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Abstract

Autism spectrum disorder (ASD) is a neuro-developmental disorder associated with social

impairments, communication difficulties, and restricted and repetitive behaviors. Yet, there

is no confirmed cause identified for ASD. Studying the functional connectivity of the brain is

an emerging technique used in diagnosing and understanding ASD. In this study, we

obtained the resting state functional MRI data of 283 subjects from the National Database of

Autism Research (NDAR). An automated autism diagnosis system was built using the data

from NDAR. The proposed system is machine learning based. Power spectral densities

(PSDs) of time courses corresponding to the spatial activation areas are used as input fea-

tures, feeds them to a stacked autoencoder then builds a classifier using probabilistic sup-

port vector machines. Over the used dataset, around 90% of sensitivity, specificity and

accuracy was achieved by our machine learning system. Moreover, the system generaliza-

tion ability was checked over two different prevalence values, one for the general population

and the other for the of high risk population, and the system proved to be very generalizable,

especially among the population of high risk. The proposed system generates a full person-

alized report for each subject, along with identifying the global differences between ASD

and typically developed (TD) subjects and its ability to diagnose autism. It shows the

impacted areas and the severity of implications. From the clinical aspect, this report is con-

sidered very valuable as it helps in both predicting and understanding behavior of autistic

subjects. Moreover, it helps in designing a plan for personalized treatment per each individ-

ual subject. The proposed work is taking a step towards achieving personalized medicine in

autism which is the ultimate goal of our group’s research efforts in this area.

Introduction

Autism spectrum disorder (ASD) is a neuro-developmental disorder associated with three

main characteristics [1]: (i) impairments in social functioning, (ii) communication difficulties,
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and (iii) restricted and repetitive behaviors. The wide variation of clinical and genetic hetero-

geneity between autistic subjects [2] has made precision medicine a trending approach for

diagnosis and treatment. Precision medicine combines both pathophysiologically based treat-

ments and objective biomarkers to predict the most beneficial treatment for a particular sub-

ject. For drugs currently in clinical trials, investigation of the relationships between response

and etiologies/biomarkers should be explored to better understand individualized effects for

development of subsequent larger trials. The goal would be to optimize targeted treatment for

patients with ASD. Existing collaborative approaches of this type have not yet targeted envi-

ronmental etiologies/risk factors. As our understanding of environmental factors expands, it

will be critical to incorporate these factors into experimental approaches. Although ASD is a

heterogeneous disorder which varies in both symptoms and severity for each subject, it can be

systematically assessed utilizing a data driven approach to split ASD into subgroups. Each sub-

group can be explored separately to develop individualized/personalized treatments. The pro-

posed approach will be more efficacious to optimize ASD treatment for each subject rather

than conventional methods that are applied broadly for all ASD subjects. Personalized inter-

ventions at early ages may show a profound effect on ASD subjects during development. In

combination with impactful behavioral therapies (such as early intensive behavioral interven-

tion), this approach will have a significant impact on the overall symptoms of ASD over a life-

time. Consequently, this study has two main objectives: (i) design and implement an accurate

machine learning system to classify ASD and TD correctly, and (ii) provide a personalized

map that shows the affected areas and severity of autism for each ASD subject. Accomplishing

these objectives will facilitate the designing of a precise personalized plan for each autistic

subject.

Connectivity analysis is a very common way to determine the abnormalities between ASD

and TD subjects [3, 4], where three major patterns are analyzed: (i) gray matter structural con-

nectivity, (ii) white matter structural connectivity, and (iii) functional connectivity. Within the

gray matter, microstructural abnormalities in autistic subjects reported, for example, [5] and

[6], are suggestive of corresponding changes in connectivity. There have been few direct stud-

ies of synaptic connections in autism using human postmortem tissue [7], and alterations in

grey matter connectivity have mostly been inferred from other findings. The minicolumns,

basic anatomical and functional units of the cerebral cortex, have been found to be more nar-

row and/or more numerous in autism [5, 6]. The reduction in neuropil around these minicol-

umns in particular has implications for connectivity. It may lead, for example, to a reduction

in the inhibitory capacity of GABAergic interneurons [8]. Other evidence of disrupted synap-

tic connectivity derives from genetic studies, which have linked mutations in proteins involved

in synaptic transmission with the incidence of autism. Studies in mouse models have eluci-

dated what impact these mutations might have in the human brain [7, 9]. Another connectivity

abnormality which was detected in the white matter of autistic subjects is the reduced long

range connectivity and increased short and medium range connectivity [10]. The reduced

long range connectivity was expressed in terms of reduced fractional anisotropy in autistic

subjects in many recent studies, for example [11]. Functional connectivity analysis is the third

type of analysis. Each subject is asked to perform a task or stay at rest without falling asleep in

order to apply a functional connectivity analysis on his/her brain scan. [12]. Underconnectiv-

ity theory [13] states that both neurobiological and cognitive disorders are the main causes of

ASD. Synchronized brain activity reduction in integrative processing demanding tasks, such

as forming a sentence from 2 or more words, is used to depict the cognitive disorder. More

recent studies investigated the brain connectivity associated with different tasks. For example,

less activation in the left dorsolateral prefrontal and inferior parietal areas was identified, while

more activation was recorded in the right occipital (visuospatial) areas and bilateral superior

Using resting state functional MRI to build a personalized autism diagnosis system

PLOS ONE | https://doi.org/10.1371/journal.pone.0206351 October 31, 2018 2 / 22

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0206351


parietal regions were reported in a figures task experiment in [14]. In [15], the response to

facial expressions was addressed, where autistic individuals showed higher activation in the

amygdala, ventral prefrontal cortex, and striatum specifically for sad facial expressions.

Another type of task based experiments is the rewards task, where subjects are given either

monetary or social reward and their brain activity in response to this reward is recorded

[16, 17]. In [18], less activation in the right nucleus accumbens and more activation in left mid-

frontal and anterior cingulate gyrus were reported in autistic subjects than were reported in

healthy controls in response to social and monetary rewards. Another study [19] revealed less

connectivity in autistic subjects in response to rewards. Also, in [20], a machine learning algo-

rithm (multivariate autoregressive model) was used to study the alternation in connectivity

between the two groups while trying to find the most logical end to a story shown to them.

Resting state is another method used to study the brain activity without performing any

task. Resting state brain connectivity has been discussed in various studies. The underconnec-

tivity hypothesis was supported by [21], where less functional brain connectivity was found in

autistic subjects than that found in healthy control subjects. This result was supported for

autistic males by [22], while autistic females and autistic children showed hyperconnectivity in

[23]. In [23], autistic children with more severe social dysfunction were found to be function-

ally hyperconnected. In [24], decreased connectivity was noticed in local areas in the frontal

and temporal cortex, but no global abnormalities were detected. Also, in [25], reduced connec-

tivity in visuospatial and superior parietal areas was reported in autistic subjects as compared

to healthy control subjects. Reduced connectivity was also reported in [26] in both dentate

nucleus and cerebello-thalamo-cortical (CTC) circuits. Building on previous studies, [27]

depicted alternations in connectivity patterns. These alternations in connectivity patterns

appeared in the interhemispheric connectivity analysis, where for autistic subjects there have

been areas with decreased connectivity and other areas with increased connectivity compared

to the same areas in TD subjects. The altered connectivity result was also supported by [28],

where both hypoconnectivity and hyperconnectivity were reported in autistic subjects.

Another study [29], reported dysfunction in the functional networks, and this dysfunction was

more obvious in social information processing related networks.

In addition to its importance in reporting group differences between healthy controls and

implicated subjects, studying the resting state connectivity patterns showed promising results

in diagnosis of many diseases such as schizophrenia [30], Alzheimer’s disease, [31] and autism.

In [30], a deep neural network was used for whole brain classification of schizophrenia. The

approach in [30] achieved high accuracy in schizophrenia diagnosis. In autism diagnosis, a

recent study in [32] used deep neural network to build a diagnostic system using functional

connectivity correlation matrix as input to the network.

Many of the mentioned studies, and others [33], reported findings in different brain areas

or lobes among the autistic subjects and healthy controls. This helps in understanding autism

causative factors. But to the best of our knowledge, localized abnormalities for each subject

haven’t been reported by any of the formerly mentioned studies. Due to the heterogeneity of

autism and its various etiology and severity, a more personalized approach is needed to predict

and analyze the affected behavior and functionality of each subject; hence, an optimal goal is to

achieve an individually designed personalized treatment plan.

In this study, we are expanding our group’s previous work [34], where a resting state analy-

sis is performed on a dataset with a relatively large number of subjects (283 subjects). The

work flow of this analysis is to extract the features of most importance from the time courses

corresponding to functional connectivity spatial maps of both autistic and healthy control sub-

jects. Using the extracted features, we build a CAD system that is able to provide a global diag-

nosis decision for each subject; additionally, it provides a local diagnosis report that shows the
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most affected areas in the brain, which could help in better understanding and predicting of

the affected behaviors and functionalities for each individual subject. In addition to increasing

the number of subjects, we provide a correlation analysis between the CAD system output and

the Autism Diagnosis Observation Schedule ADOS behavioral reports. This analysis reflects

how the CAD system is able to predict the affected behaviors and allows for as early interven-

tion as possible.

Materials and methods

Data description

In this study, we obtained fMRI data for 123 ASD and 160 TD children and adolescents (for a

total number of 283 subjects) from the National Database for Autism Research (NDAR: http://

ndar.nih.gov). Imaging data hosted by NDAR are fully anonymized and linked with other rec-

ords (diagnostic, behavioral, demographic, etc.) via an opaque identifier, the NDAR globally

unique identifier (GUID). GUIDs for all subjects used in this study are provided in the supple-

mental materials—S1 Table. The data used are obtained from two studies, one done at George

Washington University (study ID 2021) and the other at UCLA Autism Center of Excellence

(study ID 2026). We selected only subjects who have resting state fMRI, structural MRI, and

DTI data available because our planned future work is to expand this work to be a multi-

modal personalized diagnosis system. All of the participant subjects have both a high-resolu-

tion T1 weighted structural MRI and a resting state functional MRI (fMRI). In addition to the

imaging data, many subjects also have (i) cognitive/behavioral data in the form of BRIEF-par-

ent (100 autistic and 140 healthy controls), (ii) child/adolescent symptom inventory (CASI)

(67 autistic and 110 healthy controls), (iii) child behavior checklist (CBCL) for ages 6–18 (116

autistic and 160 healthy controls), and (iv) differential ability scales 2nd edition (DAS-II) (105

autistic and 148 healthy controls). Those with a diagnosis of ASD usually had associated scores

on the (v) ADOS reports (96 autistic) and (vi) Autism diagnostic interview (ADI-R) (117 autis-

tic). Resting state fMRI and structural MRI data used in this study was acquired using Siemens

Magnetom TrioTim with a 3 T magnet. Structural MRI data used an MPRAGE pulse sequence

with TR = 2530 ms, TE = 3.31 ms, TI = 1100 ms, and flip angle 7˚. Voxel spacing for structural

MRI volumes is isotropic with 1 mm. Resting state fMRI scans have TR = 2000 ms, TE = 2000

ms, and flip angel 90˚ in a two dimensional acquisition sequence to produce images with 3

mm pixel spacing and 4 mm slice spacing. Time to acquire 33 coronal slices spanning the

entire brain was 2.01 s, and the resting state data were recorded for approximately 6 min, as it

was described in study ID 2021. While for study ID 2026, TR = 3000 ms, TE = 28 ms and flip

angle 90˚ in a two dimensional acquisition sequence to produce images with 3 mm pixel spac-

ing and 4 mm slice spacing. Time to acquire 34 coronal slices spanning the entire brain was

3.01 s, and the resting state data were recorded for approximately 6 minutes.

Resting state fMRI experiment

The main objective while analyzing a resting state fMRI (R-fMRI) scan is to study the low-fre-

quency fluctuations measured in blood oxygenation level dependent (BOLD) signal, which

identify spatial and temporal characteristics of the resting state networks (RSNs) [35]. To local-

ize the individual abnormalities, the RSNs of each subject are then mapped to four resting state

standard brain atlases by checking the correlation between each atlas area and each RSN. The

package used in this experiment for both analysis and preprocessing is FSL MELODIC (Multi-

variate Exploratory Linear Optimized Decomposition into Independent Components) [36].

R-fMRI preprocessing. In this study, we applied multiple preprocessing steps on R-fMRI

scans before the analysis takes place:
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• Brain Extraction Tool (BET) is used to skull stripping. Skull stripping is where we segment

an MRI image into a brain and non brain. BET used deformable model for segmenting the

brain and it is considered as a robust tool [37].

• Removing the time differences between acquired 2D slices of fMRI scans using slice timing

correction in increasing order.

• To eliminate the effect of subject movement during MRI scan, we apply motion correction

using MCFLIRT algorithm [38, 39].

• In order to increase signal to noise ration (SNR), and accommodates for the individual ana-

tomical variations inter-subjects, we used Gaussian filtering for spatial smoothing. we used

Gaussian filter with full width half maximum (FWHM) of 2 mm [40]. The relatively small

FWHM was selected to avoid activation cluster merging [41].

With the preprocessed scans, we apply two-phase registration on each scan. First, we regis-

tered every preprocessed fMRI scan to it’s corresponding high resolution T1-weighted struc-

tural image. Second, we aligned these preprocessed registered fMRI scans to MNI152 standard

space. For both registration steps, we used a 12 degree of freedon affine transformation. The

registration is performed using FLIRT software in the FSL package.

R-fMRI data analysis and feature extraction. In R-fMRI, the values of BOLD signal at

every voxel over time represents a signal that comprises spatial locations and their correspond-

ing activation time courses. Functional connectivity is defined as the minimal loss decomposi-

tion of the source signal (BOLD signal values) into two independent components (spatial

locations and time courses). The famous blind source separation problem (BSS) is somehow

analogous to our source signal decomposition problem, at which we need to recover set of sta-

tistical independent sources signal from a measured signal that comprises a mixture of sources

[42]. The BSS assumes that there is no prior knowledge about the sources or the mixture

structures.

The BSS problem can be formulated as:

xiðtÞ ¼ AsiðtÞ þ ZiðtÞ ð1Þ

Where xi is the BOLD signal measured over time at voxel i, si is the non-Gaussian source sig-

nal, ηi � N(0, σ2∑i), and A is the mixing matrix. To solve this BSS problem it is required to find

the unmixing matrix W such that

ŝi ¼Wxi ð2Þ

is a close approximation of the original measured signal. To solve this BSS problem in the pres-

ence of Gaussian noise, a probabilistic independent component analysis (PICA) algorithm is

used. In the presence of unknown noise covariance, the unmixing matrix W is estimated in an

iterative manner, by iterating estimates of the mixing matrix and the independent sources

then reestimating the noise covariance from the residuals. For more mathematical details

about finding the solution, uniqueness, correctness, and model order, the reader is referred to

[36].

In this study, 40 matched subjects (20 ASDs and 20 TDs) in terms of age, gender, and IQ

are used for group ICA analysis, where subjects are temporally concatenated. The output of

the group PICA is 34 spatial components that represent activation patterns in the 40 subjects.

To assess statistical significance between the 2 groups, permutation testing and Bonferroni

correction are applied to the output components. To obtain spatial components and time

courses for each individual subject dual regression is applied. In the first regression phase,

group spatial components are used with the subject 4D volume to obtain subject specific time
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course, then a second regression phase is applied to obtain subject spatial components using

the time courses obtained in the first phase. The pipeline is illustrated in Fig 1.

After completing the PICA analysis, we used an atlas of 34 areas as a reference of connectiv-

ity networks. we calculated the correlation between every area of that atlas and every extracted

spatial map. The area of interested are then selected based on those correlation values, such

that areas with maximum correlation are selected. The features used in diagnosis are the

power spectral densities (PSDs) corresponding to the activation time courses of the 34 areas of

interest. PSDs were used as features because they represent a sensitive way for BOLD signal

oscillations description which enhances the ability to analyze the network connectivity [43].

Also, PSD has another advantage, which is being time shift invariant. This means that, among

different subjects, if the same activation happens but at different shifts in time, the PSD will

not be affected. The feature extraction process is illustrated in Fig 2.

Resting state functional atlas. In this study, we used four local atlases to create an atlas

that defines the expected activation networks during resting state. These four local atlases

describe 34 different cortical areas, and those local atlases are:

1. Parietal cortex atlas [44]: In this atlas study, both functional connectivity and anatomical

connectivity were studied on humans and macaques. Accordingly, the parietal cortex was

divided into 10 components, 5 in the inferior parietal lobule (IPL) and 5 in the superior

parietal lobule (SPL). Those components were clustered based on cross correlation in the

tractography-based connectivity patterns of parietal voxels.

Fig 1. The PICA analysis of R-fMRI data, the observed vectors of voxel values (x1(t), x2(t), . . .xm(t)) over time t are the input, and they are decomposed into

spatial components and their activation time courses.

https://doi.org/10.1371/journal.pone.0206351.g001
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2. Temporoparietal junction (TPJ) atlas [45, 46]: In this atlas study, TPJ was examined to

check if it is a single area with a heterogeneous functional connectivity or multiple areas,

each with its unique connectivity pattern. Accordingly, TPJ was parcellated into 2 compo-

nents: (i) anterior TPJ cluster, which showed interaction with ventral prefrontal cortex and

anterior insula and (ii) posterior TPJ cluster which showed interaction with the posterior

cingulate, temporal pole, and anterior medial prefrontal cortex.

3. Dorsal frontal cortex [47]: In this atlas study, both DTI and fMRI were used to compare the

dorsal frontal cortex organization between humans and macaques. According to this study,

the human dorsal frontal cortex is parcellated into 10 components. They are all between the

human inferior frontal sulcus and the cingulate cortex.

4. Ventral frontal cortex [48]: In this atlas study, similarities and differences between human

and macaques’ ventral frontal cortex were identified. Based on the study outcome, the ven-

tral frontal cortex was divided into 11 components, in addition to one more component

from the ventrolateral frontal pole.

More details about the functional atlas used and the components are illustrated in Table 1.

Also the physical locations of the used atlases are illustrated in Fig 3.

Local and global classification

To build our diagnostic system, which is expected to (i) classify/diagnose ASD and TD sub-

jects, and (ii) identify local areas with autism related impairments, we used the extracted PSDs

as our discriminating features between the ASD and TD groups. However, to enhance the clas-

sification process of our diagnostic system, we fed the classifier with a higher level representa-

tion of the PSDs.

Fig 2. The correlation between the 34 components of the functional atlas and every output spatial map. PSDs of the time courses corresponding to the areas of

interested are used as features.

https://doi.org/10.1371/journal.pone.0206351.g002
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We used 34 sparse autoencoders (SAEs), such that there is an autoencoder for each func-

tional area, to represent our PSDs in a higher level representation and also to reduce the fea-

ture vectors dimensionality [49–52]. We used autoencoders to encode the PSDs through a set

of nonlinear filters to a new space. Thus, when decoding them again, they give a reconstructed

version of the input with minimal reconstruction error [53, 54]. In the training phase, SAEs

weights were updated through error backpropagation with batch gradient descent, where the

L-BFGS optimization algorithm [55] is used for reconstruction error minimization.

To find the optimal set of hyper-parameters for the SAEs network, typically the number of

layers, number of nodes in each layer (range: 10: 100), sparsity parameter (range: 0.05: 0.9),

sparseness control parameters (range: 1: 20), and L2 regularization (range: 10−3: 10−6), a grid

search algorithm with the reconstruction error as the metric to optimize is used Supplemental

materials—S1 Fig).

Table 1. The components defined by the four functional atlases and the corresponding anatomical areas.

Atlas Component Anatomical area/region

Parietal cortex SPLA Ventral intraparietal area (BA 7)

SPLB BA 5

SPLC Antero-medial intraparietal sulcus

SPLD BA 7

SPLE Posterior intraparietal sulcus

IPLA Parietal operculum

IPLB Anterior supramarginal gyrus

IPLC Posterior supramarginal gyrus

IPLD Anterior angular gyrus

IPLE Posterior angular gyrus

TPJ TPJa Areas 39, 40, 22

TPJp Areas 39, 40, and 22

Neubert Ventral Frontal 6v BA 6

6r BA 6

IFJ in areas 6, 9, and 44 Inferior frontal junction (BA 6, 9, 44)

44d BA 44, dorsal

44v BA 44, ventral

45A BA 45

45 BA 45

47 BA 47

IFS in area 9 Inferior frontal sulcus (BA 9)

46 BA 46

FPl in area 10 Lateral frontopolar region (BA 10)

FPm in area 10 Medial frontopolar region (BA 10)

Sallet Dorsal Frontal Cluster1 Supplemental motor area (BA 6)

Cluster2 Pre-supplemental motor area (BA 6)

Cluster3 BA 9

Cluster4 BA 10

Cluster5 BA 9, 46

Cluster6 BA 9, 46

Cluster7 BA 46

Cluster8 BA 8

Cluster9 Anterior, dorsal premotor area (BA 6)

Cluster10 BA 8

https://doi.org/10.1371/journal.pone.0206351.t001
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To show the effect of hyper-parameters fine tuning supplementary materials S2 Table show-

ing different sets of hyper-parameters and the corresponding accuracies for each area is

uploaded.

After extracting the high level features using SAEs, they are fed into a probabilistic support

vector machine (SVM) classifier with RBF kernel to obtain posteriori class membership scores,

where the class membership was calculated as the sigmoid of the distance between the sample

and the classification hyperplane. The hyper-parameter of the SVM, typically the kernel scale

(range: 1: 20) and box constraint (range: 1: 100), are also selected using grid search [56] using

accuracy as the metric to optimize. The selected kernel scale and box-constraint are 5 and 12,

respectively. For the global subject diagnosis, we propose a heuristic based on a winner-takes-

all approach. All the significant areas scores are averaged per subject, and the class with the

largest average value is considered the final global diagnosis for the corresponding subject.

Statistical significance of classifier accuracy was assessed using bootstrapping. The labels

(ASD or TD) of the training data set were randomly shuffled to simulate a completely uninfor-

mative data set, and the accuracy of a classifier trained on the artificial data was noted. The

process was repeated 99 times.

For any new unseen subject, the output of this diagnosis system both makes a global deci-

sion indicating whether the subject is autistic or healthy controls, and it generates a vector of

area membership scores indicating how much every area is implicated by autism related

impairments. Fig 4 illustrates the diagnosis input, pipeline, and output.

To test the system performance, two different validation techniques are used: (i) cross vali-

dation, where 2-folds, 4-folds, 10-folds, and leave one subject out (LOSO) are used, and (ii)

hold-out testing by data partitioning to training dataset (60% of the data), validation dataset

Fig 3. The four functional connectivity atlases used in this study, with a color coded map to show the 10 subareas

in the parietal cortex, the 2 subareas in the temporoparietal junction, the 12 subareas in the ventral frontal lobe,

and the 10 subareas in the dorsal frontal lobe.

https://doi.org/10.1371/journal.pone.0206351.g003
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(15% of the data) and testing dataset (25% of the data). For each of the validation techniques

used, accuracy, sensitivity, specificity and area under ROC curve are calculated. To show the

effect of hyper-parameters on model accuracy, the supplementary materials—S2 Table is now

uploaded that shows the accuracies per component for different combinations of hyper

parameters.

Also, to check the scalability and extendibility of the diagnostic system, positive and nega-

tive predictive values (PPV and NPV) are estimated:

PPV ¼
sens:prev

sens:prevþ ð1 � specÞ:ð1 � prevÞ ð3Þ

NPV ¼
spec:ð1 � prevÞ

ð1 � sensÞ:prevþ spec:ð1 � prevÞ
ð4Þ

where Sens and Spec are the sensitivity and specificity of the classifier, respectively, and Prev is

the prevalence or prior probability of a diagnosis of ASD. In this study, two different preva-

lence values are used. The first prevalence value is 1 out of 68, which is the ASD ratio in the

United States population [57]. The second prevalence value is 18.7%, which indicates the

autism percent among a high-risk population, where an older sibling has been previously diag-

nosed with ASD [58].

Results

Subjects’ demographics, cognitive and behavioral data

ASD and TD subgroups were well-matched with respect to gender and age. Out of 123 ASD

subjects, 56 were female (45.5%), while 85 of the 160 TD subjects were female 53.1%). The gen-

der imbalance was statistically insignificant (χ2 = 0.05, p = 0.82). The mean age of ASD subjects

was 13.1 years, while the mean age was 12.9 years for the TD group. Again, the difference was

statistically insignificant (t = 0.302, p = 0.763). The groups were less well matched with respect

Fig 4. The diagnosis pipeline, where PSD is fed to SAE to extract higher level features. The extracted features are fed to SVM. The classification output is a

global diagnosis decision, indicating whether the subject is autistic or healthy controls; in addition a personalized color coded map indicating how much each area

in the subject is implicated by autism impairments.

https://doi.org/10.1371/journal.pone.0206351.g004
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to IQ, although the differences in mean scores were less than one standard deviation (Table 2).

It was noted that 38 of those with ASD were prescribed medication for behavioral concerns, 19

used prescription medication for reasons other than behavioral, 20 used over-the-counter

medication, and 29 took dietary supplements. Medication status data is incomplete, with miss-

ing data for six ASD individuals and no available data for any of the healthy controls subgroup.

Those diagnosed with ASD presented with a wide range of severity on the ADOS (Table 2).

Global and personalized diagnosis results

For the 2-folds cross validation, the accuracy is 0.84, sensitivity is 0.88, specificity is 0.81, and

AUC is 0.9165. For the 4-folds, the four metrics values are 0.88, 0.90, 0.87 and 0.9187 respec-

tively, while for the 10-folds they are 0.91, 0.92, 0.88 and 0.9218. And finally for LOSO, they

are 0.92, 0.93, 0.89 and 0.9250, respectively. Table 3 summarizes the four metrics used for

every cross validation technique. Also Fig 5 shows the ROC curves for the 4 cross validation

experiments.

To make sure that the system is robust enough, each of the k-fold cross validations is

repeated 100 times and a summary statistic of the accuracy is reported in Table 4. Minimum

accuracy, maximum accuracy, mean accuracy, and accuracy standard deviation are reported.

They show homogeneity in the results over 100 runs which gives a good indication of the sys-

tem robustness. Also, the bootstrap p-value for accuracy of classification was estimated to be

0.01.

In addition to using the cross validation technique for system evaluation, we are also using

hold-out testing. In this technique, data is divided into 3 partitions: training, validation, and

testing. This experiment aims to assess the system generalization ability and it ensure that the

Table 2. Summary of study cohort. DAS-II GCA: General cognitive ability. ADOS S.A.: Social affect, R.R.B. Repetitive and restricted behaviors and interests. p-values are

from an unpaired t-test of ASD and TD groups having equal mean value.

ASD (N = 123) TD (N = 160) p-Value

Age(y) Mean S.d. Mean S.d. 0.675

Male (N = 152) 12.87 3 13.0 2.8

Female (N = 131) 13.1 2.5 12.9 3.09

DAS-II Mean S.d. Mean S.d. p-value

GCA 102 21.2 111 15.6 0.001

Verbal 103 22.6 112 15.2 0.001

Nonverbal 101 19.2 109 16.2 0.003

Spatial 100 17.5 107 13.8 0.012

ADOS Median Range

S.A. 8.8 0–19

R.R.B. 2.4 0–6

Cumulative 11.1 1–24

https://doi.org/10.1371/journal.pone.0206351.t002

Table 3. Accuracy, sensitivity, specificity, and AUC for 2-folds, 4-folds, 10-folds, and LOSO cross validation experiments.

2-folds 4-folds 10-folds LOSO

Accuracy 0.84 0.88 0.91 0.92

Sensitivity 0.88 0.90 0.92 0.93

Specificity 0.81 0.87 0.88 0.89

AUC 0.9165 0.9187 0.9218 0.9250

https://doi.org/10.1371/journal.pone.0206351.t003
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obtained results are robust and reproducible. The obtained accuracy from this experiment is

0.91, sensitivity is 0.88, and specificity is 0.92.

To highlight the effect of using both SAE and SVM, 12 combinations obtained from using 3

dimensionality reduction techniques and 4 different classifiers reported in Table 5. The three

dimensionality reduction techniques are: (i) SAE, (ii) PCA, and (iii) Kernel PCA The four

algorithms used are: (i) SVM, (ii) random forest, (iii) logistic regression, and (iv) neural net-

work. For all the used algorithms, the hyper-parameters are also selected using a grid searching

algorithm. All of the 16 combinations are reported using hold-out testing techniques and accu-

racies are reported with respect to the testing dataset.

The positive and negative predictive values are also calculated using the two prevalence val-

ues mentioned in the methodology section. The PPV and NPV indicate the probability of

Fig 5. The ROC curves for 2-folds, 4-folds, 10-folds, and leave one subject out cross validation experiments.

https://doi.org/10.1371/journal.pone.0206351.g005

Table 4. The summary statistics of accuracy after running 2-folds, 4-folds, 10-folds, and LOSO 100 times.

2-folds 4-folds 10-folds LOSO

Min accuracy 0.8 0.84 0.85 0.87

Max accuracy 0.87 0.92 0.92 0.94

Mean accuracy 0.83 0.87 0.88 0.91

Accuracy standard deviation 2.2 3.1 2.5 3.2

https://doi.org/10.1371/journal.pone.0206351.t004
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match between the actual diagnosis and the system output diagnosis when applying the system

to a population with the prevalence used in PPV and NPV calculations. For the general preva-

lence, the PPV is 0.19 and the NPV is 0.91, while for high-risk prevalence, the PPV is 0.79 and

the NPV is 0.9. Table 6 summarizes the PPV and NPV for the two prevalence values used.

In addition to reporting the global diagnosis result, a detailed report is generated showing a

personalized local diagnosis for every subject. Using this report a color coded brain map is

generated to show areas most affected with autism related impairments. Fig 6 shows 10 sam-

ples of the color coded brain maps with the associated color code used. To identify the func-

tional areas that are highly related to autism diagnosis between the two groups, the sensitivity

and specificity of each individual area are calculated, where the area sensitivity and specificity

are obtained using the true negative and true positive rates of the diagnosis when using this

separate area alone. A bar graph is provided in Fig 7 to illustrate the most significant regions

with both sensitivity and specificity above an empirical threshold of 0.65 obtained. They are

highly correlated with behavioral reports when using 4-fold cross validation. The full personal-

ized results of the all subjects used with the membership scores of the significant areas to the

autism class is in supplementary materials—S1 Table.

To cross validate the relevance of these regions to ASD, each brain region was correlated

with the Total ADOS score and ADOS severity score. The Pearson correlation coefficient var-

ies modestly from -0.28 to 0.27 for Brodmann area/brain regions involved in neurocircuits

previously implicated in ASD (Table 7 and Fig 8).

Discussion

Over the last few years, remarkable progress in MRI research has allowed the prospective iden-

tification of infants with ASD at 24 months based on structural MRI or fMRI features [59].

The methodology presented in this paper using machine learning algorithms allows the identi-

fication of ASD vs healthy controls children and teenagers who are age 8-18 years of age with

high accuracy, sensitivity, and specificity (Tables 3–6; Figs 6 and 7). In this study. we intro-

duced an automated autism diagnosis system that uses resting state fMRI to localize the altered

connectivity patterns for each subject. In addition, the system showed very promising generali-

zation to all populations and certainly in the high-risk population (Table 4). The sample used

Table 5. A comparison of accuracies obtained using 4 different classifiers and 3 different dimensionality reduction techniques, in addition to the accuracies

obtained when PSDs are fed to the classifiers directly are shown. All these accuracies are reported using hold-out testing technique. All classifiers and dimensionality

reduction technique hyper-parameters are fine tuned using the grid searching algorithm. The highest accuracy obtained is 93%. It is obtained using SAE followed by SVM

with RBF kernel.

PCA Kernel PCA SAE No dimensionality reduction

(PSD is used directly)

RBF SVM 0.83 0.84 0.93 0.84

Random Forest 0.76 0.83 0.82 0.81

Logistic Regression 0.83 0.81 0.81 0.79

Neural Network 0.82 0.86 0.91 0.82

https://doi.org/10.1371/journal.pone.0206351.t005

Table 6. The PPV and NPV reported when using two different prevalence values, one for the general population

in the USA (1/68), and the other for the high-risk population (18.7%).

Prevalence 1 (1/68) Prevalence 2 (0.187)

PPV 0.19 0.79

NPV 0.91 0.9

https://doi.org/10.1371/journal.pone.0206351.t006
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Fig 6. The personalized results of 10 autistic subjects (a-e), 10 healthy controls (f-j); (k) represents the color code

used, where blue is the least belonging to autistic class, and red is the most belonging to the autistic class. It is

obvious that autistic subjects have more impacted areas than the healthy controls.

https://doi.org/10.1371/journal.pone.0206351.g006
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in this study is well matched in terms of age and gender distribution (Table 2). Although the

IQ mean scores are statistically significant, these data are less than one standard deviation

apart. In addition, the full range of IQs in healthy controls is fully included inside that of the

ASD group.

In general, ASD is thought to be a developmental disconnection syndrome with local func-

tional hyperconnectivity and long range functional underconnectivity [60]. Both task based

and resting state fMRI demonstrate a clear separation via unique BOLD patterns between ASD

Fig 7. The regions in the fMRI experiment that have both sensitivity and specificity greater than 0.65, as well as highly corerleted with ADOS reports when

using 4-fold cross validation. Region 1: BA24, 32, 34 R and L, anterior cingulate gyrus, BA9/10, R and L medial frontal gyrus, BA9/10, R middle frontal gyrus, BA8,

right superior frontal gyrus, right caudate nucleus; Region 2: BA22 superior temporal gyrus L�R, BA19 middle temporal gyrus L�R, BA39 middle temporal gyrus

L�R; Region 3: BA8/BA9/BA10, Left and Right superior frontal gyrus, BA9/BA10, L and R medial frontal gyrus, BA9/BA10, Right middle frontal gyrus, and Region

4: BA10, Left middle frontal gyrus, BA10 Left superior frontal gyrus.

https://doi.org/10.1371/journal.pone.0206351.g007

Table 7. Mapping between ADOS subscores, Research Domain Criteria (RDoC) neurocircuits, and functional connectivity networks. Anatomical (Brodmann) areas

overlapping functional networks are given in parentheses.

Component RDoC Defined Neurocircuit Anatomical correspondence

Restricted Interest/Repetitive Behaviors Reward Learning Fpl, Cluster 4 (BA10)

Habit Fpl, Cluster 4 (BA10)

Attention Ventral Attention System Fpl, Cluster 4 (BA10), TPJb (BA 39-40, 22)

Language Receptive TPJb (BA 39-40, 22)

Social Affiliation and Attachment Fpl, Cluster 4 (BA10)

Social Understanding the Mental States of Others Fpl, Cluster 4 (BA10), TPJb (BA 39-40, 22)

Executive Function Working Memory TPJb (BA39-40)

https://doi.org/10.1371/journal.pone.0206351.t007
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and healthy control children, teenagers, and adults. fMRI is dependent upon a number of mat-

uration factors including gene expression, numbers of synapses, cell numbers, synaptic prun-

ing, myelination, etc., which may limit the developmental context of the signal interpretation

[61, 62]. Even in separation of these groups (ASD vs healthy controls), one must remember the

developmental context. In high risk infants, R-fMRI networks at 6 months of age correctly pre-

dicted those with an ASD diagnosis at 24 months with a sensitivity of 82% (9 out of 11 infants

with ASD) and a specificity of 100% (48/48 of those infants without ASD) [59]. However, very

few R-fMRI networks were correlated with social communication and cognitive ability in

high-risk infants, but many more networks were correlated with repetitive behaviors (self

injury, stereotypes, sameness, ritualistic behaviors, compulsions). The interpretation suggests a

developmental context since striatal and brainstem neural networks tend to mature earlier

than cortically based networks. Alternatively, R-fMRI data could correlate more with ASD

core symptoms, and anatomical MRI could be more closely correlated with cortically based

symptoms (sensory problems, language impairment, etc.). In the older population, the current

functional MRI algorithm identifies similar regions with altered connectivity previously noted

in ASD including the pre-motor/supplementary motor cortex, dorsal lateral and medial pre-

frontal cortex, sensorimotor cortex/superior parietal lobule/supramarginal gyrus, and regions

involved in language (angular gyrus, supramarginal gyrus [63]) being predictive of ASD with a

high accuracy, sensitivity, and specificity (Tables 3–6 and Figs 6 and 7) across many models.

The total ADOS score and the ADOS severity score modestly correlate with brain regions

(lateral frontopolar region and temporal parietal junction) in deficit cognitive circuits previ-

ously implicated in ASD (Table 7, Fig 8) according to Research Domain Criteria (RDoC:

https://www.nimh.nih.gov/research-priorities/rdoc/constructs). These deficits could impact

restricted interest/repetitive behaviors, attention, social, language, and executive function.

This fMRI algorithm may be more predictive in those of high risk ASD families than in the

general population (Table 6). Previous R-fMRI studies have identified some of these regions

such as parts of the Default Mode Network, including medial prefrontal cortex and the angular

gyri, and interhemispheric connectivity networks (sensorimotor cortex and superior parietal

lobule) with reduced connectivity in ASD [63]. Thus, the current data presented suggest the

algorithms, especially when combined in a multi-modal approach, have the potential to iden-

tify diagnostic category and clear brain regions involved in classical neural circuits previously

implicated in ASD. In addition to providing a highly accurate prediction of a subject to have

Fig 8. The correlation between obtained ADOS scores (either severity or total) from the personalized diagnosis and (a) Fpl, (b) TPJb, and (c) cluster 4.

https://doi.org/10.1371/journal.pone.0206351.g008
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ASD, the proposed system provides a complete map explaining what areas are affected, and to

what extent they are affected. (Fig 6 and supplementary materials S1 Table). To the best of our

knowledge, this detailed report gains its importance from being the first work that is con-

cerned with localizing impairments for each subject’s brain. The utility of this approach not

only identifies those with ASD but might be of more help ascertaining specific impairments

and thus, quite useful from the clinical point of view.

Limitations of the approach

Neuroimaging is an attractive intermediary to bridge the gap between genes, environment,

and well-defined behavioral phenotypes such as ASD. The idea is to obtain a clinically relevant

scan which one can then more closely relate to the neurobiological pathway of risk genes,

other biofactors, and/or environmental factors on an individual level. The drawback of the

current data and MRI-based methods is defining the developmental trajectory, impact of age/

gender, development of clinically applicable techniques for scanning across ages, and the rela-

tionships to current clinical psychological methods to diagnose ASD. The current data may

only be applicable to high functioning and older ASD patients but may be insensitive at youn-

ger ages (Table 2). The current sample size which identified areas implicated in younger chil-

dren and infants as being predictive of ASD suggest a scalability of this approach to larger

more heterogeneous populations. The use of R-fMRI data represents a particular challenge

since the field is underdeveloped. The diversity of the subject pool (age/gender), design of the

resting state scan, and the preprocessing/methods of analyses are still variables under study.

Most importantly, there is a lack of longitudinal data defining normal functional connectivity

in infancy through 8 years of age, and thus defining the abnormal developmental trajectory in

ASD is difficult under 8 years of age [63]. The analysis in this study was performed using FSL

package, to eliminate any limitations from the package and to gain more flexibility to try dif-

ferent recent and up to date approaches at each analysis phase, a home developed package is

being developed to be used in future studies. It is believed that more generalization and feasi-

bility of the system could be studied by increasing the number of subjects and the intra-vari-

ability between subjects, including age group, multiple sites and multiple scanners data and

other factors. This could be achieved by integrating multiple sites and multiple data sources in

the dataset used.

Conclusion and future work

The advancement of new research technologies, including sMRI, fMRI, DTI, and genomics

has made significant inroads into the potential identification of biomarkers for ASD. Despite

significant efforts, smaller studies have made it difficult to generalize findings to larger more

heterogeneous populations [62]. This study demonstrates that data points from R-fMRI and

machine learning algorithms could refine diagnostic accuracy, with the potential to predict

clinical phenotypes, and the potential to develop better individualized treatments. Specific

affected networks could be a biomarker for responses to specific types of behavioral interven-

tions (i.e., individual psychotherapy, occupational therapy for sensory impairments, social

skills training, etc.) or drug trials (i.e., selective serotonin uptake inhibitors VS. antipsychotic

medications, etc.). In addition, the fMRI data could identify more genetically homogeneous

groups in which specific neuropathological processes—such as decreased axonal pruning lead-

ing to increased mini-column width and altered synaptic connectivity—are common in spe-

cific networks of those with similar defects in axonal or synaptic gene function [5]. Future

research should focus further on using big data technology to combine multiple datasets from

larger populations to better delineate clinically relevant neurobiological pathways and
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determine response to therapies in ASD. In addition, integrating information from multiple

data sources such as behavioral reports and genetic profiles to get more insight about areas of

interest observed on each individual subject would be helpful. Future research should also

focus on studying the preprocessing steps individually in a more detailed manner as they are

reported to have an important role in the diagnosis. For example, the patient’s head movement

may cause significant noise and affect the fMRI measures, causing classification bias [64], [65].

The motion correction in this study was done using the MCFLIRT algorithm [38] which

yielded good results, but more recent motion correction algorithms might be more efficient in

the future work. The next phase of this study should focus on including multiple site data from

different datasets (ABIDE, for example) to study system robustness and generalization ability.
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