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A fluorescence in situ hybridisation (FISH) assay has been used to screen for ETV1 gene rearrangements in a cohort of 429 prostate
cancers from patients who had been diagnosed by trans-urethral resection of the prostate. The presence of ETV1 gene alterations
(found in 23 cases, 5.4%) was correlated with higher Gleason Score (P¼ 0.001), PSA level at diagnosis (P¼o0.0001) and clinical
stage (P¼ 0.017) but was not linked to poorer survival. We found that the six previously characterised translocation partners of ETV1
only accounted for 34% of ETV1 re-arrangements (eight out of 23) in this series, with fusion to the androgen-repressed gene
C15orf21 representing the commonest event (four out of 23). In 50-RACE experiments on RNA extracted from formalin-fixed tissue
we identified the androgen-upregulated gene ACSL3 as a new 50-translocation partner of ETV1. These studies report a novel fusion
partner for ETV1 and highlight the considerable heterogeneity of ETV1 gene rearrangements in human prostate cancer.
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Recently, fusion of the prostate-specific androgen-regulated
TMPRSS2 gene to the ETS family transcription factor gene ERG
was reported as a common event in prostate cancer (Tomlins et al,
2005, 2006; Clark et al, 2006; Iljin et al, 2006; Perner et al, 2006;
Soller et al, 2006; Wang et al, 2006a; Yoshimoto et al, 2006;
Hermans et al, 2006). Less frequently TMPRSS2 becomes fused to
ETV1 and ETV4. In all these cases a TMPRSS2-ETS chimaeric gene
is generated resulting in high-level expression of the fused 30-ETS
gene sequences. The reported incidence of TMPRSS2:ETV1 fusion
in these studies (1–2%) was, however, considerably lower than the
observed incidence of ETV1 gene overexpression (B10% in
prostate cancer). This prompted Tomlins et al (2007) to search
for alternative mechanisms of ETV1 overexpression. They
identified five new 50-fusion ETV1 partners including the
prostate-specific androgen-induced gene SLC45A3/Prostein, an
endogenous retroviral element HERV-K, a prostate-specific
androgen-repressed gene C15orf21, and a strongly expressed
housekeeping gene HNRPA2B1. Additionally they found that in
the two prostate cancer cell lines LNCaP and MDA-PCa2B, outlier

expression of ETV1 was caused through the entire ETV1 gene
becoming juxtaposed to sequences at 14q13.3 –14q21.1. By
characterising the expression of four contiguous genes within this
region (SLC25A21, MIPOL1, FOXA1 and TTC6), as well as that of
ETV1, in LNCaP cells they demonstrated that this region exhibited
prostate-specific expression that was coordinately regulated by
androgens in a castration-resistant cell line model without formation
of a fusion gene. In that study only single cases of each fusion were
reported, with the exception of the juxtaposition of ETV1 sequences
to 14q13.3–14q21.1 where two cases were observed. It was therefore
not possible to assess the relative importance of the different fusion
partners in their small tumour set.

For ERG gene re-arrangements several studies have demonstrated
links to clinicopathological indicators (Perner et al, 2006; Wang
et al, 2006a; Demichelis et al, 2007; Nam et al, 2007). In a watchful
waiting cohort of 111 patients, Demichelis et al (2007) reported a
significant link between the presence of ERG alterations and
prostate cancer-specific death. In a series of 165 patients who
underwent prostatectomy, Nam et al (2007) found that the presence
of a TMPRSS2:ERG fusion was associated with a greater probability
of biochemical relapse. Additionally, we have recently demonstrated
that loss of 50-ERG sequences coupled with duplication
of TMPRSS2:ERG fusion sequences predicts extremely poor
cancer-specific survival independently of Gleason score and PSA

Revised 12 May 2008; accepted 20 May 2008; published online 1 July
2008

*Correspondence: Dr J Clark; E-mail: jeremy.clark@icr.ac.uk
10 Clark and Attard are joint first authors

British Journal of Cancer (2008) 99, 314 – 320

& 2008 Cancer Research UK All rights reserved 0007 – 0920/08 $30.00

www.bjcancer.com

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s

http://dx.doi.org/10.1038/sj.bjc.6604472
http://www.bjcancer.com
mailto:jeremy.clark@icr.ac.uk
http://www.bjcancer.com


level at diagnosis in a conservatively managed watchful waiting
patient cohort (Attard et al, 2008). In contrast very little is
known about the clinical significance of alteration at the ETV1 gene
locus.

To help identify biomarkers that may be of use in the
management of men with prostate cancer, we have established a
retrospective cohort of 429 men whose cancers were conservatively
managed (Cuzick et al, 2006). Our analyses included centrally
assigned Gleason scores determined by modern grading criteria,
and allowed comparisons with several additional clinical para-
meters. In agreement with previous studies (Johansson et al, 2004;

Albertsen et al, 2005; Cuzick et al 2006) we found Gleason score to
be an important determinant of cancer-specific mortality, although
baseline PSA and to a lesser extent stage of disease added further
predictive value. The objective of the current study is initially to
use our cohort of 429 conservatively managed prostate cancer
cases to assess the potential clinical significance of ETV1 gene
alterations and in parallel to assess the relative frequency of each of
the known ETV1 fusion partners. As we found these partners to
only account for B34% of all ETV1 translocation events, we
undertook 50-RACE studies to identify novel ETV1 fusion partners
in our paraffin-embedded tumour samples.
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Figure 1 FISH detection of ETV1 gene re-arrangements. Top: Interphase nuclei are hybridised to probes that detect sequences immediately 30 to the
ETV1 gene (probe I, red) and immediately 50 to the ETV1 gene (probe II, green). The red and green signals are separated when an ETV1 gene rearrangement
occurs. (A) Signals from normal un-rearranged ETV1 loci (class N). (B) Rearranged ETV1 gene with separate red (30) and green (50) probes (class ETV1
Esplit). Bottom: Map of the ETV1 gene showing the position of the BACs used as probes in FISH assays. Probe I: E1 (RP11-27B1), E2 (RP11-138H16), E3
(CTD-2008I15) labelled with Cy3. Probe II E4 (RP11-905H4), E5 (RP11-621E24), E6 (RP11-115D14) labelled with FITC. The direction of transcription of
genes at this locus are indicated by arrows.

Table 1 ETV1 classification and revised Gleason scorea

Gleason score Class N Class ETV1 Esplit Total

4 2 0 2
5 11 1 12
6 130 2 132
7 59 11 70
8 27 3 30
9 20 5 25
10 2 0 2
Unknown 1 0 1
Total 252 22 274

aRevised Gleason score for cancers lacking ERG and ETV1 rearrangements (class N) is
compared to cancers with rearrangement of ETV1 (class ETV1 Esplit).

Table 2 Frequency of detection of known ETV1 translocationsa

Class of ETV1
rearrangement

Number of cases (% of total
number of ETV1-rearranged cancers)

Fusion with C15ORF21 4 (18%)
Rearrangement to 14q13.3–14q21.1 2 (9%)
Fusion with ACSL3 1 (4.5%)
Fusion with HNRPA2B1 1 (4.5%)
Fusion with SLC45A5/Prostein 1 (4.5%)
Fusion with HERV-K 0
Fusion with TMPRSS2 0

aThe number of cases of ETV1 rearrangement involving each of the six previously
described translocation partners namely C15ORF21, 4q13.3–14q21.1, HNRPA2B1,
SLC45A5/Prostein, HERV-K and TMPRSS2, plus our discovery of translocation with
ACSL3 in our series of 23 ETV1-rearranged cancers.
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RESULTS

Fluorescence in situ hybridisation detection of ETV1
fusions

We have used a fluorescence in situ hybridisation (FISH) ETV1
gene ‘break-apart’ assay to screen for ETV1 rearrangements on a
Tissue Microarray (TMA) consisting of 945 trans-urethral
resection of the prostate cancer cores from 429 patients. We used

three overlapping BAC probes at the telomeric 30-end (red) and
three BAC probes at the centromeric 50-end (green) of the ETV1
gene (Figure 1). Normal ETV1 loci are visualised in interphase
nuclei as immediately adjacent green and red signals (Figure 1A,
Class ETV1 N). When rearrangements involving the ETV1
gene were present, the 50-centromeric and 30-telomeric ETV1
probes separated and were visible as lone red and green signals
(Figure 1B, Class ETV1 Esplit). These analyses identified ETV1
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Figure 2 FISH detection of translocation of ETV1 to chromosome 14(q13.3–21.1). Top: Interphase nuclei are hybridised to probes that detect sequences
immediately 30 to the ETV1 gene on chromosome 7 (probe I, red) and a green probe (probe V) consisting of six BACS spanning the 14q13.3–21.1 region.
(A). Red and green signals are normally separated. (B) Co-localisation of red and green probes indicate juxtaposition of chr 7 ETV1 sequences with chr 14 (q
13.3–21.1). The lower panel shows the position of the BACs used for probe V: C1 (RP11-945C4), C2 (RP11-381L10), C3 (RP11-666J24), C4 (RP11-
796F21), C5 (RP11-588D7), C6 (RP11-107E23) labelled with FITC. The relative position and direction of transcription of genes are indicated by the arrows.

Figure 3 ACSL3:ETV1 fusion. (A) ACSL3 (red) and ETV1 (blue) transcripts with ORFs in dark colour. Exons are numbered. A fusion transcript of ACSL3
exon 3 fused to ETV1 exon 6 was detected by 50-RACE from exon 6 ETV1 sequences in prostate cancer sample 23. The ORF shown was predicted using
software at www.dnalc.org. (B) Sequence across the ACSL3:ETV1 fusion boundary. Underlined regions indicate the position of primers used in RT–PCR to
confirm the fusion. The predicted fusion gene initiation codon is indicated in red. ACSL3 sequence is in lower case and ETV1 sequence in upper case. (C)
RT–PCR detection of an ACSL3:ETV1 fusion transcript in RNA extracted from formalin-fixed paraffin-embedded prostate cancer samples: lanes 1–12 are
ETV1-rearranged tumour samples, lane 12: tumour sample 23, lane 13 negative control. (D) FISH assays to confirm fusion of ACSL3 with ETV1. Panel i: The
ETV1 break-apart assay utilises probes corresponding to 30-ETV1 sequences (red) and 50-ETV1 sequences (green) (see also Figure 1). A nucleus with
separated red and green probes confirming rearrangement of ETV1 is shown. Panel ii: The ACSL3 break-apart assay hybridised the same TMA slice used in
the ETV1 break-apart assay to 30-ACSL3 sequences (red) and 50-ACSL3 sequences (green). These signals are coincident in the wild type, but are split on
translocation of ACSL3 . Comparison of the images in panels i and ii indicates co-localisation of 30-ETV1 with 50-ACSL3 and co-localisation of 50-ETV1 and 30-
ACSL3. This is confirmed by ETV1-ACSL3 co-localisation assays (panel iii) demonstrating co-localisation of 30-ETV1 sequences (red) and 50-ACSL3 sequences
(green) and (panel iv) demonstrating co-localisation of 30-ACSL3 sequences and 50-ETV1 sequences (red) in the same cell. Superimposition of the images in
panels iii and iv confirms co-localisation of wild-type 30-ETV1 (panel iii) with 50-ETV1 (panel iv) and of wild-type 30-ACSL3 (panel iv) with 50-ACSL3 (panel iii).
The genes and their direction of transcription are indicated by the arrowheads. (E) Map of the ACSL3 gene showing the position of the BACs used as probes
in FISH assays. Probe XV: A1 (RP11-157M20) labelled with FITC. Probe XIV: A2 (RP11-136M23) and A3 (RP11-749C15) labelled with Cy3. Probes XV and
probes XIV correspond, respectively, to sequences immediately 50 (green) and 30 (red) to the ACSL3 gene. Direction of gene transcription indicated by
arrowheads.
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gene rearrangements in cancer from 23 patients (5.4% of
all cancers). An ERG gene break-apart assay, completed as
previously described (Attard et al, 2008), demonstrated that an
additional 155 cancers (36%) in this series contained ERG gene

rearrangements, including one patient who had both ERG and
ETV1 rearrangements in distinct foci of cancer in the same
prostate, as reported previously (Attard et al, 2008; Clark et al,
2008).
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Clinicopathological correlations

Tumour demographics and characteristics comparing patients
with only ETV1 gene rearrangements (22 cases) with patients who
lacked both ETV1 and ERG gene rearrangements (252 cases) are
shown in Table 1. Correlations with clinical parameters demon-
strated there were significant associations between the presence of
ETV1 gene re-arrangement and Gleason score (P¼ 0.001), baseline
PSA (P¼o0.0001), clinical stage (P¼ 0.017) and age (0.04).
However, despite these links to indicators of more aggressive
disease there was no evidence for a difference in overall and cancer-
specific survival between those cancers harbouring ETV1 gene
alteration and those cancers retaining normal ERG and ETV1 loci
(Class N) (HR¼ 1.48, CI¼ 0.87–2.53, P¼ 0.17 and HR¼�1.48,
CI¼ 0.64–3.46, P¼ 0.39 respectively) (Supplementary Figure 1).

Heterogeneity of ETV1 fusion partners

We constructed a TMA block containing cores from all of the
cancers harbouring ETV1 re-arrangements (23 tumours) and six
randomly selected cancers with an ERG gene rearrangement. We
used slices of this TMA to carry out break-apart assays for the 50-
fusion partners previously identified by Tomlins et al (2005, 2006,
2007): namely TMPRSS2, SLC45A3, HERV-K, C15orf21 and
HNRPA2B1 (Table 2). We also used FISH assays to confirm co-
localisation of 30-ETV1 with 50-sequences from each of the above
partners as previously described by Tomlins et al (2007) (results
not shown). To identify tumours with translocation of ETV1 to the
androgen-regulated prostate-specific region at 14q13.3–14q21.1
we co-hybridised a TMA slice with a 30-ETV1 FISH probe (red) and
a FISH probe consisting of six BACs spanning the entire region of
14q13.3–q21.1 (green). Co-localisation of the red and green signals
was taken as evidence of translocation of ETV1 to this region
(Figure 2). The FISH probes used in all of these assays are listed in
Supplementary Table 1.

As expected, cancers with rearrangements of the ERG gene had
fusions to 50-TMPRSS2 sequences. In contrast, none of the cancers
with rearrangements of the ETV1 gene exhibited fusions involving
TMPRSS2 or the HERV-K retroviral sequence. In four cancers
30-ETV1 exhibited fusion to 50-C15orf21 sequences, two contained
translocation to 14q13.3– 14q21.1, one contained fusion to
HNRPA2B1 and one contained fusion to SLC45A5/Prostein
(Table 2). Thus only eight of the 23 cancers with re-arranged
ETV1 genes had known partners. The cancers containing fusion of
50-C15orf21 to 30-ETV1 sequences included the previously reported
case containing ERG and ETV1 rearrangements in distinct cancer
foci of the same prostate (Clark et al, 2008). The recurrent fusions
of the prostate-specific androgen-repressed gene C15orf21 to 30-
ETV1 sequences is of particular interest because Tomlins et al
(2007) reported that this gene is not androgen driven, implying
that tumours containing these fusion genes may exhibit resistance
to androgen deprivation therapies. Joining of ETV1 to individual
partners was too uncommon to allow survival analysis for specific
gene fusions. Of the four cases with a C15orf21:ETV1 fusion, three
are still alive and one died of unrelated causes.

Fusion of the ACSL3 gene to ETV1 in human prostate
cancer

We performed 50-RACE to identify novel partners that are fused to
30-ETV1 sequences. Our studies were severely limited by the small
amounts (50–200 ng) of poor quality RNA that could be prepared
from the formalin-fixed tissue in this series. As obtainable
RT–PCR products from these paraffin tissues were limited to
B100–150 bp and the ETV1 exon breakpoint in each sample was
unknown, 50-RACE–PCR had to be independently initiated from
each of the known ETV1 exon breakpoints in each sample, that is,
exons 2, 4, 5 and 6. Using this strategy we successfully obtained a
50-RACE fusion product from one RNA sample that contained an

ex6 ETV1 sequence fused to a 51 bp sequence of ACSL3 ex3
sequence identifying ACSL3 as a novel ETV1 fusion partner. The
structure of this ACSL3 ex3:ETV1 ex6 fusion is predicted to encode
a truncated ETV1 protein as shown in Figure 3A. The presence
of the ACSL3:ETV1 fusion was confirmed in this specimen by
RT–PCR using 50-ACSL3 and 30-ETV1 primers (Figure 3B, C) and
co-localisation by FISH of BAC probes corresponding to 50-ACSL3
sequences (green) and 30-ETV1 sequences (red) (Figure 3D, panel
iii). An ACSL3 break-apart FISH assay screen of the entire TMA
containing the 23 cancers with rearrangement of the ETV1 gene
failed to identify additional cancers with this particular fusion.
Like fusion to TMPRSS2, HNRPA2B1, HERV-K or SLC45A5/
Prostein the fusion of 30-ETV1 sequences to 50-ACSL3 sequences
is not a common event in this patient cohort. We have also
demonstrated fusion of 50-ETV1 sequences with 30-ACSL3
sequences by FISH, indicating that the mechanism underlying
formation of this fusion gene is a balanced translocation
(Figure 3D, panel iv).

DISCUSSION

We have shown that the presence of ETV1 gene locus rearrange-
ments scored in a FISH-based assay is correlated with Gleason
score, associated clinical stage and baseline PSA, but interestingly
was not associated with poorer survival. Similar analyses
of ERG gene alterations detected by FISH also demonstrate
correlation to Gleason score, clinical stage and baseline PSA
(Attard et al, 2008). However, in clinical outcome correlations only
the presence of a duplication of rearranged ERG together with
interstitial deletion of genomic sequences between the tandemly
located TMPRSS2 and ERG sequences was correlated with worse
cancer-specific death (Attard et al, 2008). In analyses of alteration
of the ETV1 gene it was not possible to examine the relationship
between survival and duplication of the ETV1 foci because
duplications were only found in five of the 23 cases examined
(one C15orf21 fusion, one chr14 co-localisation, and three with
unknown partners).

Previous studies have each reported single cancers with an ETV1
rearrangement (Tomlins et al, 2005, 2006; Hermans et al, 2006)
with the exception of Tomlins et al (2007) who reported four
clinical cases. Our study therefore represents the largest single
series of primary prostate cases with an ETV1 rearrangement. Our
study confirms previous observations that ETV1 may form a
fusion gene with a variety of partners and shows that each
individual fusion is relatively rare. Importantly, we show that the
known fusion partners, including the novel ACSL3:ETV1 fusion
gene, only account for 39% of cancers with an ETV1 rearrange-
ment and it is therefore likely that many new partner genes remain
to be identified.

The protein encoded by the ACSL3 gene is an isozyme of the
long-chain fatty-acid coenzyme A ligase family that converts free
long-chain fatty acids into fatty acyl-CoA esters, and thereby plays
a key role in lipid biosynthesis and fatty acid degradation. Insights
into the regulation of ACSL3 expression arise from expression
array data in which the LNCaP cell line was treated with the
synthetic androgen R1881. In two independent expression array
data sets, ACSL3 was upregulated by androgen treatment
(Hendriksen et al, 2006; Wang et al, 2006b). One study showed
ACSL3 upregulation at time intervals of 2, 4, 6 and 8 h following
androgen treatment (Hendriksen et al, 2006) and another study
showed ACSL3 upregulation after 16 h (Wang et al, 2006b).
Expression of ACSL3 was also elevated in a panel of ‘androgen-
sensitive’ (LAPC-4, LNCaP, MDA PCa2a, MDA PCa2b, and 22Rv1)
versus ‘androgen-insensitive’ (PPC1, PC3, and DU145) prostate
cancer cell lines (Zhao et al, 2005; Tomlins et al, 2007). Expression
of TMPRSS2 and SLC45A3 follow the same pattern within these
datasets (Zhao et al, 2005). ACSL3 transcription can also be
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activated by oncostatin via the ERK-signalling pathway (Zhou
et al, 2007) suggesting alternative means of regulation.

These observations raised the question of whether there are any
androgen receptor (AR) binding sites capable of explaining the
expression levels of ACSL3 and of the other known ETV1 partner
genes. A number of groups have recently published AR ChIP-chip
studies mapping AR-binding sites within the human genome
(Bolton et al, 2007; Massie et al, 2007; Takayama et al, 2007; Wang
et al, 2007). Wang et al (2007) identified a functional AR-binding
site 13.5 kb upstream of the TMPRSS2 gene (Wang et al, 2007). The
closest AR-binding sites for the other genes involved in ETS gene
fusions varied from 60 kb to 1.5 Mb, although in the absence of
genome-wide AR ChIP data it is possible that other AR-binding
sites occur outside of the current coverage (Supplementary Table
2). Both Massie et al (2007) and Wang et al (2007) have proposed
mechanisms for AR recruitment to subsets of target sequences
through associations between the AR and other transcription
factors for example, GATA-2, OCT11, FOXA1 and ETS1.

In conclusion our studies report a novel fusion partner for ETV1
and highlight the wide heterogeneity in the range of the ETV1 fusion
partners. Interestingly fusion to the androgen repressed gene
C15orf21 was the most common event suggesting the existence of
a significant subgroup of cancers that may not respond in a
conventional manner to androgen withdrawal therapies.

MATERIALS AND METHODS

Patient cohort and tissue microarrays

TMAs were constructed from 429 unselected transurethral
resection of the prostate specimens taken from patients managed
with no initial treatment or hormone treatment in a cohort of
conservatively managed men with prostate cancer (Cuzick et al,
2006). The median age of diagnosis was 70 years (49–76 years) and
the median follow up was 91 months (3–173 months). Most men
were diagnosed after the age of 65 years. National approval for the
collection of the cohort was obtained from the Northern Multi-
Research Ethics Committee followed by local ethics committee
approval at each of the collaborating hospital trusts. This work was
approved by the Clinical Research and Ethics Committee at the
Royal Marsden Hospital and Institute of Cancer Research.

Tissue microarrays

TMAs were constructed in 35� 22� 7 mm blocks of Lamb paraffin
wax using a manual tissue microarrayer (Beecher Instruments, Sun
Prairie, WI, USA). Up to four tumour cores of 600mm diameter were
taken from each prostate. Reassignment of areas of ‘cancer’ or
‘normal’ in each core was carried out on the basis of histopatho-
logical examination of haematoxylin and eosin and p63 and
AMACR-stained sections that flanked the TMA slice used for FISH
studies. The morphological criteria for selection of ‘normal’ and
‘malignant’ prostatic epithelium conformed to previously published
definitions (Foster, 2000; Foster et al, 2000, 2004). ‘Hyperplasia’,
‘dysplasia’ and ‘PIN’ were not scored in this study.

FISH studies

TMA sections (4 mm) were cut onto SuperFrostPlus glass slides
(VWR International, Poole, UK). Fluorescence in situ hybridisa-
tion studies, labelling of BACs including preparation of slides,
probes and washing were all carried out as described previously
(Attard et al, 2008; Clark J et al, 2008)

50 RACE RT–PCR from paraffin-embedded tissue

RNA was extracted from a 600 mm core of paraffin-embedded
tumour tissue using the RecoverAll kit as manufacturer’s
instructions (Ambion, UK, cat. AM1975). A total of 25– 100 ng of
RNA was reverse transcribed using 50 U Superscript III (Invitro-
gen, Paisley, UK) and 10 ng random nonamers in a 25 ml reaction
as manufacturer’s instructions. cDNAs were treated with 0 � 3ml (1 U)
RNAase-H (20 min), then extracted with one volume of phenol/
chloroform (1 : 1 v v�1), then one volume of chloroform and then
precipitated with 500 ng glycogen (Sigma UK, G1767), rinsed in
80% v v�1 ethanol, and resuspended in 15 ml water. Second strand
cDNA synthesis was then carried out: Klenow buffer plus 0.3 ml of
10 mM TAGrandom primer (GACTCGAGTCGACATCGAIIINNNN
NN where I is Inosine) were added, heated to 701C 5 min, cooled to
room temperature and 40 U Klenow added (251C 10 min, 301C
10 min 371C 1 h, 751C 10 min). 1 ml (2–8 ng) was used to seed a
25 ml PCR mix with 0.25 U Platinum Taq (Invitrogen) plus an ETV1
exon 6 primer GCCTCATTCCCACTTGTGG, 50 rounds, 61.51C
annealing temperature. TAG primer (GACTCGAGTCGACATCGA)
was then added and the reaction continued for 40 rounds at 591C
annealing. 0.25 ml of this was used to seed a nested PCR using TAG
primer and ETV1 exon 6 primary nest primer TTCCCACTTGT
GGCTTCTG, 591C annealing, 40 rounds. 0.25ml of this was then
used to seed two PCRs, the first containing TAG primer and
secondary nest ETV1 primer cccacttgtggcttctgatc, and the second
containing TAG primer alone, 40 rounds 591C. RT–PCR products
were run on 2% agarose TAE gels. RACE products were subcloned
using the TA cloning kit (Invitrogen) and sequenced. Sequences
were searched at the human genome map web site (http://
genome.ucsc.edu).
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