viral genotypes (1a, 1b and 2a), positive
RNA flaviviruses that are a major cause of chronic
liver disease [32], induce autophagosome accumu-
lation [33,34]. This involves regulation of the un-
folded protein response (UPR), which relieves ER
stress and prevents the formation of catalytic
autolysosomes by suppressing their fusion with ly-
sosomes [33,34] (Figure 1). Apparently, the success
of viral replication relies on the recruitment of
membrane-trafficking proteins to ER-derived
membrane scaffolds [35–41]. Hence, domain 1 of
the non-structural 5A (NS5A) protein and the
helicase domain of NS3 are sufficient to achieve effi-
cient DMV formation, which also depends on tightly
regulated cis cleavage of the HCV-polyprotein pre-
cursor [35] and requires cyclophilin A isomerase
activity [36]. NS5A associates with NS5B, a RNA-
dependent RNA polymerase, a complex that inter-
acts with VAMP (vesicle-associated membrane
protein)-associated proteins (VAPs) [37,38] and re-
cruits Ras-like small GTPases (e.g. Rab1, Rab5 and
Rab7), enlarging the viral replication compartment
by docking membrane vesicles [39–41]. This process
also regulates autophagy [42], given that HCV-
Sons, Ltd.
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150 L. de Armas-Rillo et al.
induced autophagosomes support viral replication
and the delivery of incoming viral RNA to the trans-
lation apparatus, and/or the recruitment of cellular
factors for translation. However, some controversy
still surrounds this issue, autophagosomes can ma-
ture into acidic amphisomes in HCV-infected cells
[43,44], and subsequently fuse with late endosomes
or lysosomes [44] (Figure 1). Autophagic membrane
flux appears to be necessary to translate the HCV
genome, yet it appears to be dispensable once viral
infection has begun [45]. Moreover, no changes in ei-
ther p62 or the degradation of long-lived proteins are
observed [33], despite the enhanced autolysosome
formation in cells expressing HCV replicons [46].
While specific silencing of autophagy genes does
not affect viral translation and RNA replication, it
does apparently alter HCV morphogenesis [47].
However, the silencing of factors critical for
autophagosomes formation, like LC3 or Atg7, ap-
pears to suppress HCV RNA replication [48], while
HCV replication is apparently potentiated when the
UPR promotes autophagy [49]. Conversely, HCV in-
fection seems to promote autophagy without con-
comitant stimulation of the UPR and autophagy
does not appear to be required as a platform for
HCV RNA replication [50]. Thus, doubts remain
about the role of autophagy and the UPR in HCV
replication, although the distinct interactions be-
tween autophagy and HCV replication suggest that
such membrane flux promotes viral replication.

The dengue virus (DENV) is a mosquito-borne sin-
gle positive-stranded RNA virus of the Flaviviridae
family that causes dengue fever [51]. There are five
antigenically related but distinct DENV virus geno-
types (DENV-1 to DENV-5) [51,52]. Like HCV, there
is evidence that autophagy may be implicated in
DENV replication. Following cell entry and nucleo-
capsid uncoating, DENV RNA is translated into a
single polyprotein that passes into the ER lumen
where the different viral proteins are processed. In
fact, DENV-2 proteins involved in translation and
replication are found in or in close proximity to
autophagosomes during viral infection [53,54]. Ac-
cordingly, inhibition of autophagosome formation
dampens the production of infectious DENV-2 parti-
cles [53], while stabilizing autophagosomes and/or
amphisomes by impeding their fusion with lyso-
somes enhances viral egression [55]. Indeed, DENV-
3 seems to promote autophagy during early infection
[54], while inhibition of autophagosome formation
also dampens the production of infectious DENV-3
© 2015 The Authors
Reviews in Medical Virology Published by John Wiley &
[54]. Hence, DENV-2 and -3 appear to interact with
the autophagy machinery in a different manner,
and while it is conceivable that amphisomes or
autophagosomes represent the site of DENV-2
translation/replication [54,55], autophagolysosomes
could be the crucial site for DENV-3 viral replication
[54]. The distribution of NS1 or DENV-2 and DENV-
3 double-stranded RNA (dsRNA) in the different
autophagy-associated membrane structures con-
firms these observations (Figure 1). Moreover, na-
scent viral particles are formed and mature in these
structures, then travelling through the trans-Golgi
network (TGN) to egress [56,57]. Remarkably, the
precursor membrane (prM) protein of the DENV-1–
4 genotypes behaves similarly and it is cleaved by
the TGN-protease furin in the secretory pathway
[58], assuring viral assembly and the infectivity of
nascent viral particles [59].
HIV is a single-stranded RNA virus (Lentivirus

genus of the Retroviridae family) that causes AIDS.
HIV type 1 (HIV-1) alters the autophagic mem-
brane flux of the host cell’s organelles, thereby
modulating the intracellular milieu in favour of vi-
ral replication and propagation [3] (Figure 1).
When CD4+ T cells, monocytes and dendritic cells
(DCs) are infected with HIV-1, autophagic vacuole
formation is blocked and the expression of autoph-
agy proteins down-regulated (e.g. LC3 and Beclin1
[19,60]: Figure 1). Remarkably, the HIV-1 protein
Nef (negative factor) blocks the autophagic flux of
membranes, especially during the autolysosome
stage of autophagy, resulting in an accumulation
of autophagosomes and LC3 in macrophages
(Figure 1). Thus, Nef prevents autophagic degrada-
tion of HIV-1 biosynthetic intermediates of virions
by targeting the lipid class III phosphatidylinositol
3-kinase (C3-PI3K) complex and by associating
with Beclin1 (Atg6—autophagy-related protein 6
—in yeast). Significantly, Beclin1 is actually part
of the C3-PI3K complex, together with the vacuolar
protein sorting-associated proteins 34 (Vps34) and
15 (p150). Nef therefore alters the sub-cellular
distribution of Vps34, potentially ensuring the sur-
vival of the viral progeny [3,61]. Indeed, Nef is
thought to promote the appropriate HIV-1 Gag
membrane localization and processing, thereby
facilitating viral cell-to-cell transfer [62]. Although
the catalytic activity of autophagy appears to
be impeded by HIV-1, autophagosome formation
or accumulation is still promoted. Hence, the
HIV-1 Gag protein promotes early stages of
Sons, Ltd.
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151Viruses and cell membranes
autophagosome formation by directly interacting
with LC3 in macrophages, enhancing HIV-1 yields
andGag processing, a critical step in virion assembly
and release [61] (Figure 1). Notably, newly identified
components of the ubiquitin-like conjugation system
all seem to be involved in HIV-1 replication (e.g.
Atg7, Atg8—LC3 is its best characterized mamma-
lian homologue—Atg12 and Atg16L2—responsible
for vesicle elongation) [63]. However, it remains
unclear how these factors actually affect HIV-1 repli-
cation, which occurs in the nucleus of infected cells.
Moreover, while autophagic vacuoles would appear
to be fundamental for HIV-1 morphogenesis and
egression, how HIV-1 overrides or uses autophagy
to persist remains poorly understood. Hence, the in-
fectious capacity of nascent HIV-1 virions depends
on the uptake of the viral infectivity factor (Vif) dur-
ing viral budding, a process influenced by histone
deacetylase 6 (HDAC6), which promotes autophagic
clearance of Vif [64]. Other positive RNA viruses
exploit the formation of ER-derived membrane
scaffolds and membrane autophagic flux to replicate
(e.g. the Norwalk virus), because the membrane-
bound nsp48 protein also binds to VAP-A [65].
RNA replication may occur in endosomes, lyso-

somes (Togaviruses), peroxisomes and chloroplasts
(Tombusvirus), or mitochondria (Nodaviruses),
shielded from immune responses. All positive RNA
viruses transform cytoplasmic membranes into
specialized viral replication sites [10]. The antiviral ef-
fect of Brefeldin A (BFA), an inhibitor of anterograde
ER–Golgi network membrane dynamics, suggests
thatmembrane traffickingmust be active for enterovi-
rus replication, as reported for Picornaviruses,
poliovirus and Coxsackievirus [66,67]. BFA prevents
the membrane flux required to form replication com-
partments, blocking virus secretion from infected cells
[68] by inhibiting ADP (adenosine diphosphate)-
ribosylation factor (Arf)-GTP exchange proteins
(Arf-GEFs). This blockade negatively affects COPI
coat generation at the Golgi by diminishing and se-
questering Arf1-GTP [69]. For several Picornaviruses,
COPII-coated vesicles may provide membranes suit-
able for replication [70], although autophagosomes
may also contribute at this point [23] (Figure 1). Reovi-
rus and SFV also promote coated-pit formation [71].
Moreover, the small GTPase Rab7 is soon recruited
for SFV internalization when associated to intermedi-
ate endosomes [72], which in turn induces the forma-
tion of CPVs that is an important event for viral RNA
synthesis in target cells [13].
© 2015 The Authors
Reviews in Medical Virology Published by John Wiley &
An important biological process common to the re-
cently proposed Megavirales order is viral replication
within cytoplasmicVFs [73]. Giant viruses (also called
nucleocytoplasmic large DNA viruses—CLDVs) be-
longing to this order are double-stranded DNA
(dsDNA) viruses with a genome and particle size
comparable to those of small bacteria [74]. African
swine fever virus (ASFV; from the Asfarviridae fam-
ily), poxviruses and iridoviruses are the three families
of NCLDVs that terminate or undergo their entire
replication cycle in the cytoplasm [75–77]. This feature
is not observed in herpes viruses or baculoviruses,
other large DNA viruses of eukaryotes that undergo
nuclear DNA replication and transcription [78]. Giant
viruses provoke VF formation in the cytoplasm of in-
fected cells to permit genome replication and mor-
phogenesis [73,79]. ASFV factories are similar to the
aggresomes formed at the MTOC (microtubule
organizing centre) [80], and they provoke a re-
arrangement of the intermediate vimentin cytoskele-
ton at the MTOC into a star shaped structure that
resembles the microtubule aster formed during mito-
sis, a structure required for late gene expression [81].
Together with an ASFV chaperone, the hsp70 cell
chaperone is recruited to ASFV factories, along with
mitochondria, facilitating the folding of viral struc-
tural proteins like the major capsid protein p72
[82,83]. Nascent ASFV virions are formed from VF
membranes through the assembly and recruitment
of viral proteins in VFs. Thus, the viral membranes
in VFsmay be connected to cellular organelles, partic-
ularly given that resident ER markers are detected
with the viral p17, p54 andpB318L proteins in newvi-
ral particles [84–87]. ASFVs are thought to reorganize
cell membranes through viral proteins that contain a
KDE motif, inducing the redistribution of ER-
associated proteins [88] and the viral p54 protein.
The latter is required for the correct VF localization
of the membranes and the collapse of the ER-derived
cisternae [89]. ASFV infection is achieved by
redistributing membranes from the secretory path-
way and TGN [90]. Therefore, these common biolog-
ical features of giant virus replication and virion
architecture could reflect a common origin, and the
sharing of a large set of ancestral genes [74,91].
Membrane dynamics during viral assembly
and budding
Budding is an important event in the life cycle of
enveloped viruses, influencing their morphology
Sons, Ltd.
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and infectiousness. During budding, successful
infection is achieved by adjustment and distortion
of the target cell’s plasma membrane [4]. The
structural Gag polyprotein is common to several
retroviruses, like HIV-1 and the murine leukaemia
virus (MLV), representing the minimal plasma
membrane component required for viral assembly
[92]. HIV-1 Gag localizes to phosphatidylinositol-
4,5-bisphosphate (PIP2) rich plasma membrane re-
gions, where PIP2 plays a critical role in HIV-1 virion
assembly [93] (Figures 1 and 2). In fact, the matrix vi-
ral protein (MA) within the unprocessed HIV-1 Gag
polypeptide drives Gag towards these PIP2 mem-
brane domains [92,94] in a myristoylation-dependent
manner [95], raft domains where HIV-1 buds [95–97].
Phosphate hydrolysis by polyphosphoinositide 5-
phosphatase IV (5ptaseIV) diminishes the plasma
membrane PIP2 [98], causing the Gag polypeptide
to translocate from HIV-1 budding sites at the mem-
brane to CD63 rich compartments, thereby inhibiting
viral release [93]. Similarly, Arf6/Q67L expression, a
GTP-bound mutant of Arf6, alters the trafficking of
Arf6/PIP2-associated vesicles, provoking their accu-
mulation in the cytoplasm towhere Gag is redirected.
These complexes lie far from the budding sites at the
membrane, thereby dampening virus release [93].
Although the assembly of HIV-1 at the cell surface
is only partially understood, several key steps in the
membrane trafficking of viral proteins have been de-
fined, shedding light on both the viral assembly and
budding processes [92,99].

Enveloped viruses like HIV-1, Vesicular stomati-
tis virus (VSV), Ebola virus (EBOV) and Hepatitis
B virus (HBV), and other RNA and DNA viruses,
mainly emerge from cells by co-opting the host’s
ESCRT machinery [100,101], which plays a vital
role in cellular abscission and in multivesicular
body (MVB) biogenesis (a process by which
ubiquitinated misfolded or damaged proteins enter
endosomes to be destroyed). In addition, MVBs are
important intermediates in endolysosomal trans-
port [102] (Figures 1 and 2). Gag activity drives
ESCRT-III complex formation at the budding site
of HIV-1, which binds to and recruits the ESCRT-I
complex and the ALG-2 (apoptosis-linked gene 2)-
interacting protein X (ALIX). This ESCRT-III com-
plex promotes the excision of nascent virions at
the cell surface, an event potentially equivalent to
the cleavage of intraluminal vesicles from MVBs
[103,104] (Figures 1 and 2). Moreover, the tumour
susceptibility gene 101 (Tsg101) is a subunit of the
© 2015 The Authors
Reviews in Medical Virology Published by John Wiley &
ESCRT-I complex that drives viral RNA transport
and envelope fusion to late endosomes, processes
required for infection and RNA release [105]
(Figure 2). However, the interaction of viral Gag
protein with the ESCRT machinery appears not to
be absolutely required for HIV-1 viral budding
[106–108]. Nevertheless, interferon-stimulated gene
15 protein (ISG-15) inhibits HIV-1 egression by in-
terfering with ESCRT-III protein membrane flux
during budding [109,110].
Remarkably, morphogenesis and the release of

HBV particles also require Tsg101 [111], although
this DNA virus lacks a viral protein bearing the late
(L) domain necessary to interact with the ESCRT-
machinery [101]. However, α-taxilin interacts di-
rectly with Tsg101 and with the large HBV surface
protein (LHBs), thereby recruiting the viral capsids
to ESCRT complexes, thus permitting correct viral
formation and egression [111]. Therefore, HBV mat-
uration and egression depends on the ESCRT-MVB
system. Notably, HBV infected cells also produce
large amounts of non-infectious spherical or fila-
mentous envelope particles (SVPs). These SVPs
are a mixture of lipids and viral surface proteins
that accumulate in an ER–Golgi intermediate com-
partment (ERGIC), budding into the lumen and
provoking release through the general secretory
pathway [112].
Many other enveloped RNA viruses bud in an

ESCRT-dependent manner [5,100,113], as do most
negative-strand non-segmented single-stranded
RNA (ssRNA) viruses, such as Rhabdoviruses,
Filoviruses and most Paramyxoviruses, all of which
recruit ESCRTs for viral egression [114,115]. Even
the budding of negative-strand segmented-ssRNA
Arena viruses involves an ESCRT-dependent path-
way [116,117]. However, no evidence for the partic-
ipation of ESCRTs has yet been reported in Nipah,
Measles, HRSV or Bornaviridae budding ([5]). In-
deed, the enveloped influenza virus buds in an
ESCRT-independent manner as its matrix protein
is devoid of an ESCRT-binding domain [118,119].
Other viruses are also released from the host’s
plasma membrane through their MAs, such as the
Newcastle disease virus or VSV. In these cases, bud
formation and excision from the membrane are
matrix-dependent processes [120,121], as for influ-
enza virus. However, much work is still required to
determine how membrane dynamics affect the traf-
ficking and assembly of these viruses, particularly
in terms of the cellular factors that control the
Sons, Ltd.
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trafficking of the structural proteins of these viruses
to the plasma membrane [92,122].
Given all of these findings, membrane dynamics

has a crucial influence on the assembly and bud-
ding of numerous viruses, and it may represent
an important and complex target to limit the viral
life cycle.

Membrane dynamics and viral spreading
Viruses use various cell communication pathways
to achieve effective cell-to-cell dissemination [123].
First described for type 1 HTLV (HTLV-1) [124],
the virological synapse (VS) is a complex structure
found at the interface of infected:uninfected cells.
Viral receptors and the egression machinery accu-
mulate at the VS [125], making the infection and
spread of HTLV-1 through T lymphocytes cell–cell
dependent. Direct cell-to-cell transmission facili-
tated by the formation of stable cellular junctions
has several advantages, including faster replication
rates [126], successful transmigration of infected
cells across mucosal barriers [123] and viral protec-
tion from host responses. However, such transmis-
sion is still to be confirmed for HIV [127,128].
Cell-to-cell spreading of HIV-1 (Figure 2) is consid-

ered to involve microtubule-mediated polarization
and substantial budding, followed by the entry of
free viral particles into target cells [129]. Thus, it in-
volves pathways that regulate cell-free virus entry
by modifying membrane dynamics. In this regard,
mostHIV-1-infectedGALT (gut-associated lymphoid
tissue) cells in intestinal crypts are infected by con-
centrated pools of free HIV-1 viral particles in HIV-
1-infected humanized mice. Fewer infected cells are
found in themucosal regions and the lamina propria,
where VS presumably occur [130], explaining why
infection of permissive cells by free viral particles is
crucial for HIV-1 replication and pathogenesis
in vivo. This is consistentwith the recent identification
of the key cell signals required for efficient early HIV-
1 infection and the establishment of latency in CD4+
T cells [131–136]. Interference with retroviral cell-to-
cell transmission is not only produced by blocking
cytoskeletal motility [137] and depleting membrane-
cholesterol [138] but also, by interfering with Arf6-
governed plasma membrane dynamics. Moreover,
restricting plasma membrane fluidity caused by
altering early HIV-1-triggered phosphatidylinositol-
4-phosphate 5-kinase (PI4P5-K) Iα activation
and the ensuing detrimental effects PIP2 production
on HIV-1 transmission [4,133,135]. In fact, Arf6-
© 2015 The Authors
Reviews in Medical Virology Published by John Wiley &
coordinatedmembrane trafficking is required for effi-
cient HIV-1 fusion, entry and infection of CD4+ T
lymphocytes [135] (Figures 1 and 2). The flux and
turnover of PIP2-enriched vesicles from the plasma
membrane, driven and coordinated by the Arf6-
GTP/GDP cycle, ensures cell surface membrane
regeneration and it allows membrane exchange be-
tween the viral and target cell surfaces. This type of
membrane trafficking, coupled with enhanced fluid-
ity, is in strong synergy with the key HIV-1/receptor
(CD4 and C–X–C or C–C chemokine receptor type 4
or 5—CXCR4 or CCR5), interactions that promote fu-
sion pore formation in target cells. These interactions
take place between the non-regenerative HIV-1 viral
membrane and the dynamic cell surface membrane,
favouring efficient virus–cell fusion, entry and infec-
tion, both for the free virus and in the context of the
VS [4,133,135] (Figures 1 and 2).

Despite these similarities, some contact-specific
events that affect membrane flux should also be con-
sidered. During cell–cell HIV transmission, intense
viral endocytosis drives entry into neighbouring cells
even if they are in contact [139] (Figure 2). Remark-
ably, biofilm-like structures at the surface of infected
cells concentrate HTLV-1 viruses for their efficient
transmission to target cells [140] and cellular projec-
tion is used to transmit pseudo-rabies virus. Retrovi-
ruses also travel along membrane protrusions that
contact adjacent cells andMLV surfs on the filopodia
of fibroblasts before entering cells [141] (Figure 2).
HIV-1 also takes advantages of filopodia for cell-to-
cell transmission [141], similarly surfing on the
narrower membranous nanotubes that connect cells
separated no more than 100μm [142] and facilitating
the transfer of viral proteins to the inner side of the
membrane. These actin structures extend from HIV-
infected cells to target cells irrespective of receptor-
envelope interactions [142] (Figure 2).

The take up of larger membrane invaginations at
the VS of connected cells [129] is known as
trogocytosis, an event that may also control the ex-
tent and stability of the synapse, regulating its du-
ration [143]. HIV particles, like CD4 molecules
and other membrane components, are transferred
by trogocytosis from uninfected to infected cells in
a manner triggered by the HIV-1 envelope (Env)/
CD4 [128] (Figure 2). This mechanism could be
very significant and render cells permissive to
HIV infection, as recently proposed [144].

The cell–cell contacts and signalling induced by
the HIV-1 Env complex that occur at the VS can
Sons, Ltd.
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activate autophagic membrane flux, leading to apo-
ptotic cell death of uninfected CD4+ Tcells [60,145].
This lethal autophagy may provoke or enhance im-
munodeficiency, as observed in vivo where the ma-
jority of CD4+ Tcells undergoing apoptosis, as well
as the peripheral blood and lymph nodes of HIV
patients, remain uninfected [146]. Simultaneously,
autophagy can be suppressed in infected CD4+ T
cells [60], thereby antagonizing Env-mediated apo-
ptosis and allowing viral replication to occur in in-
fected CD4+ T cells. In this context, HIV-1 evades
immune responses in an HIV-1 Env-CD4-
dependent manner by efficiently impairing autoph-
agy in DCs when early contacts are established
[19]. Taking into account the role autophagy plays
in viral replication, HIV-1 can enhance or suppress
autophagy at different stages of its viral cell cycle,
favouring persistence and the evasion of immune
responses, and therefore, its pathogenesis [19]
(Figure 1). Finally, like other viruses (e.g. CMV),
HIV-1 stably associates with professional APCs
during infection (such as DCs) to further infect
lymphocytes during T-cell scanning or antigen pre-
sentation [147]. In fact, HIV-1 enters DCs by
exploiting exosomal trafficking during antigen pre-
sentation [148] (Figure 2).
CONCLUDING REMARKS
This review examines the intracellular trafficking of
viruses that occurs in association with cell-
membrane structures, some of which may be newly
assembled by viruses to ensure their replication
and budding. Membranes derived from the ER, mi-
tochondria, lysosomes and endosomes are sculpted
by viruses to generate VFs, acquiring their own
functional morphology. These structures help en-
sure RNA replication is accomplished without
alerting the host’s defence mechanisms.

Although the importance of membrane dynamics
during viral infection has been established, several
questions remain unanswered. It remains unclear
how proteins from distinct viruses and host cells
use the same intracellular membrane compartments
or events (e.g. autophagy) to achieve viral replica-
tion, without affecting important cellular processes.
Conversely, it is not clear why viruses replicate in
different subcellular membrane compartments,
how they move across membranes and which host
factors are involved in these events. Similarly, we
still do not know how these changes in membrane
© 2015 The Authors
Reviews in Medical Virology Published by John Wiley &
dynamics enable viruses to avoid immune re-
sponses. Indeed, it remains unclear whether
rearranging intracellular organelles enables viruses
to escape the anti-replicative activity of natural
restriction factors, such as apolipoprotein B
mRNA-editing enzyme-catalytic, polypeptide-like
3 (APOBEC3) proteins, Tetherin (BST-2/CD317/
HM1.24) or SAMHD1 (sterile alpha motif (SAM)
and histidine-aspartate (HD) domain-containing
protein 1) for HIV-1 [149]. Resolving these issues
will help decipher how viruses rearrange mem-
branes during their infection cycle, thereby aiding
the design of new antiviral strategies that target
these dynamic viral-cell interactions and combat
viral infection. These findings may also produce
innovations in non-viral gene delivery systems to
tackle tumours and immune diseases.
New technical developments, such as more

powerful microscopy systems [4,8,135,150], will al-
low dynamic viral trafficking and egression to be
studied in cells with better spatial and temporal
resolution. Such information will further our un-
derstanding of the viral infection process and of
how viruses succeed in deceiving the host’s im-
mune responses.
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