
REPRODUCTION

© 2016 The Authors
ISSN 1470–1626 (paper) 1741–7899 (online)
DOI: 10.1530/REP-16-0081
Online version via www.reproduction-online.org

This work is licensed under a Creative Commons 
Attribution 3.0 Unported License.

RESEARCH

Assessment of growth and metabolism characteristics in 
offspring of dehydroepiandrosterone-induced polycystic  
ovary syndrome adults

Ying Huang1,2,3,*, Jiang-Man Gao1,3,*, Chun-Mei Zhang1,2, Hong-Cui Zhao1,3, Yue Zhao1,2, 
Rong Li1,3, Yang Yu1,2,3 and Jie Qiao1,2,3

1Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital,  
Beijing, China, 2Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China and  
3Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China

Correspondence should be addressed to Y Yu or R Li or Y Zhao; Email: yuyang5012@hotmail.com or roseli001@sina.com or 
zhaoyue0630@163.com

*(Y Huang and J-M Gao contributed equally to this work)

Abstract

Polycystic ovary syndrome (PCOS) is a common reproductive disorder that has many characteristic features including 
hyperandrogenemia, insulin resistance and obesity, which may have significant implications for pregnancy outcomes and long-term 
health of women. Daughters born to PCOS mothers constitute a high-risk group for metabolic and reproductive derangements, but 
no report has described potential growth and metabolic risk factors for such female offspring. Hence, we used a mouse model of 
dehydroepiandrosterone (DHEA)-induced PCOS to study the mechanisms underlying the pathology of PCOS by investigating the 
growth, developmental characteristics, metabolic indexes and expression profiles of key genes of offspring born to the models. We 
found that the average litter size was significantly smaller in the DHEA group, and female offspring had sustained higher body weight, 
increased body fat and triglyceride content in serum and liver; they also exhibited decreased energy expenditure, oxygen 
consumption and impaired glucose tolerance. Genes related to glucolipid metabolism such as Pparγ, Acot1/2, Fgf21, Pdk4 and Inhbb 
were upregulated in the liver of the offspring in DHEA group compared with those in controls, whereas Cyp17a1 expression was 
significantly decreased. However, the expression of these genes was not detected in male offspring. Our results show that female 
offspring in DHEA group exhibit perturbed growth and glucolipid metabolism that were not observed in male offspring.
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Introduction

Polycystic ovary syndrome (PCOS) is a common 
reproductive disorder with many characteristics, 
including hyperandrogenemia, insulin resistance and 
obesity, which may have significant implications for 
pregnancy outcomes and long-term health of women. 
Familial history of PCOS represents a risk factor for 
development of the disorder, as first-degree relatives 
of patients with PCOS have higher prevalence of 
PCOS (Legro et al. 1998, Kahsar-Miller et al. 2001). 
Familial aggregation of PCOS kindreds suggests the 
involvement of a major genetic component(s) in this 
disorder. However, the results of subsequent genetic 
studies have been inconsistent and cannot fully 
explain the pathogenesis of PCOS.

PCOS women have increased risk of prenatal and 
neonatal complications such as gestational diabetes, 
pregnancy-induced hypertension, pre-eclampsia and 

preterm birth (Boomsma et  al. 2006). Also, infants 
of women with PCOS are more likely to be large or 
small for gestational age (Sir-Petermann et  al. 2005, 
Anderson et  al. 2010). In a two-period study, female 
infants and prepubertal girls born to PCOS mothers 
were found to have significantly higher levels of anti-
Mullerian hormone (AMH), whereas the concentrations 
of gonadotropin and sex steroids in both PCOS 
groups were comparable with those of control groups  
(Sir-Petermann et al. 2006). The observed higher levels 
of AMH in PCOS daughters were found to continue into 
adolescence (Crisosto et al. 2007). AMH is produced by 
granulosa cells and reflects follicular development. As 
such, the increase in AMH suggests that daughters of 
PCOS women may have altered follicular development 
during infancy and childhood (Crisosto et al. 2007).

Prepubertal and pubertal daughters of PCOS women 
have a normal body mass index and Tanner stage 
distribution but have some hormonal perturbations 
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and differences in metabolic parameters (Sir-Petermann 
et al. 2007). Hyperinsulinemia and an increased ovarian 
volume occur with PCOS before the onset of puberty 
and persist during pubertal development (Sir-Petermann 
et al. 2009). Considering the early onset and the nature 
of the metabolic and sex hormone alterations, PCOS 
daughters constitute a high-risk group for metabolic and 
reproductive derangements (Sir-Petermann et al. 2007, 
2009). Owing to the complexity of the multiple factors 
that induce PCOS, a comprehensive evaluation of 
PCOS offspring has not been reported. Studies of PCOS 
offspring have been conducted only with small sample 
sizes and included a single ethnic group (Crisosto et al. 
2007, Sir-Petermann et al. 2007). The follow-up period 
only reached adolescence—a period of rapid change and 
hormonal fluctuations—and thus is not representative of 
hormone metabolism or cannot completely represent 
the hormone metabolism situation in adulthood.

Androgen excess is the most common defect 
underlying PCOS, and it manifests in 25–60% of 
patients. PCOS patients have elevated levels of adrenal 
androgens, particularly dehydroepiandrosterone 
(DHEA), its sulfoconjugate and androstenedione 
(Carmina et  al. 1992, Moran et  al. 1999). Phenotypic 
and metabolic variations among PCOS patients lead to 
substantial variation in results.

In this study, we investigated the growth and 
metabolic indices of offspring conceived from DHEA-
induced PCOS mice to illuminate their developmental 
characteristics and determine the expression profiles 
of key genes. Our results provide a fundamental basis 
for comprehending potential health issues affecting 
PCOS offspring.

Materials and methods

All chemicals used in this study were purchased from Sigma-
Aldrich Chemical Company unless otherwise stated.

Ethics approval

All procedures involving mice were carried out following 
strict criteria of the Guide for Care and Use of Laboratory 
Animals of Peking University, and the protocol was approved 
by the Institutional Animal Care and Use Committee of Peking 
University Third Hospital.

PCOS-like model

Female prepubertal (25-days old) mice of the BALB/c strain 
(Vital River Laboratories, Beijing, China) were randomly 
divided into the DHEA group and control group. The PCOS-
like mouse model was established by subcutaneously 
injecting DHEA (6 mg/100 g body weight dissolved in 0.05 mL 
sesame oil) once daily for 20 consecutive days as described 
(Huang et al. 2015). All mice were raised and housed in the 
Animal Center of the Medical College of Peking University 

according to the national legislation for animal care. All mice 
were maintained under controlled temperature and lighting 
conditions and allowed free access to food and water. After 20 
days of treatment, eight to ten mice per group were killed for 
model validation (Huang et al. 2015).

Offspring acquisition

Mice from both control and DHEA groups were superovulated 
via intraperitoneal injection of 10 IU of equine chronic 
gonadotropin (Hua Fu Biotechnology, Tianjin, China), 
followed by 10 IU of human chorionic gonadotropin (HCG, 
Hua Fu Biotechnology) 48 h later. On the same day, equine 
chronic gonadotropin was given, DHEA administration was 
stopped. DHEA and control mice were paired with BALB/c 
males (6–8 weeks of age) in the evening of HCG injection, and 
the females with confirmed vaginal plugs the next morning 
were considered pregnant. Spontaneous delivery was allowed, 
and offspring were weaned at age 3 weeks. Female and male 
offspring were fed separately until age 12 weeks and weighed 
weekly. All offspring were maintained under controlled 
temperature and lighting conditions and allowed free access 
to food and water. Metabolic status and reproductive function 
were assessed at age 12–13 weeks, with the exception of 
estrous cycle evaluation, which was performed at age 6 weeks.

Body composition analysis

To determine body fat mass composition, offspring were 
placed in a clear plastic holder without anesthesia or sedation 
and inserted into an EchoMRI device (Echo Medical Systems, 
Houston, TX, USA) at age 12–13 weeks. Eight female and eight 
male mice were assessed per group.

Indirect calorimetry

Energy expenditure was measured using an indirect open-
circuit calorimeter (Oxylet; Panlab, Spain). Mice were placed 
individually into metabolic cages for 48 h. After a 24-h 
acclimation period, oxygen consumption (VO2) and carbon 
dioxide production (VCO2) were monitored for 3 min every 
hour in each cage for 24 h. At the same time, locomotor 
activity was monitored by Activity Sensor (Oxylet), and 
these data were collected every 2 min. Energy expenditure 
(in kcal/day/kg0.75 = [3.815 + 1.232 × RQ] × VO2 × 1.44) and 
respiratory quotient (RQ = VCO2/VO2) were calculated using 
METABOLISM software (Oxylet). Eight female and eight male 
mice per group were assessed at age 12–13 weeks.

Blood pressure measurement

The blood pressure of offspring (eight mice per group) was 
measured with a CODA noninvasive blood pressure meter 
(Kent Scientific, Torrington, CT, USA) at age 12–13 weeks.

Oral glucose tolerance test

An oral glucose tolerance test was performed in mice 
following an 8 h fast. Glucose levels were measured in  
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tail-vein blood samples using a blood glucose meter 
(Sinocare, Changsha, China). After the fast, glucose levels 
were measured, and then glucose (2 g/kg body weight 
dissolved in 10 mL water) was administered to mice by oral 
gavage, and tail-vein samples were obtained at 30, 60, 90 
and 120 min after administration.

Blood sampling for insulin, leptin and lipid profiles and 
measurement of hepatic cholesterol and triglycerides

At age 12–13 weeks, eight female and male offspring in 
each group were killed. Blood was drawn from the inner 
canthus after the mice were fasted for 8 h. The serum was 
immediately separated and stored at −80°C for subsequent 
analysis or hormone determinations. Leptin and fasting 
insulin levels were measured with radioimmunoassay kits 
(Beijing North Institute of Biological Technology, Beijing, 
China). Lipid profiles were determined using biochemical 
analysis kits (China Diagnostics Medical Corporation, 
Beijing, China). After blood sample collection, each liver 
was immediately removed and stored at −80°C. Total 
cholesterol (CHO) and triglycerides (TG) were extracted 
from liver and measured with a Tissue Total Cholesterol 
Assay Kit and Tissue Triglyceride Assay Kit (Applygen 
Technologies, Beijing, China).

Quantitative real-time PCR

Quantitative real-time PCR was used to determine the levels 
of the expression of glucolipid metabolism–related genes 
in liver. Total RNA from the liver was isolated with TRIzol 
reagent (Invitrogen). cDNA was synthesized using the First 
Strand cDNA Synthesis kit (Thermo Fisher). For quantitative 
PCR, amplification was performed with an ABI7500 (Applied 
Biosystems) using the SYBR Green kit (Applied Biosystems). 
The cycling conditions were 2 min at 95°C, followed by 
40 cycles of 30 s at 95°C and 1 min at 60°C for annealing. 
GAPDH served as the internal control for gene expression 
normalization. The relative expression levels of the glucolipid 
metabolism–related genes were calculated using the 2−ΔΔCT 
method. All primers were synthesized by Sangon Company, 
and the sequences are shown in Supplementary Table 1, see 
section on supplementary data given at the end of this article.

Statistical analysis

Measurement data were presented as the mean ± s.e.m. 
Statistical significance was determined as indicated by two 
independent sample t-tests, Mann–Whitney U test and χ2 tests, 
using SPSS 16.0 software appropriately. A P value of <0.05 
was considered to reflect a statistically significant difference.

Results

Producing offspring by superovulating DHEA-induced 
PCOS female mice

DHEA-induced PCOS female mice and control female 
mice were mated with normal BALB/c male mice  

(a single male mouse per female). The pregnancy rate 
in the DHEA group was only 8% (compared with 67% 
for the control group), which was too low to obtain 
sufficient offspring; hence, in subsequent experiments, 
hormone therapy was used to stimulate ovulation.

In the control group, a vaginal plug was observed 
in 10 mice after stimulating ovulation and mating, 
and 7 mice produced offspring (70%); average litter  
size was 7.6 ± 1.0. In the DHEA group, a vaginal 
plug was observed in 13 mice, and 6 mice produced 
offspring (46%); average litter size was 4.2 ± 2.3, 
which was significantly smaller than that of the 
control group (P < 0.05).

Growth index comparison between offspring of DHEA 
and control mice

As shown in Fig. 1A, the average body weight of female 
offspring of DHEA mice was significantly greater than 
that of the control group from one week after birth until 
adulthood (12 weeks). During postnatal weeks 1–4, 
the body weight of male offspring in the DHEA group 
also was significantly greater than that of male offspring 
in the control group. However, no difference in male 
offspring body weight was observed between the two 
groups from postnatal weeks 5–12 (Fig. 1B).

Figure 1 Growth of offspring of DHEA and control mice. (A and B) 
Growth curves for female offspring (A) and male offspring (B) during 
postnatal weeks 1–12. (C and D) Fat content of female offspring (C) 
and male offspring (D) at age 12 weeks. (E and F) Systolic, diastolic 
and mean arterial pressure of female (E) and male (F) offspring. Values 
are the mean ± s.e.m., and n denotes the number of mice. *P < 0.05, 
**P < 0.01 vs control group.
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Fat mass of the offspring at age 12 weeks was measured 
by magnetic resonance imaging. The mean fat mass 
percentage for female offspring was 11.69 ± 0.55% in 
the DHEA group and 8.71 ± 0.52% in the control group, 
a difference that was statistically significant (Fig.  1C). 
The mean fat mass of male offspring did not differ 
significantly between the two groups (7.48 ± 0.66% vs 
7.15 ± 1.92% respectively, Fig. 1D).

As metabolic disorders often leads to vascular 
endothelial dysfunction and increased risk of 
hypertension, blood pressure was measured in adult 
offspring. For both female and male offspring, there 
were no significant differences in systolic, diastolic or 
mean arterial pressure between the DHEA and control 
groups (Fig. 1E and F).

Comparison of metabolic level between offspring of 
DHEA and control mice

Obesity is often caused by excessive food intake 
or metabolic changes, resulting in weight gain and 
pathological changes induced by excess body fat 
accumulation. Energy consumption and activity levels 
can indirectly reflect the metabolic levels and provide 
an explanation for weight change. In this study, dynamic 
changes in energy consumption (energy expenditure), 
VO2, VCO2 and activity were monitored with a 
respiratory metabolism detector for 24 h for eight female 
and eight male offspring from each group.

Figure 2 Metabolism level in offspring of DHEA and control mice. 
(A) Energy consumption: A1, female offspring, dynamic change of 
energy consumption in 24-h; A2, male offspring, dynamic change of 
energy consumption in 24-h; A3, area under the curve (AUC) for energy  
consumption in 24 hours in female and male offspring. (B) Oxygen 
consumption: B1, female offspring, dynamic change of O2 consump
tion in 24-h; B2, male offspring, dynamic change of O2 consumption 
in 24-h; B3, AUC for O2 consumption in 24 h in female and male 
offspring. (C) CO2 production: C1, female offspring, dynamic change 
of CO2 production in 24 h; C2, male offspring, dynamic change of 
CO2 production in 24 h. C3, AUC for CO2 production in 24 h in 
female and male offspring; (D) Activity: D1, female offspring, activity 
during the day, night and over a 24-h period; D2, male offspring 
activity during the day, night and over a 24-h period. ‘n’ denotes the 
number of mice. *P < 0.05, **P  < 0.01 vs control group.

Figure 3 Oral glucose tolerance test (OGTT) for offspring of DHEA 
and control mice. (A) Blood glucose level curves for female offspring 
at each time point. (B) OGTT area under the curve for female 
offspring. (C) Blood glucose level curves for male offspring at each 
time point. (D) OGTT area under the curve for male offspring. ‘n’ 
denotes the number of mice. *P < 0.05, **P < 0.01 vs control group.
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Data for energy expenditure were adjusted for body 
weight. Female offspring of DHEA mothers showed 
sustained lower levels of energy consumption and VO2 
(Fig. 2A and B). No difference was observed for male 
offspring. Moreover, VCO2 and physical activity did not 
differ significantly in female/male offspring of DHEA  
and control mice at any time over the 24-h period 
(Fig. 2C and D).

An oral glucose tolerance test was performed to assess 
insulin sensitivity in adult offspring. In female offspring, 
the glucose level at both 30 and 60 min after the sugar–
water lavage was significantly higher in the DHEA group 
than that in the control group. Moreover, the area under 
the curve for glucose was also significantly greater, 
suggesting impaired glucose tolerance in DHEA female 
offspring. However, compared with control males, the 
glucose tolerance of the male offspring was unaffected, 
with comparable blood glucose levels at each time  
point (Fig. 3).

Fasting serum lipids and metabolism–related hormone 
levels in offspring were measured in 12-week-old mice. 
Except for serum TG level, which was significantly 
higher in the DHEA female offspring, other indicators, 
such as HOMA-IR, cholesterol, HDL, LDL, insulin and 
leptin levels, did not differ significantly between the two 
groups (Table 1).

The liver is the central hub of human metabolism, 
regulating both glucose and lipid metabolism. We thus 
measured CHO and TG levels in the liver. Mean liver 
TG concentration was 1108.7 ± 183.4 μmol/g in the 
DHEA female offspring, which was significantly greater 
than that of female controls (455.8 ± 82.32 μmol/g); 
total CHO, however, was similar in the two groups 

(Fig. 4A and B). For the male offspring, there was no 
difference in liver TG or CHO levels between the two 
groups (Fig. 4A and B).

Expression of genes that regulate glucolipid  
metabolism in liver tissue

To determine the potential molecular mechanism 
underlying the observed dynamic metabolic changes 
in PCOS female mice, we used real-time PCR to assess 
the expression of 36 glucolipid metabolism–related 
genes in liver tissue of female offspring of DHEA and 
control mothers (three cases per group). Among these 
genes, 17 were associated with lipid synthesis, transport 
and metabolism (Acc, Acs, CD36, Cpt-2, Cyp17a1, Fas, 
Fatp, Fgf21, Hmgcl, Hmgcs2, Inhbb, Lepr, Pparα, Pparβ, 
Pparγ, Scd and Vnn1; Smith 2002, Lee et al. 2003, Yoon 
2009, Rakhshandehroo et  al. 2010, Nakamura et  al. 
2014), 6 were associated with glucose synthesis and 
metabolism (Aqp3, Glut4, Gyk, Pck1, Pdk4 and Pepck; 
Lee et al. 2003, Yoon 2009, Nakamura et al. 2014) and 

Table 1  Lipid and insulin level in offspring of DHEA and control mice.

Female F1-control (n = 8) Female F1-DHEA (n = 8) Male F1-control (n = 8) Male F1-DHEA (n = 8)

Total CHO (mmol/L) 1.63 ± 0.12 1.53 ± 0.14 2.40 ± 0.13 2.19 ± 0.19
TG (mmol/L) 0.95 ± 0.05 2.21 ± 0.35* 1.08 ± 0.12 1.34 ± 0.13
HDL (mmol/L) 1.29 ± 0.10 1.26 ± 0.12 1.82 ± 0.08 1.75 ± 0.16
LDL (mmol/L) 0.19 ± 0.01 0.18 ± 0.01 0.23 ± 0.02 0.22 ± 0.01
FBG (mmol/L) 5.10 ± 0.41 4.40 ± 0.20 6.52 ± 0.39 6.58 ± 0.22
FINS (μIU/mL) 10.31 ± 0.65 11.07 ± 0.79 14.34 ± 0.85 14.58 ± 1.20
HOMA-IR 2.55 ± 0.23 2.18 ± 0.22 4.16 ± 0.37 4.30 ± 0.44
Leptin (ng/mL) 7.94 ± 0.20 7.06 ± 0.88 5.55 ± 0.69 5.04 ± 0.27

*P < 0.05, vs control group.

Figure 4 TG and CHO content of liver and muscle tissue in offspring 
of DHEA and control mice. (A) TG content in liver tissue. (B) Total 
CHO content in liver tissue. ‘n’ denotes the number of mice. 
*P < 0.05 vs control group.

Figure 5 Real-time PCR assay of differential expression genes in liver 
of offspring. (A) Female offspring. (B) Male offspring. ‘n’ denotes the 
number of mice. *P < 0.05, **P < 0.01 vs control group.
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13 were associated with oxidation and decomposition 
(Acaa1a, Acot1, Acot2, Acox1, Aldh3a1, Cpt1A, 
Cyp4a1, Cyp4a31, Etfdh, Hadha, Hsd17b4, Ucp2 and 
Ucp3; Lee et  al. 2003, Yoon 2009, Nakamura et  al. 
2014). Preliminary screening results showed that, for 
the female offspring, 9 genes (Acot1, Acot2, Cyp4a31, 
Cyp17a1, Fgf21, Inhbb, Pdk4, Pparγ and Vnn1) were 
expressed differently between the DHEA and control 
groups. To verify the expression of these 9 genes in the 
liver of female and male offspring, the sample size was 
expanded to six mice per group. As assessed by mRNA 
level, the expression of each of Pparγ, Fgf21, Pdk4, 
Inhbb, Acot1 and Acot2 was significantly upregulated 
in DHEA female offspring, whereas Cyp17a1 was 
significantly downregulated (Fig. 5A). Unlike in female 
offspring, the expression of these genes in male offspring 
did not differ significantly between the DHEA and 
control groups (Fig. 5B).

Discussion

DHEA is a metabolic intermediate in the biosynthesis 
of androgen and is one of the many drugs, including 
testosterone and letrozole, that are used for animal 
models of PCOS by prenatal or prepubertal exposure 
(Luchetti et  al. 2004, Manneras et  al. 2007). In our 
study, PCOS was induced by the administration of 
DHEA (6 mg/100 g body weight) for 20 consecutive 
days in prepubertal BALB/c mice (Sander et al. 2006, 
Abramovich et  al. 2012, Zhang et  al. 2013). This 
dose of DHEA ensures a hyperandrogenized status 
equivalent to that found in women with PCOS (Lee 
et al. 1991, Luchetti et al. 2004, Solano et al. 2006). 
An increase in fat and stromal tissue is observed in 
ovaries of prepubertal mice from DHEA-treated mice 
(Luchetti et al. 2004). Furthermore, the ovarian cortex 
of treated mice has more cysts, which show a thin layer 
of theca cells and compacted granulosa cells with the 
absence of a vascularized theca interna. Decreased 
insulin sensitivity, increased ovarian oxidative stress, 
altered serum estradiol and progesterone levels, and 
ovarian immunosuppressor prostaglandin E were 
also apparent in prepubertal hyperandrogenism after 
DHEA treatment (Luchetti et al. 2004, Elia et al. 2006). 
Characteristics of DHEA-treated mice, especially 
hyperandrogenism, are similar to those exhibited by 
women with PCOS. Therefore, we chose this PCOS 
mouse model to assess the growth and metabolic 
characteristics of PCOS offspring.

We examined the stage of cyclicity, ovarian 
morphology, hormone levels and changes in metabolism 
and fertility in mice after 20 consecutive days of DHEA 
injection. The results showed that all mice from the DHEA 
group, whose ovaries were markedly swollen and had 
multiple follicular cysts, were completely acyclic and 
remained in constant estrous. Levels of testosterone, TG 
and CHO were significantly increased, and the weight 

gain and fat mass were significantly greater than those in 
the control group, as noted in our previous study (Huang 
et al. 2015).

A number of animal studies have shown that excessive 
intrauterine androgen exposure results in many problems 
in offspring, such as excessive weight gain, visceral 
and subcutaneous fat accumulation, increased fat cell 
volume, impaired glucose tolerance, decreased insulin 
sensitivity and lipid metabolism disorders (Demissie 
et al. 2008, Roland et al. 2010, Yan et al. 2013). PCOS 
mothers have a significantly higher prevalence of birthing 
both small- and large-for-gestational-age newborns, and 
birth length for the latter is significantly greater than 
that of controls (Sir-Petermann et al. 2005). Assessment 
of prepubertal daughters of patients with PCOS 
revealed significantly greater bone age and basal height 
compared with prepubertal girls in the control group, 
although body mass index did not differ significantly 
between the groups (Battaglia et al. 2002). However, the 
study included only 15 prepubertal offspring of patients 
with PCOS and 10 control prepubertal girls, and longer-
term follow-up studies concerning offspring of PCOS 
women are rare. A rat model in which PCOS was 
induced by prenatal exposure to testosterone revealed 
no significant differences in body weight of offspring at 
birth and postnatal day 15, but when compared with 
controls at 30, 45 and 60 days of age and in adulthood, 
the body weight of PCOS rat offspring was significantly 
greater (Noroozzadeh et  al. 2015). However, none of 
the studies mentioned previously distinguished the 
female and male offspring. We found that, although 
the body weight of female offspring of DHEA mice was 
significantly greater than that of the control group from 
postnatal week 1 into adulthood, the body weight of the 
male offspring of the DHEA group in the period of 1–4 
weeks after birth was also significantly greater; however, 
there was no significant difference from weeks 5–12. The 
reason for this might be that, before puberty, the body 
weight of offspring was influenced by PCOS mothers 
as a consequence of parenting factors related to the 
physical and pathological state of this syndrome. During 
adolescence and adulthood, however, female body 
weight is more easily affected by ovarian hormones. 
Ovarian physiopathological characteristics of female 
offspring might be inherited from the PCOS mother, 
and resulting in greater body weight gain. On the other 
hand, because there was an inverse relation between 
the average body weight and litter size (Reddy & Reddy, 
1982), the significantly smaller litter size of PCOS dams 
may have the consequence of increased mean body 
weight of offspring simply due to increased access to 
maternal resources, both in utero and postnatally. It is 
hard for us to completely exclude the maternal resource 
factor. This could be a confounding factor, and it is a 
limitation of our study.

In this study, mild glucolipid metabolism disorders 
existed in the female offspring in the DHEA group, 
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such as increased body fat and serum TG and impaired 
glucose tolerance. Decreased energy consumption 
might be one of the causative factors. The phenomenon 
may also be due to epigenetic and pathophysiological 
changes in metabolic tissue resulting from the female 
fetus’s exposure to elevated testosterone level (Abbott 
et al. 2010). Studies with rhesus monkeys showed that 
androgen treatment in different gestational periods 
yields different outcomes. Excess androgen in early 
gestation programs both hyperinsulinemia from 
adiposity-dependent insulin resistance and preferential 
accumulation of visceral adiposity, whereas androgen 
excess later in gestation decreases insulin sensitivity 
and increases non-visceral abdominal fat, although 
insulin secretion is unaffected (Bruns et al. 2007, Abbott 
et al. 2010). Prenatal androgenization of female rhesus 
monkeys may modify DNA methylation patterns in both 
infant and adult visceral adipose tissues (Xu et al. 2011), 
suggesting that changes in offspring metabolism may 
be related to alterations in DNA methylation or other 
epigenetic modifications.

Because of the increased catabolism of fat associated 
with insulin resistance, however, the consequent 
excessive free fatty acids in the circulation are transported 
to the liver. When oxygenolysis in liver mitochondria 
is insufficient to catabolize the excess free fatty acids, 
the remaining free fatty acids accumulate in the liver, 
resulting in an increase in TG level (Tolman et al. 2004). 
Pyruvate dehydrogenase kinase (PDK) 4 is a member 
of enzymes that inhibit the activity of the pyruvate 
dehydrogenase complex, and PDK links the glycolytic 
degradation of glucose to the tricarboxylic acid cycle 
through the rate-limiting and physiologically irreversible 
oxidative decarboxylation of pyruvate (Sugden & 
Holness 2006). PDK4 is primarily expressed in liver, 
heart and skeletal muscle. A high-fat diet significantly 
increases the level of PDK4 in skeletal muscle and 
cardiac muscle of mice. In addition, diabetes, hunger 
or fatty acids converted by sugars as energy source 
also upregulate PDK4 expression significantly (Feige & 
Auwerx 2007, Connaughton et al. 2010, Rinnankoski-
Tuikka et  al. 2012, Zhang et  al. 2012). In our study, 
the increased expression of Pdk4 in the DHEA group 
inhibited the activity of pyruvate dehydrogenase, which 
may be one of the reasons for the observed decrease in 
insulin sensitivity.

Peroxisome proliferator-activated receptor γ (PPARγ), 
a member of the nuclear hormone receptor superfamily, 
is a class of ligand-activated transcription factors that 
play a key role in glucose homeostasis and maintaining 
lipid metabolism. It was traditionally believed that one 
subtype of PPARγ is expressed in adipose tissue, in which 
it regulates preadipocyte differentiation and promotes 
adipocyte maturation (He et al. 2003). However, some 
studies have shown that PPARγ also plays a functional 
role in liver, muscle and other tissues (Vidal-Puig et al. 
1996, Norris et  al. 2003). Activated PPARγ increases 

the sensitivity of peripheral tissues to insulin, decreases 
insulin resistance and lowers blood glucose (Lazar 2005, 
Badman et al. 2007, King et al. 2007) through signaling 
pathways of acyl-CoA thioesterases and fibroblast 
growth factor 21 (FGF21) (Lazar 2005, Badman et  al. 
2007, King et  al. 2007). These thioesterases comprise 
a class of enzymes that catalyze the conversion acyl-
coenzyme A to free fatty acids via hydrolysis, which is 
regulated by PPARγ and play an important role in fatty 
acid synthesis and degradation (Hunt & Alexson 2002). 
FGF21, which was recently discovered, is a potent 
regulator of glucose uptake in adipocytes, regulating 
both glucose and lipid metabolism through fatty acid 
oxidation in the liver (Kharitonenkov et  al. 2005). 
Overexpression of FGF21 in transgenic mice prohibits 
diet-induced obesity. FGF21 treatment can reduce body 
weight, blood glucose and blood lipids and reverse 
hepatic steatosis in diabetic mice (Kharitonenkov et al. 
2005, Xu et al. 2009). The expression of Pparγ, Acot1, 
Acot2 and Fgf21 were increased in the liver of PCOS 
offspring mice, which may be related to compensatory 
adjustment for confrontation of dyslipidemia or protein 
resistance of the above-mentioned molecules. Similarly, 
one study showed that, when the body contained higher 
fatty acids, as a result of diabetes or a high-fat diet, 
the expression of Acot1 and Acot2 was upregulated in 
liver, thereby promoting the catabolism of fatty acids 
(Yamada et al. 2003). Human serum FGF21 levels also 
correlate positively with body mass index, as evidenced 
by the significantly increased level of serum FGF21 in 
obese patients (Zhang et al. 2008, Dushay et al. 2010). 
Overall, Pparγ, Acots, Fgf21 and Pdk4 all play important 
roles in regulating glucose and lipid metabolism, and 
the regulatory mechanisms are complex because the 
expression of these four genes is affected by many factors 
such as hunger and diet. Changes in the expression 
of these genes may be closely associated with the 
observed glycolipid metabolism disorder in offspring 
of DHEA-induced mice, and the increased levels of 
PPARγ and FGF21 in the liver of PCOS offspring may 
be a compensatory mechanism that maintains normal 
glucose and lipid metabolism.

The gene, CYP17A1, encodes an enzyme of the 
cytochrome P450 superfamily, and it plays a role in 
cortisol production in humans and animals (Lima et al. 
2015). In humans, CYP17A1 is responsible for the 
synthesis of P450c17, which is a key enzyme in the 
steroidogenic pathway for the metabolic conversion 
of progesterones to adrenal androgens and their 
subsequent conversion to testosterone (Fan et al. 2009, 
Kosaka et  al. 2014). Androgens serve as precursors to 
estrogens, so normal estrogen signaling also depends on 
CYP17A1, which plays a very important role in many 
other physiological and pathological processes such 
as vascular endothelium repair and lipid metabolism. 
Moreover, CYP17A1 is also involved in glucose 
metabolism and insulin-related signal transduction 
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pathways (Dai et al. 2015). Studies have shown increased 
expression of CYP17 genes in theca cells derived from 
PCOS women and an endogenous hyperandrogenism 
rat model of PCOS (Wood et al. 2003, Li et al. 2013). 
However, lipopolysaccharide levels in ovarian follicular 
fluid of dairy cows influence CYP17 expression in  
theca cells (Magata et al. 2014). In follicles with a high 
level of lipopolysaccharides, CYP17 expression was 
lower (Magata et  al. 2014). This study showed that 
Cyp17a1 mRNA level was significantly decreased in 
liver tissue of DHEA female offspring, which may be 
related to body weight gain, increased body fat and TG 
content or to impaired glucose tolerance. In conclusion, 
we found that the average litter size was significantly 
smaller in the DHEA group, and the female offspring 
in the DHEA group showed sustained greater body 
weight, increased body fat and TG content in serum 
and liver; decreased energy expenditure and oxygen 
consumption; and impaired glucose tolerance. In 
liver tissue of female offspring of the DHEA group, the 
glucolipid metabolism–related genes such as Pparγ, 
Acot1/2, Fgf21, Pdk4 and Inhbb were upregulated, 
whereas Cyp17a1 was significantly downregulated.
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