
Genomic Approach to Identify Factors That Drive the
Formation of Three-Dimensional Structures by EA.hy926
Endothelial Cells
Xiao Ma1, Markus Wehland2, Herbert Schulz3, Katrin Saar3, Norbert Hübner3, Manfred Infanger2,

Johann Bauer4, Daniela Grimm1,2*

1 Institute of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark, 2 Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg,

Magdeburg, Germany, 3 Max-Delbruck-Center for Molecular Medicine, Berlin-Buch, Germany, 4 Max-Planck Institute for Biochemistry, Martinsried, Germany

Abstract

Understanding the mechanisms responsible for tube formation by endothelial cells (ECs) is of major interest and importance
in medicine and tissue engineering. Endothelial cells of the human cell line EA.hy926 behave ambivalently when cultured on
a random positioning machine (RPM) simulating microgravity. Some cells form tube-like three-dimensional (3D) aggregates,
while other cells (AD) continue to grow adherently. Between the fifth and seventh day of culturing, the two types of cell
growth achieve the greatest balance. We harvested ECs that grew either adherently or as 3D aggregates separately after five
and seven days of incubation on the RPM, and applied gene array analysis and PCR techniques to investigate their gene
expression profiles in comparison to ECs growing adherently under normal static 1 g laboratory conditions for equal periods
of time. Using gene arrays, 1,625 differentially expressed genes were identified. A strong overrepresentation of transient
expression differences was found in the five-day, RPM-treated samples, where the number of genes being differentially
expressed in comparison to 1 g cells was highest as well as the degree of alteration regarding distinct genes. We found 27
genes whose levels of expression were changed at least 4-fold in RPM-treated cells as compared to 1 g controls. These
genes code for signal transduction and angiogenic factors, cell adhesion, membrane transport proteins or enzymes involved
in serine biosynthesis. Fifteen of them, with IL8 (interleukin 8) and VWF (von Willebrand factor) the most prominently
affected, showed linkages to genes of another 20 proteins that are important in cell structure maintenance and
angiogenesis and extended their network of interaction. Thus, the study reveals numerous genes, which mutually influence
each other during initiation of 3D growth of endothelial cells.
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Introduction

The inner surface of healthy blood vessels is lined with

endothelial cells (ECs) that play an active role in phenomena

such as transporting molecules, guiding cell migration, regulating

blood pressure and coagulation [1]. In addition, ECs are very

important in neoangiogenesis, which occurs in vivo during wound

healing, placenta formation or tumor neovascularization [2,3,4].

In these cases, some endothelial cells of existing vessels start

growing. A tip cell is selected and pushed forward by proliferating

stalk cells to form a vessel wall [5]. Most of our knowledge about

ECs comes from in vitro experiments with human umbilical vein

endothelial cells (HUVEC) [6]. In addition, permanent cell lines

are often used in angiogenesis research [7]. One of the most

frequently used and best characterized permanent human vascular

EC lines is EA.hy926, which was generated by fusion of HUVEC

with the human lung carcinoma cell line A549 [8]. EA.hy926 cells

have proven especially useful for studying the formation of new

vessels [9].

When we cultured EA.hy926 cells on a random positioning

machine (RPM), a device created to simulate microgravity on

Earth, adherently growing cells as well as three-dimensional (3D)

aggregates were observed [10,11]. The adherently growing cells

maintained a shape comparable to cells that were cultured under

normal 1 g conditions, but possessed altered molecular features

[12]. ECs forming 3D aggregates had detached from the bottom of

the culture flasks [10]. The 3D aggregates were columnar and had

a central lumen surrounded by one (single layered) or more layers

of ECs [11]. They had never been detected under static 1 g

conditions. Therefore, we concluded that annulling gravitational

forces can trigger ECs to form tubes.

Microgravity affects several molecular features of ECs [13].

Even short-term cancellation of gravity (22s) generated by

parabolic flights significantly influences signaling pathways [14].

After four and 12 hours of cultivation on the RPM, a number of

proteins were up- or downregulated in comparison to control cells

and apoptosis was enhanced [10]. During further incubation,

apoptosis remained below 30% while the mRNA- and protein
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levels of several extracellular matrix components and growth-

regulating factors changed. After two weeks, a very interesting

subtype of 3D-aggregates was observed in the culture superna-

tants. Its central lumen was surrounded by one layer of ECs. These

single-layered tubular structures (TS) resembled the intimas of

blood vessels. Characterization of these TS revealed that they

might originate from double-row cell assemblies formed between

the fifth and seventh days of culture under simulated microgravity,

while the percentage of apoptotic cells was about twice as high as

in control cell populations at this time [12].

The formation of a blood vessel is accompanied by changes in

transcriptional regulation in ECs [15,16]. Under simulated

microgravity, EC exhibit alterations in the expression of various

genes and proteins including protein kinase A catalytic subunit,

protein kinase C-alpha, and extracellular signal-regulated kinases

1 and 2 [12,17,18]. In order to extend our knowledge about

changes in gene expression levels that occur when EA.hy926 cells

are grown on the RPM simulating microgravity for either five or

seven days as compared to control cells incubated under normal

laboratory conditions, we applied microarray analysis and

quantitative PCR techniques to search for differentially expressed

transcripts in cells cultured on the RPM and those incubated in a

normal laboratory incubator (1 g). Genes found to be changed

more than 4-fold on the RPM were compared with genes known

to be involved in angiogenesis but altered less than 4-fold in these

experiments. The results obtained suggested that IL-8 is driving

the 3D growth of ECs in a microgravity-dependent system via a

network of genes and proteins involved in cell structure

maintenance, while serine biosynthesis is enhanced.

Materials and Methods

Random positioning machine
Microgravity was simulated by a desktop RPM manufactured

by Dutch Space, an EADS-Astrium company (Leiden, The

Netherlands). Under the control of dedicated software, the RPM

enables a random 3D positional change in the biological specimen

[19]. The samples were mounted close to the center of the

platform on the RPM, which was then placed in an incubator

under standard cell culture conditions at 37uC and 5% CO2. The

method was previously published in detail [10,11,12].

Cell culture procedure
Human endothelial EA.hy926 cells [8] were grown in

Dulbecco’s modified Eagle’s medium (Invitrogen, Eggenstein,

Germany) supplemented with 10% fetal bovine serum (Biochrom,

Berlin, Germany), 100 units penicillin/ml, and 100 mg strepto-

mycin/ml. The cells were grown in 25-cm2 culture flasks (Sarstedt,

Nümbrecht, Germany) until subconfluent monolayers were

formed. After reaching a subconfluency of 70%, the monolayers

(106 cells/flask) were randomized into the following study groups:

120 static control cultures (1 g static ground controls are cultures

kept in the same incubator as the RPM at 37uC); and 120 samples

for the simulated microgravity experiments. All flasks were

completely filled without air bubbles. RPM cultures were then

incubated immediately on the desktop RPM and under static

control conditions (1 g) according to the experimental design.

Every 48 hours, the cell populations were fed by removing 50% of

the cell medium with a pipette, carefully avoiding sucking off the

floating 3D aggregates or damaging adherent cells, and adding

new culture medium. On days five and seven the cells were

harvested as previously described in detail [12].

Morphology of the three-dimensional structures
Immunohistochemical investigation was performed using

monoclonal antibodies against laminin (Sigma-Aldrich Chemie,

Taufkirchen, Germany). Antigen-antibody complexes were visu-

alized by the streptavidin–biotin method [12,20].

RNA isolation
Twenty cell culture flasks from each group were used for RNA

extraction. The cells were scraped off using cell scrapers (Sarstedt,

Nümbrecht, Germany), transferred to tubes and pelleted by

centrifugation (25006g, 10 min, 4uC). The RNeasy Mini Kit

(Qiagen, Hilden, Germany) was used according to the manufac-

turer’s instructions to isolate total RNA [12]. RNA concentrations

and quality were determined spectrophotometrically at 260 nm

using a NanoDrop instrument (Thermo Scientific, Wilmington,

DE, USA). The isolated RNA had an A260/280 ratio of .1.5.

cDNA designated for quantitative real-time PCR was then

obtained with the First Strand cDNA Synthesis Kit (Fermentas,

St. Leon-Rot, Germany) using 1 mg of total RNA in a 20-ml reverse

transcription reaction mixture. The method was published

previously [14,21].

Gene-array technique
The endothelial cell line EA.hy926 was cultivated for five and

seven days on the RPM and in parallel five and seven days under

normal conditions (1 g static controls). During culture on the

RPM, some adherent (AD) cells detached to form freely floating

3D aggregates (tubular structures, TS) in the culture medium.

Both AD and TS were collected separately for RNA extraction.

Each time, four independent RNA preparations from the resulting

three different conditions were processed and hybridized using the

Illumina HumanWG-6_V2_0_R3_11223189_A array. The re-

sulting profiles had quantile normalization without background

correction using the BeadStudio Gene Expression Module v3.3.7.

After exclusion of low or unexpressed genes (maximum detection

p-value .0.05), the arrays were checked for outliers in samples

using principal component analysis (PCA), a correlation dispersion

matrix and normalized Eigenvector scaling. No outliers were

detected. Probes and samples were analyzed for significant

expression differences using a two-way ANOVA approach

differentiating between the conditions 1 g, AD and 3D on the

one hand and the time points five days and seven days on the

other. Multiple testing correction of the test statistic was performed

using the Benjamini Hochberg FDR procedure [22]. Probes that

underwent a 5% FDR between the three conditions, the time-

course or its interaction and that exceeded a two-fold difference

between any of the six conditions were selected as differentially

expressed. Individual profile data were separated by k-means

clustering using an average Euclidean distance function and k = 9

according to a local minimum in the Davies Bouldin k estimation

[23]. Clustering was performed after normalization of probes to a

mean of zero and a standard deviation of one. The nine resulting

k-mean clusters were further investigated by functional enrichment

using g:Profiler [24] with a simulation-based analytical threshold

for significance estimation. Test statistics and clustering were

performed using the Partek Genomic Suite version 6.4.

STRING analysis
Physical and functional interactions between proteins were

determined using the STRING platform [25,26] using a low

confidence score of 0.15 for all but two exceptions. With respect to

the high number of genes in the STRING analyses over combined

clusters, proteins were preselected using a high confidence score
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PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e64402



(0.9). Resulting singletons were rejected before network visualiza-

tion using a low confidence score of 0.15.

Quantitative real-time PCR
Quantitative real-time PCR [12,14,21] was used to determine

the expression levels of the genes of interest. The Primer ExpressH
software was utilized to design appropriate primers with a Tm of

about 60uC (Table S1). The primers were synthesized by TIB

Molbiol (Berlin, Germany). All assays were run on a 7500 Fast

Real-Time PCR System using the Fast SYBRHGreen PCR Master

Mix (both Applied Biosystems, Darmstadt, Germany). The

reaction volume was 25 ml, including 1 ml of template cDNA

and a final primer concentration of 300 nM. PCR conditions were

as follows: 20 s at 95uC, and then 40 cycles of 3 s at 95uC and 30 s

at 60uC, followed by a melting curve analysis step (temperature

gradient from 60uC to 95uC with +0.3uC per cycle). If all

amplicons showed a single Tm similar to the one predicted by the

Primer Express software, the PCR reactions were considered

specific. Every sample was measured in triplicates and we utilized

the comparative CT (DDCT) method for the relative quantification

of transcription levels. 18S rRNA was used as a housekeeping gene

to normalize our expression data.

Statistical analysis
Statistical analysis was performed using SPSS 16.0 (SPSS, Inc.,

Chicago, IL, USA). All data are expressed as means 6 standard

deviation (SD). Differences were considered significant at the level

of p,0.05, employing the Mann-Whitney U-test.

Results

EA.hy926 cells were grown under normal laboratory conditions

(60 culture flasks) and on the RPM (60 culture flasks) for five and

seven days (n = 30/time point), respectively. After five days on the

RPM, a considerable number of cells had detached from the

bottoms of the culture flasks. Some of the detached cells had

formed small, oblong three-dimensional aggregates that were

laminin-positive (Fig. 1A). By this time point, a nearly confluent

monolayer had developed in a normal laboratory incubator under

1 g gravity (Fig. 1B). Harvesting normal monolayer cultures

(Fig. 1B), the cells were scraped off and collected. During the

harvest of RPM cultures (Fig. 1A), aggregates and detached cells

were collected together with the culture medium first. Then the

remaining adherent cells were scraped off and collected. In this

way, we obtained six populations of EA.hy926 cells (Table 1).

Each cell population was divided into aliquots, of which one was

used for microarray analysis and another one for PCR.

Microarray analysis
Using the Illumina HumanWG-6_V2_0_R3_11223189_A ar-

ray was a first approach to finding genes that are expressed

differently depending on the different gravitational conditions

under which the cells had grown. Of 31,991 possible transcripts,

1,625 met the criteria of a False Discovery Rate (FDR) below 5%

and an expression difference of at least two-fold between any of the

tested conditions. These genes were defined as differentially

expressed. Biological functions retrievable from the gene ontology

database (GO) could be assigned to 1,174 products of the 1,625

differentially expressed transcripts. Several of these functions are

related to vessel formation, others to apoptosis, cell structure

maintenance, cell migration, and cell adhesion (Table S2).

Obvious transient transcriptome differences in the five-day,

RPM-treated samples were detected by principal component

analysis (PCA) (Fig. 2A). Separating the 1,625 significantly

differentially expressed individual profile data by k-means

clustering resulted in 9 clusters (Fig. 2B).

Cluster 1
A widely unspecific set of 163 genes recognized by g:Profiler

and 182 proteins recognized by STRING analysis are organized in

cluster 1 and characterized by upregulation in seven-day 3D cells,

a heterogeneous expression profile in the five-day and seven-day

controls and downregulation in AD cells (Fig. 2B). Only a few GO

biological processes were detected as significantly enriched: signal

transduction (53 genes, GO:0007165, p = 6.0461026) and regu-

lation of phosphorus metabolic processes (19 genes, GO:0051174,

p = 3.9861026). In addition, we found single genes that are

involved in angiogenesis (CALD1, PNPLA6, MAPK11, THY1),

apoptosis (IL10, MAP3K11, NOX4, BIRC3), extracellular matrix

organization (NFKB2) or actin cytoskeleton organization (INF2)

(Fig. 2C).

Clusters 2, 7 and 9
These clusters represent genes that are upregulated in both AD

and 3D cells by day five on the RPM (Fig. 2B). In all three clusters,

general metabolic processes were significantly enriched; for

example, GO:0044281 (small molecule metabolic processes) with

p = 2.4261026 and 38 genes in cluster 2, and GO:0008152

(metabolic processes) with p = 4.0361026 and 35 genes with

Figure 1. Immunocytochemistry. (A) Laminin-immunocytochemis-
try of EA.hy926 cells cultured for five days on the RPM. (B) Laminin-
immunocytochemistry of EA.hy926 cells cultured for five days in a
normal laboratory incubator.
doi:10.1371/journal.pone.0064402.g001

Table 1. Time periods and conditions of culturing the various
EA.hy926 cell populations.

Time period Condition
Kind of growth at
harvest

Referred to as in
text

5 days 1g adherent 5d 1g

5 days RPM adherent 5d AD

5 days RPM 3D aggregates 5d 3D

7 days 1g adherent 7d 1g

7 days RPM adherent 7d AD

7 days RPM 3D aggregates 7d 3D

After harvest, each population was divided and aliquots were used for gene
array technique or quantitative real-time PCR; 1 g: incubation in a normal
laboratory incubator; RPM: incubation under simulated microgravity on the
Random positioning machine; d: days.
doi:10.1371/journal.pone.0064402.t001
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Figure 2. Microarray Analysis. (A) The first two PCs of the PCA of 31,991 expressed transcripts describe 32.1% of the dataset variance. The five-day
RPM samples showed a separation from 1 g controls and seven-day RPM samples in PC #1 (22.5% of the variance). (B) K-mean clustering of the 1625
significantly regulated probes. The color scale represents upregulation (red) or downregulation (blue) of probes. Outliers are marked in orange
(upregulated) or green (downregulated). (C–H) STRING visualization of known and predicted physical and functional interactions between the
proteins organized in cluster 1 (C), clusters 2, 7 and 9 (D), clusters 3 and 5 (E), cluster 4 (F), cluster 6 (G) and cluster 8 (H).
doi:10.1371/journal.pone.0064402.g002
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p = 2.9061028 and 177 genes in clusters 7 and 9, respectively

(Fig. 2D). An increase in general expression activity is indicated by

increases in expression of DNA-dependent RNA polymerase

(POLR2L), of exportin (XPOT) (which mediates the nuclear export

of aminoacylated tRNAs) of ribosomal proteins (RPL6, RPL9,

RPL10a, RPL29, and RPLP0) and the tRNA synthetases for serine

(SARS), methionine (MARS), tyrosine (YARS), isoleucine (IARS), and

glycine (GARS). Moreover, especially in clusters 2 and 7, we found

more genes involved in angiogenesis (HIF1A, IL8), apoptosis (SFN,

BECL2L1, GLRX2, IL1A, IL6), extracellular matrix organization

(MMP10), and cytoskeleton organization (TUBB6, ABLIM1).

Clusters 3 and 5
Clusters 3 and 5 are characterized by day-five downregulation

in AD and 3D samples (Fig. 2B). The enrichment analysis

indicated that these clusters are characterized by genes involved in

anatomical structure development (GO:0048856, 79 genes,

p = 2.0061029 in cluster 3 and 29 genes, p = 6.9861027 in cluster

5) as well as in cell-cell and cell-environment interactions

(GO:0050896: response to stimulus, 121 genes, p = 1.6161028;

GO:0007155: cell adhesion, 31 genes, p = 3.2361028;

GO:0007154: cell communication 91 genes, p = 5.5161029, all

cluster 3). Cluster 3 includes one half of the regulated collagens

(COL13A1, COL4A5, COL5A1, COL6A1, and COL6A2), and both

clusters include a multitude of angiogenic genes (for example, ENG

in cluster 3 and CAV1 and CAV2, SERPINE1 and MMP2 in cluster

5) (Fig. 2E).

Cluster 4
Cluster 4 is characterized by an upregulation of gene expression

by day five and a downregulation by day seven in AD and 3D

samples cultured on the RPM (Fig. 2B). No significant enrichment

of a GO biological process was found, but single genes involved in

angiogenesis (CEACAM1), apoptosis (DAP, DHCR24, FOS,

PSME3), and adhesion (ITGAE) belong to this cluster (Fig. 2F).

Cluster 6
Cluster 6 includes genes upregulated in 3D cells by day seven on

the RPM (Fig. 2B). The most significantly enriched biological

process is programmed cell death (GO:0016256, 14 genes,

p = 7.7861027). Some of the other processes comprising a relevant

number of genes include cell communication (GO:0007154, 21

genes, p = 7.5561026) and locomotion (GO:0040011, 12 genes,

p = 3.8161027) (Fig. 2G).

Cluster 8
The genes in cluster 8 are generally downregulated (with an

emphasis on day five) in AD and 3D samples and have some

similarities in their expression patterns to genes from clusters 3 and

5 (Fig. 2B). Again, anatomical structure development

(GO:0048856, 44 genes, p = 1.7461026) and angiogenic processes

(GO:0001525, 11 genes, p = 2.7961026) are significantly enriched,

including such genes as COL4A1, COL4A2, COL5A2, COL18A1,

EGFL7, EPHB4, NOTCH1, PTPRB, ROBO4, SOX18, VASH1, and

ADAM15 (Fig. 2G). In addition, genes regulating cell adhesion

(GO:0007155, 22 genes, p = 1.8161028) and the extracellular

matrix (GO:0031012, 17 genes, p = 2.98610210) are also prom-

inently represented (Fig. 2H).

Quantification of differences
Looking at each individual cluster (Fig. 2B), no major

differences between five- and seven-day samples of the 1 g control

groups were observable. In contrast and corresponding to the PCA

results (Fig. 2A), we could identify a strong overrepresentation of

transient expression differences in the five-day, RPM-treated

samples, where both AD and 3D samples showed a similar pattern

(Fig. 2B). The similarity of the gene profiles of AD and 3D cells in

five-day RPM treated samples is also notable because the

expression of only two genes (IFIT1, CTGF) differs by a factor of

two, while regarding the seven-day RPM treated samples, 3 genes

(NFKBIZ, NR4A2, FOS) in 3D cells are more than three-fold

upregulated as compared to the corresponding AD cells, and the

expression of another 30 genes including MMP2, MMP9, and

MMP10 as well as FOSL, PRDX3 and TNRSF25 in the 3D and AD

cells differs by a factor of two (Table S2).

The overrepresentation of transient expression differences in the

five-day, RPM-treated samples (Fig. 2B) relates not only to the

number of genes being differentially expressed in comparison to

1 g cells, but also to the degree of change regarding distinct genes.

Most noticeable is the IL8 gene. After 5 days on the RPM, the

expression of this gene is 6-fold higher in 3D cells and 4-fold

higher in AD cells as compared to 1 g cells. Further genes strongly

affected by incubating the cells on the RPM are summarized in

Table 2. It clearly shows that more genes exhibited greater than

two-fold changes in expression levels in five-day RPM-treated cells

than in seven-day RPM treated cells as compared to 1 g cells,

respectively. Most of the genes showing large differences in

expression code for signal transduction factors (ASAP3, IFIT1,

CBS, GNG10, STC1). But major changes in genes for angiogenic

factors (ANGPTL4, IL-8, HMOX1, LOX), cell adhesion (VWF,

SPP1, ITGB4) and membrane transport (SLCO4A1, SLC2A1,

SLC3A2) proteins also became obvious (Table 2). Interestingly,

two genes were observed which code for enzymes involved in

transforming pyruvate to serine (PHGDH, PSAT1).

Quantitative real-time PCR of selected transcripts
involved in the process of angiogenesis

In addition to genes showing outstanding degrees of alteration

in expression, genes coding for proteins that had been recognized

earlier to be involved in cell aggregation on the RPM [27,28] were

detected in the microarray analysis (Table S2). The list of these

genes included TUBB6, TGM2, SPATAN1, GSN, SERPINE1,

ANXA2, CALD1, CAV1, SPAG9, PECAM1, ENG, IL-6 and IL8.

We added the ICAM1, ITGB1, MSN, RDX, TLN1, VIL2, and VIM

genes, although they did not emerge in the microarray, because

their products had already attracted our attention earlier [26].

Table 2. Number of genes, whose expression was changed
more than twofold during incubation on the RPM.

Fold change
5d AD
vs. 1g

5d 3D
vs. 1g

7d AD
vs. 1g

7d 3D
vs. 1g

6 fold – 11 – 12

5 fold 43 74 – 25

4 fold 136 117 18 –

3 fold 28 42 4 8

2 fold 264 346 33 51

1IL-8 (+); 2 VWF (2); 3SERPINE2 (+), SLCO4A1 (2), PHGDH (+), SEMA4B (2);
4 ANGPTL4 (2), SPP1 (+), SERPINE2 (+), SLCO4A1 (2), TSC22D1 (+), MMP10(+),
PHGDH (+); 5 IL-8 (+); MMP10(+) 6 ANGPTL4 (2), HMOX1 (+), IL-8 (+), MX1 (2),
TXNIP (2), ITGB4 (2), ASAP3 (2), SPP1 (+), IFIT1(2), ZNF467 (2), IFI44L (2), PSAT1
(+), PTPRR (+); 7HMOX1 (+), MX1 (2), TXNIP(2), ITGB4 (2), CBS (+), GNG10 (+),
STC1 (+), SLC2A1 (2), SLC3A2 (+), SEMA4B (2), PSAT1 (+); 8 LOX (+); + = up-
regulation; – = down-regulation.
doi:10.1371/journal.pone.0064402.t002
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Then we tested the expression of all the genes mentioned above

using quantitative real-time PCR (qPCR) (Table 3). We could not

detect a significant transcriptional regulation for ANXA2, CAV1,

ENG, and SPTAN1, although in most cases (with ENG as the most

prominent example) their general expression patterns matched

those observed in the microarray analysis (Table S2). The changes

in expression determined by qPCR did not correlate to those from

the microarray experiments for TGM2 and CALD1; in these cases,

qPCR indicated an increase in both AD and 3D samples after five

days, whereas a decrease was observed in the microarray analysis

(Table 3). A correlation between the microarray and qPCR

experiments, however, was seen for TUBB6, SPAG9, IL6, and IL8

after five days and for SERPINE1, PECAM1, IL6, and IL8 after

7 days in AD and 3D cells. In addition, qPCR revealed significant

up-regulation for ITGB1, MSN, RDX, and VIL2 genes after 5 days.

Interactions of observed genes
After a large number of genes were determined to be up- or

downregulated when ECs were incubated on the RPM, it was of

interest to see whether there are interactions between them.

Application of STRING analysis revealed that the corresponding

proteins of genes playing a role in 3D aggregation and shown in

Table 3 form an interacting network, with the exception of

TUBB6 and SPAG9 (Fig. 3, surrounded by a red line). Proteins of

genes whose level of interaction changed at least 4-fold (Table 2)

did not show significant interaction by themselves. Combining

both groups, however, revealed that 15 of the 27 genes indicated

in Table 2 clearly fitted into and extended the network formed by

the earlier group indicated in Table 3 (Fig. 3, whole graph). These

results suggest that an entire system of genes whose products are

involved in maintaining cell structure and contact is changed when

ECs start to form tubes on the RPM.

Discussion

Looking for genes involved in the formation of 3D aggregates

formed by EA.hy926 endothelial cells (Fig. 1), the genomic

approach described in this paper was applied to search for

differentially expressed transcripts in cells cultured on the RPM as

compared to those incubated in a normal laboratory incubator

(1 g). In accordance with the microscopic observation that oblong

3D aggregates, which we consider as precursors of the single-

layered tubular structures observed after two weeks of incubation

on the RPM [12], appear in cell cultures incubated on the RPM

for 5 days (Fig. 1), we found a strong overrepresentation of

transient expression differences in the five-day, RPM-treated

samples. At that time, when the early stages of tubular structures

appear, some clusters of genes were down-regulated, while others

were up-regulated (Fig. 2B). However, amongst the 1,625 genes

affected by annulling gravity, there were only 27 genes whose level

of expression was up- or down-regulated at least 4-fold (Table 2).

Fifteen of them, including IL8 and VWF as the most prominently

Table 3. Comparison of gene array results and the relative quantities of mRNA determined by qPCR.

5d change 7d change

Gene symbol Protein name
3D vs. 1g FC
Microarray/qPCR

AD vs. 1g FC
Microarray/qPCR

3D vs. 1g FC
Microarray/qPCR

AD vs. 1g FC
Microarray/qPCR

TUBB6 Tubulin beta-6 chain 2.02/162:100* 2.07/182:100* 1.12/135:100* 1.24/105:100

TGM2 Protein-glutamine-c-
glutamyltransferase

21.50/210:100* 21.56/147:100 1.31/92:100 1.23/104:100

SPTAN1 Spectrin alpha chain, brain 22.21/95:100 22.03/87:100 21.43/72:100 21.27/74:100

GSN Gelsolin 21.40/123:100 21.45/111:100 21.89/91:100 22.36/54:100*

SERPINE1 Plasminogen activator
inhibitor 1

21.47/63:100 1.08/96:100 1.52/245:100* 1.46/187:100*

ANXA2 Annexin A2 2.84/75:100 2.55/106:100 21.09/117:100 1.48/116:100

CALD1 Caldesmon 21.51/193:100* 21.23/207:100* 1.46/124:100 21.28/109:100

CAV1 Caveolin-1 21.46/75:100 21.19/93:100 21.54/75:100 1.11/98:100

SPAG9 C-Jun-amino-terminal
kinase interacting protein 4

1.97/237:100* 1.93/169:100 1.04/134:100 1.23/100:100

PECAM1 Platelet endothelial cell
adhesion mol.

21.8/63:100 21.7/65:100 21.86/48:100* 21.34/45:100*

ENG Endoglin 22.6/69:100 22.2/64:100 21.16/95:100 21.06/107:100

IL6 Interleukin-6 2.37/346:100* 1.91/354:100* 2.32/728:100* 1.34/197:100

IL8 Interleukin-8 6.18/1734:100* 4.66/550:100* 5.4/1123:100* 3.36/564:100*

ICAM1 Intercellular adhesion
molecule 1

n.d./72:100 n.d./79:100 n.d./131:100 n.d./54:100*

ITGB1 Integrin beta-1 n.d./250:100* n.d./207:100* n.d./136:100 n.d./150:100

MSN Moesin n.d./175:100* n.d./149:100 n.d./104:100 n.d./79:100

RDX Radixin n.d./197:100* n.d./171:100 n.d./87:100 n.d./90:100

TLN1 Talin-1 n.d./157:100 n.d./193:100* n.d./143:100 n.d./97:100

VIL2 Ezrin n.d./180:100* n.d./231:100* n.d./117:100 n.d./127:100

VIM Vimentin n.d./150:100 n.d./183:100 n.d./129:100 n.d./128:100

*significant changes; n.d. not detected.
doi:10.1371/journal.pone.0064402.t003

Signaling and Endothelial Cells

PLOS ONE | www.plosone.org 6 May 2013 | Volume 8 | Issue 5 | e64402



affected, showed linkages to genes known to be involved in

angiogenesis (Fig. 3), while two other genes are important for

serine biosynthesis (Table 2).

Evaluating the results of our experiments, we focused on two

groups of genes: those whose expression was dramatically changed

(.4-fold, Table 2) and those that are known to be involved in

angiogenesis but were up- or down-regulated less than 4-fold

(Table 3). In comparison to EC growing under normal 1 g

conditions, the VWF gene was 6-fold down-regulated in 3D

aggregates after 7 days of culturing on the RPM. Von Willebrand

factor is a protein important in hemostasis and angiogenesis [29].

Its down-regulation during formation of vascular-like networks by

HUVEC cells encapsulated in hydrogel was already reported [30].

A 6-fold up-regulation was observed for the IL8 gene, while the

IL6 gene was 2–3 fold up-regulated (Tables 2, 3). IL-8 enhances

endothelial cell proliferation, induces capillary tube organization

and up-regulates the expression of anti-apoptotic genes [31]. IL-6

also induces proliferation, migration and tube formation in various

types of endothelial cells [32,33]. In our experiments, up-

regulation of the IL6 and IL8 genes was most prominent in 3D

aggregates after 5 days of culturing on the RPM (Table 3). In

human ovarian cancer cells, IL8 is up-regulated together with IL6

by the nuclear factor-kappa B (NFkB) pathway [34]. Thus, our

findings further support the idea that NFkB may play a special role

when human cells start to form 3D aggregates under simulated

microgravity [35].

According to our STRING analysis, IL-6 and IL-8 interact

together with the HMOX1, ICAM1 and ITGB1 proteins, which

are nodal points in a network of interaction of the detected genes

(Fig. 3). The HMOX1 gene was up-regulated more than 4-fold

after 5 days of incubation on the RPM and less than 2-fold after

7 days (Table S2). It encodes heme-oxygenase-1, which facilitates

angiogenesis [36]. The intercellular adhesion molecule-1 (ICAM-

1) is an endothelial-associated transmembrane protein. It is

Figure 3. Interaction Analysis. STRING visualization of interactions between the proteins of genes playing a role in 3D aggregation and shown in
Table 3 (surrounded by a red line) and genes whose level of interaction was changed at least 4-fold (Table 2). IL-8 belongs to both groups.
doi:10.1371/journal.pone.0064402.g003
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important in stabilizing cell-cell interactions and facilitating

leukocyte endothelial transmigration [37]. In accordance with a

previous study [12], we did not see significant regulation of the

ICAM-1 gene. ICAM-1 has been shown to interact with ezrin and

moesin [38], whose genes (VIL2, MSN) were significantly

upregulated in AD cells and 3D aggregates after 5 days. Ezrin

and moesin belong to the ERM protein family, which also includes

radixin. These proteins have the ability to interact with both the

plasma membrane and filamentous actin [39]. Moesin is required

in ECs for in vivo tubulogenesis [40]. Its regulation resembles

TUBB6 gene regulation (Table 3). MSN extends the network of

interaction via GSN, VIM and SPTAN1 (Fig. 3). GSN codes for

the actin-binding protein gelsolin, which has multiple cellular

functions including apoptosis and is reported to be down-regulated

in various cancers and premalignant lesions [41]. The SPTAN1

gene encodes another cytoskeletal protein known as spectrin, the

non-erythroid alpha chain [42]. Both genes showed a tendency of

being down-regulated when the ECs were incubated on the RPM,

while VIM gene expression was not significantly changed on the

RPM (Table 3).

When we investigated the ITGB1 gene by qPCR, significant

upregulation was observed, although it was not detected in the

gene array analysis (Table 3). The increase in mRNA levels was

substantial after five days, but only slightly elevated after seven

days of culturing on the RPM (Table 3). In vivo, the cytoplasmic tail

of the b-integrin subunit is coupled to F-actin by talin. This link is

required to transmit force from the actin cytoskeleton to the

extracellular matrix [43]. ECs lacking talin 1 in vivo are unable to

undergo the cell spreading and flattening required for vessel

formation [44]. We found that TLN1 gene expression was

significantly elevated on day five in AD cells of RPM cultures,

but not on day seven (Table 3). At the same time, SPP1, another

interaction partner of ITGB1, was 4-fold up-regulated, while

ITGB4 was 4-fold down-regulated as measured in the gene array

analysis. Integrin beta 4 chains are involved in neoangiogenesis

just like beta 1 chains. SPP1 codes for osteopontin, a ligand of

integrins [45]. Enhancement of cellular osteopontin has been

observed in ECs in vitro when gravity was reduced during

incubation [10] and in vivo during vascular remodelling [46].

These findings suggest that IL-8 and IL-6 may trigger a cascade of

reactions of cytoskeleton related genes and proteins in the early

phases of tube formation.

According to our STRING analysis, the cascade of possible

mutual interactions that leads to tube formation includes further

nodes (Fig. 3). Endoglin (ENG) is found on the surface of cells and

is important for angiogenesis, as it regulates endothelial signaling

and function during blood vessel development [47,48]. Caveolin-1

(CAV1) supports the assembly of caveolae, which are the sites in

the cell membrane responsible for concentrating an array of

signaling molecules critical for endothelial cell function [49,50].

Serpine peptidase inhibitor-1 (SERPINE1) interacts with extra-

cellular matrix proteins as well as with transmembrane receptors

and other links to the intracellular signaling machinery. Thus, it

modulates cell migration, cell-matrix interactions, signaling

pathways and angiogenesis [51]. We detected a non-significant

down-regulation of the ENG gene on day five, whereas on day

seven there was no change. Similarly, CAV1 remained unchanged

on days five and seven in AD and exhibited a moderate down-

regulation in 3D aggregates. As caveolin-1 is thought to play a role

as a negative regulator of signal transduction [52], downregulation

of CAV1 may indicate a contribution to tube formation. SERPINE1

(PAI-1) gene expression was significantly up-regulated on day

seven in AD and 3D cultures, while on day five it was significantly

down-regulated in 3D cultures and unaltered in AD. Earlier

measurements of this factor’s presence in culture supernatants

indicated that less PAI-1 is secreted in the supernatants of RPM

cultures than in control 1 g cultures [18]. The difference may be

explained by a strong binding of PAI-1 to the cells on the RPM.

PAI-1 promotes tumour angiogenesis by preventing excessive

proteolysis [53]. Thus, its association with cells may better protect

them against plasmin activity, which is promoted by Annexin A2

(ANXA2), whose gene expression remained unchanged in all

groups. Considering that proteolytic digestion of spectrin [54]

favours angiogenesis, while plasmin activity is reduced [53], the

present results support the idea of a complicated regulation of

proteolysis during the initial phase of tube formation, as already

suspected in a previous publication [11].

A prominent role for balanced proteolysis in EC tube formation

also became obvious when gene profiles of AD and 3D cells

harvested after 7 days of incubation on the RPM were compared.

At that time, when the initial phase of cell aggregation is over,

10% of the genes (i.e. MMP2, MMP9, MMP10), whose expression

differed at least 2-fold between AD and 3D cells encode

metalloproteinases, which are involved in remodeling the extra-

cellular matrix of blood vessels [55]. In addition, the NFKBZI and

NR4A2 genes were up-regulated 3-fold in 3D as compared to AD

cells after 7 days of incubation on the RPM. The expression of

these genes is important for maintaining IL-6 and IL-8 production,

respectively [56,57]. Hence, it appears reasonable that these

interleukins are also important in the elongation of formed tubes.

Taken together, the genomic approach applied in this study

proved that a network of genes responsible for maintaining cellular

structures and contacts is modulated when endothelial cells transit

from a two- to a three-dimensional type of growth. Similar results

were obtained when we studied spheroid formation of thyroid

cancer cells [26,28]. But investigating the thyroid cells, we noticed

several enzymes of glycolysis that were modulated when gravity

was reduced during cell culturing [58]. In this study, the PHGDH

and PSATI genes were noted to be upregulated 5- and 4-fold,

respectively. These genes encode for phosphoglycerate dehydro-

genase and phosphoserine aminotransferase, which are involved in

metabolizing pyruvate to L-serine. To our best knowledge, a role

of these enzymes in in vitro tube formation has not been described

so far. But they are critical for neurogenesis [59] and enhance the

aggressiveness of various types of cancer cells [60,61].
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