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Abstract

Next-generation sequencing (NGS) enables massively parallel acquisition of large-scale omics data; however, objective data
quality filtering parameters are lacking. Although a useful metric, evidence reveals that platform-generated Phred values
overestimate per-base quality scores. We have developed novel and empirically based algorithms that streamline NGS data
quality filtering. The pipeline leverages known sequence motifs to enable empirical estimation of error rates, detection of
erroneous base calls and removal of contaminating adapter sequence. The performance of motif-based error detection and
quality filtering were further validated with read compression rates as an unbiased metric. Elevated error rates at read ends,
where known motifs lie, tracked with propagation of erroneous base calls. Barcode swapping, an inherent problem with
pooled libraries, was also effectively mitigated. The ngsComposer pipeline is suitable for various NGS protocols and
platforms due to the universal concepts on which the algorithms are based.
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Introduction
With over a decade of mainstream use in biological research,
next-generation sequencing (NGS) is a widely applicable tech-
nology. Nevertheless, ambiguity regarding best practices in data
preprocessing and quality control remains [1, 2]. Illumina short-
read sequencing, the predominantly used platform due to its
affordability and high yield, is considered the gold standard for
NGS data quality. The sequence reads are often used for error
correction of long reads derived from other NGS platforms such
as PacBio and Nanopore [3]. However, Illumina short reads reg-
ularly contain sequencing errors that can significantly impact
inferences [4, 5]. Instrument-derived metrics for evaluating base
calling accuracy vary across platforms and analytical thresholds
are often subjective. Similarly, elevated error rates at read ends
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or equipment-generated artifacts (e.g. strings of A or G bases)
are not always accounted for [6]. Even at low error rates, appli-
cations such as variant calling, de novo genome and transcript
assembly, and microbial strain-level profiling are sensitive to
sequencing errors [7, 8]. For example, infrequent errors are mis-
construed as minor alleles during variant calling and can result
in false positives and false negatives during microbiome strain-
level identification, an analysis that is based on exact sequence
matching. Quality-trimming of reads has been reported to have
a profound impact on sequence assembly, SNP-calling and gene
expression [1].

Drawing biologically accurate inferences from NGS data
requires high-quality sequence reads and each dataset requires
ad hoc filtering based on desired application and library
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preparation technique. Trimming, demultiplexing, adapter
removal, quality threshold filtering, artifact removal and error-
correction are common pre-processing steps [9]. Multiple tools
exist for each of these steps, each with its own parameters as
well as limitations. For example, demultiplexing tools often lack
the ability to accurately assign barcodes to pooled samples
[10]. Some of these tools lack the ability to handle variable
length barcodes, and misassignment of sample identities due
to barcode swapping is an unresolved problem acknowledged
by both independent research laboratories and Illumina [11, 12].
Adapter removal algorithms vary in sensitivity and searching for
variable barcodes in highly multiplexed libraries can be tedious.
Error-correction methods assume a high-degree of sequencing
depth [13]. Overall, with each tool, the number of individual
parameters and the optimal sequential order of their application
can have significant impact on type I (false positive) and II (false
negative) error rates.

Quality scores (Q scores) are a valuable metric for selecting
high-quality reads. ASCII-encoded Q scores report the per-base
probability of miscall based on optical fluorescence profiles
measured as Q = −10log10 (probability) [14]. Typically, reads are
processed based on Q scores to avoid inclusion of erroneously
called bases. Over time, changes in Illumina sequencing plat-
forms have modified the interpretation of Q scores and conse-
quently altered the practicality and uniformity of their filtering
performance [9, 15]. As the capacity to generate more sequence
reads in a single sequencing run, newer platforms now bin
Q scores for practical reasons such as reducing data storage
footprint and allowing for realistic data transfer and processing
time of ensuing data. The latest Illumina platform (NovaSeq
6000) has superior sequencing quality and yield but only adopts
4 out of the standard 41 Phred quality scores for binning. In
addition to instrumentation, Q scores are largely influenced by
sample and library preparation [16–18]. Here, independent of
library preparation methods, we investigate the ability to empir-
ically improve quality filtering by using known sequence motifs
to parse reads. We propose a universal set of best practices
for empirical quality filtering, and introduce ngsComposer, a
user-directed, fully automated, and modular (walkthrough and
walkaway mode) pipeline that prioritizes best practices.

There is a community need for standardized practices in
performing data preprocessing that makes few assumptions of
Q scores, and instead relies on knowledge of library preparation
and read sequence composition. We present metrics that high-
light the efficacy of filtering reads using known sequence motifs
coupled with, and in contrast with, Q score filtering. NGS reads
from multiple Illumina platforms were measured for alignment
accuracy and the fate of these reads under different filtering
schemes, including optimal order of tools, was evaluated. Fur-
thermore, we developed a fully automated pipeline that handles
highly multiplexed data and allows for motif detection as a
means of error/adapter detection and removal.

Materials and methods
DNA samples and NGS library preparation protocol

Materials

The MiSeq Nano 150-PE and NovaSeq SP 150-PE datasets
were derived from the quantitative reduced representation
sequencing (OmeSeq/qRRS) of a diverse population of 16
hexaploid sweetpotato MDP accessions. These accessions
include NASPOT 10 (Kabode), SPK004 (Kakamega), NASPOT7,
NASPOT 5/58, NASPOT 11, New Kawogo, Magabali, Wagabolige,

NASPOT 5, NASPOT 1, Ejumula, NK259L, Dimbuka-Bukulula,
Resisto, Mugande and Haurmeyano. The HiSeq 2500 high output
(150-PE) and rapid run (250-PE) datasets were derived from the
whole genome sequencing of a temperate-adapted sweetpotato
cultivar (Beauregard) and tropical-adapted sweetpotato acces-
sion (Tanzania). DNA was extracted from young leaf tissue based
on a modified CTAB DNA extraction method. The quality of
the DNA samples resuspended in 1X TE buffer was determined
on a 0.7% agarose gel to ensure high molecular weight (HMW)
DNA. HMW DNA samples were quantified and normalized
to 20 ng/ul using PicoGreen assay, diluting with molecular
grade water. All subsequent reactions were performed in NEB
CutSmart buffer and all the enzymes used are compatible with
this buffer.

OmeSeq/qRRS library

HMW DNA was sequentially double digested with NsiI-HF and
NlaIII. After digestion with Nsi-HF, 96 forward (P1) barcoded
adapters were incorporated into genomic fragments by using
the isothermal strand displacement activity of the Bst 2.0 warm-
start polymerase. Subsequent digestion with NlaIII followed and
the 96 reverse (P2) barcoded adapters were incorporated using
Bst 2.0 warmstart polymerase. All combinations of the bar-
coded adapters, resulting in 9216-plex (96 x 96 dual barcoded),
were used to ensure nucleotide diversity along entire length
of fragments. Although 9216-plex is always achieved, barcoded
adapters were pooled before use depending on the number
of samples. Consequently, when samples are less than 9216,
each sample is dual indexed multiple times. The variable length
barcodes ensure nucleotide diversity at the non-variable restric-
tion sites. Aliquots of samples are pooled into a single tube,
cleaned and concentrated using Ampure magbeads, and then
size selected with BluePippin for fragments between 300 and
600 bp (construct containing genomic insert and adapters). Using
the high-fidelity NEB Phusion polymerase, a PCR amplification
was performed at 12 cycles in order to incorporate sequences
that bind DNA probes on Illumina flow cells. Libraries were
diluted to 10 nmol/l for sequencing on each of the Illumina
sequencing platforms. To provide quality control, libraries are
evaluated on the Tapestation automated electrophoresis at each
step after samples are pooled.

OmeSeq/WGS library

Using AluI and HaeIII, a partial digest was performed on the
HMW DNA in order to enriched for 250–600 bp fragments (peak
intensity at 450 bp). The blunt ends of the WGS samples were A-
tailed with Klenow fragment exo-. Similar to the qRRS protocol,
the 96 forward (P1) and 96 reverse (P2) barcoded adapters with T
overhangs and that are complementary to the A overhang of the
A-tailed genomic fragments were ligated to the genomic frag-
ments using T4 DNA ligase. The samples were pooled, cleaned
and concentrated using Ampure magbeads, and then a sec-
ondary digest was performed to eliminate all possible chimeric
fragments. The restriction site at the adapter-genomic frag-
ment conjunction are destroyed (adapters are designed so that
restriction sites are not re-constituted), so the desired adapter-
genomic fragment constructs remain intact. This design was
also implemented for the OmeSeq/qRRS adapters. Size selection,
quantitative PCR amplification, quality controls and dilution for
sequencing are performed as described for the qRRS protocol.
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Figure 1. Flowchart of the ngsComposer tools implemented in pipeline mode. Every project directory contains a ‘conf.py’ configuration file that directs the decision

at each branch. The optional ‘walkthrough mode’ allows the user to pass new arguments for each tool’s parameters and creates updated Q score summary plots

concurrently.

ngsComposer modular and standalone tools

The ngsComposer tools are available for standalone use or can be
called in order as an automated pipeline using the composer.py
(Figure 1).

crinoid.py

Crinoid provides summary statistics on Q score and nucleotide
distribution. Read and quality score lines of a fastq file are
traversed k bases at a time. Each unique sequence of bases or
ASCII scores are stored as a dictionary key. The total number of
encounters with that sequence is stored in a list corresponding
with the k walk position along the read. After all reads have
been summarized, the positional information in the dictionary
is converted to a matrix of 5 x n for nucleotides and 41 x n for Q
scores, where n is the maximum read length.

scallop.py

Scallop is a simple read trimmer and end-trimming tool. Fixed
read positions at the front (−f ) or back (−b) of the read are
provided for manual trimming of reads. Users may also opt for
quality-based end-trimming using a sliding window approach.
In this setting, a window of fixed size (−w) walks base-by-base
from 3′ to 5′ until the window contains only bases consisting of
a given end-trimming Q score (−e) or higher.

anemone.py

Anemone demultiplexes single- or paired-end reads using a
tab-separated matrix of barcode and sample names. Reads are
first examined for exact matches against the expected set of
forward barcodes. To avoid possible I/O limitations of simultane-
ous file accession, the corresponding reverse reads are assigned
in a separate pass. Although this creates some redundancy in
processing, it allows for extreme flexibility in R1/R2 barcoding
combinations (e.g. 96 forward and 96 reverse barcoded libraries
produced by omeSeq protocol yield 9216 paired output files,
9216 unpaired R1 output files and 9216 unpaired R2 output
files). Reads that are not assigned with exact matches (Hamming
distance = 0) are optionally subject to further passes through a
lenient barcode search with greater leniency in Hamming dis-
tance, or mismatch (−m). In the instance that multiple barcodes
match the queried read, the read is kept as an unknown to avoid
sample misassignment.

rotifer.py

User-defined lists of sequences are used to search the start of for-
ward and reverse reads for expected motifs. Motifs correspond-
ing to the forward (−m1) and reverse (−m2) reads are expected in
the beginning region of reads due to library construction using
restriction enzymes and/or A-tailing of blunt ends. Reads failing
to contain these motifs are assumed to begin with sequencing
error. Paired-end reads that both pass this test are kept as paired
reads, while single ends that pass but that are missing their pair
are outputted with a ‘se.’ prefix.

porifera.py

A newline separated list of expected adapters (−a1) is provided
by the user, optionally containing expected buffer sequences,
barcode sequences and known sequence motifs. Adapters are
split into substrings of size k (−k) and each is stored in a dic-
tionary of sequence and distance from the adapter start index.
All k-mers of distance 0 are scanned for matches within the read,
followed by k-mers of distance k, then 2 k and so on. This search
process is repeated next with k-mers of distance 1, k + 1, and
repeats for rounds (−r) or until all k-mers are exhausted. K-mer
matches pointing to the same start index are assessed per-read
until a set of matching positions (−m) is reached or the adapter
is assumed not to be present. An optional mode (−t) allows for
a modified Smith-Waterman local alignment to be performed
with t base overlap to qualify as a hit.

krill.py

Integer values for desired Q score (−q) and percent read com-
position (−p) are provided by the user for threshold filtering.
ASCII characters at and above q are stored as a list of passing
scores. For each read, a failing number of bases is determined
by (100 – p)∗read length. Fastq Q scores are then tested 3′ to 5′

for membership in the pass list. If the non-passing characters
exceed the failing number of bases, the read is rejected.

Comparing performance of motif and threshold filtering

For each of the datasets tested (MiSeq Nano, HiSeq 2500 high
output 2 x 125, HiSeq 2500 rapid run 2 x 250, NovaSeq 6000),
reads were first trimmed to remove buffer sequences (6 bp) and
demultiplexed with 1 mismatch using anemone.py. Reads were
used as the basis for downstream analysis of motif-detection
and threshold filtering tools, as they are expected to begin with
the RE digest motif immediately following the barcode sequence.
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Filtering methods

Filtering was performed using threshold-filtering (krill.py) and
motif-filtering (rotifer.py). Under threshold filtering, only reads
consisting 90% of above of Q scores 30 or higher were con-
sidered as passing filtering. Motif filtering was performed in a
library-specific manner. The HiSeq 2500 datasets were blunt-end
fragmented using AluI/HaeIII, followed by A-tailing and adapter
ligation. Only HiSeq reads beginning with the sequences ‘TCC’
and ‘TCT’ were considered passing. The MiSeq and NovaSeq
datasets were prepared using the Omeseq/qRRS protocol that
fragmented the genome with NsiI/NlaIII restriction enzymes.
R1 reads in these libraries contained a ‘TGCAT’ motif and R2
reads contained a ‘CATG’ motif. For each dataset, reads were
first processed using threshold- and motif-filtering tools with
failed reads written separately to file. For each of these output
files, all passing and failing reads were processed again using the
corresponding tool to be compared. For example, reads passing
and failing the krill.py threshold filtering steps were then motif-
filtered using rotifer.py, producing four final output files repre-
senting all combinations of pass and fail for combinations of the
first and second tool.

Collapsing unique reads

After demultiplexing using variable length barcodes, reads
within each library were end-trimmed to identical length before
filtering to facilitate unbiased read comparisons downstream.
After filtering methods were applied, all sequences were
extracted from the fastq output using ‘sed’ commands. An
awk command was then applied to sequence files to collapse
identical reads while retaining the frequency of the unique
reads. The ratio of collapsed reads to the total number of reads
was calculated per-file.

Calculating empirical base-calling error rates
in barcode sequences

All forward (R1) reads from the MiSeq, HiSeq 2500 Rapid
Run, HiSeq 2500 High Output and NovaSeq 6000 datasets
were subjected to multiple rounds of demultiplexing using
the ngsComposer tool anemone.py. After first demultiplexing
perfect matches, the unassigned reads were subsequently
demultiplexed with a Hamming distance of 1. This process
was repeated with unknown reads, increasing the mismatch
value at each step until reads could no longer be identified
having exceeded their inherent minimum Levenshtein distance
of 3 (https://github.com/roy-ht/editdistance). For each step, the
reads in the resulting output files were compared base-by-base
to their corresponding barcode sequence. On a per-position
basis, the probability of error was calculated as the number of
bases in that position that did not match the assigned barcode
divided by the total number of reads assessed at that level of
mismatch and fewer. The ASCII-encoded Q scores were counted
and grouped in the same manner.

Validating software performance using simulated reads

A set of 998 611 reads were simulated using the first chromo-
some of the Ipomoea batatas assembly (NCBI GenBank assembly
accession: GCA_002525835.2). Simulation of restriction enzyme
fragmentation was performed using NsiI and NlaIII, and each
fragment was concatenated with variable length adapters con-
taining variable length barcodes (simulating the OmeSeq/qRRS
library preparation method). Resulting fragments were drawn

randomly from a normal distribution with a mean read length
of 400 bp and a standard deviation of 100 bp. The unmutated
reads were saved separately alongside the known adapter posi-
tion, if present. Multiple adapter trimming tools were compared
with ngsComposer. A minimum adapter overlap value of length
12 was used as this was found to avoid an overabundance of
misassignments and allowed a better unbiased comparison of
tools. The standalone version of porifera used adapter validation
by supplying the NsiI and NlaIII sequences and was compared
with a pipeline instance of the tool that automatically reduces
the search space on a per sample basis.

Results
Library design and empirical Q score assessment

To assess the effectiveness of Q scores compared to motif-
detection as a filtering parameter, NGS data from sweetpotato
(Ipomoea batatas) accessions and cultivars were considered from
multiple Illumina platforms, each with distinct profiles. Fastq
files originating from various Illumina platforms (i.e. Miseq,
HiSeq 2500 Rapid Run, HiSeq 2500 High Output and NovaSeq
6000) represent a variety of read length, dye chemistry and
levels of Q score binning (Supplementary Figures S1–S4). All
DNA libraries were prepared using custom-designed adapters
and enzyme fragmentation. Each of the adapter pairs of the
dual-barcoded datasets include a 6 bp buffer sequence region
upstream of the barcode sequence, 7–10 bp variable length
barcode sequence and a 3–5 bp motif complementary to each of
the two restriction cut sites in the insert DNA (Figure 2A). For the
whole genome sequencing libraries, a T motif after the barcode
is complementary to the A overhang on genomic fragments
following A-tailing of blunt ends. By using adapters that contain
a fixed-length and high-diversity ‘buffer sequence’ region (as
implemented in the OmeSeq protocol), the sequencing-by-
synthesis reaction is allowed to stabilize before base-calling
in the barcode regions begins. This has a protective effect on
the barcode sequences used to determine sample identity,
as the initial bases in a sequencing-by-synthesis reaction
tend to harbor lower Q scores or elevated base calling error
(Figure 2B, Supplementary Figures S1–S4) [12, 19]. Fixed-length
end-trimming was performed by ‘scallop.py’ in this buffer region
before demultiplexing.

Variable length barcodes with a minimum Levenshtein/edit
distance of three were implemented to reduce platform-derived
phasing error [11, 17]. Using variable length barcodes is also very
important for achieving high nucleotide diversity in libraries
fragmented with restriction enzymes or that were A-tailed,
since the sequence motif region of fragments inherently lack
the nucleotide diversity required for optimal run performance
and generation of high-quality reads. The tool ‘anemone.py’
was used to demultiplex the libraries using a dual-indexed
barcoding scheme, which is known to improve assignment
accuracy [12]. Anemone.py prevents sample misassignment
in the event that multiple barcodes have equal Hamming
distance from a given read. Reads that align to multiple barcodes
remain unassigned. Misassignment can be found in several
widely used demultiplexing tools, which apply sample identities
preferentially to the first indexed barcode when ‘nesting’
occurs (Figure 3).

Taking advantage of anemone.py’s false positive sensitivity,
we tested the sequencing accuracy of barcode regions by
demultiplexing at increasing values of hamming distances.
The per-base error rate was calculated alongside the reported

https://github.com/roy-ht/editdistance
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Figure 2. QC plot highlighting impact of adapter removal parameters implemented in ngsComposer. (A) Diagram of adapter-contaminated read displaying buffer region,

barcode and restriction sites, as well as the corresponding reverse-complement adapter regions. (B) Boxplots show the tendency towards lower Q scores at 5′ and 3′
ends. Gray diamonds and lines show the mean Q score and standard deviation per position. (C) Read length density after adapter removal using ngsComposer pipeline.

Adapter only (red), adapter through barcode (blue) and adapter through restriction site (yellow) each show different performance in adapter detection.

Figure 3. Benchmarking NGS read demultiplexing tools. Several tools are influenced by the order (top and bottom panel) of barcodes when searching for potential

matches (ea-utils and sabre). In some instances, tools preferentially reassign reads to a different sample as mismatch is increased across columns from left to right.

Values within the heat map indicate the degree of deviation computed as the proportion of mis-assigned reads at mismatch > 0 relative to assignment at a mismatch = 0,

which is specified within each tool. The midpoint, green, indicates zero deviation.

instrument-derived per-base Q scores (Figure 4). Empirically
calculated miscall probabilities were lower than those produced
by the sequencing hardware with quality score mean differences
across platforms ranging between 7.81 and 18.7 (Figure 4,
Supplementary Table S1). These corresponds to approximately
6–74 times increased probability of miscall. These results agree
with previous attempts to empirically validate Q scores by
alignment to known reference genomes [20–23] as well as to
barcoding region.

Evaluating read populations using expected motifs

After barcode removal, we used the presence of error-free restric-
tion enzyme site motifs as an early indicator of read reliability
(motif-based error detection and filtering). Reads with error in

the motifs were observed to also contain higher error rates
along the entire length of the read when compared with the
intact motifs (Table 1, Supplementary Figures S1–S4). Reads fil-
tered sequentially using classic Q score-dependent threshold-
filtering followed by motif-filtering produced populations of
passing and failing reads, which were then used to evaluate the
performance of both approaches. We expect a high false negative
rate for stringent Q score threshold filtering and a high false
positive rate for relaxed Q score threshold filtering. Since the
threshold is subjective, there is currently no objective setting for
the optimal threshold to minimize these false positive and false
negative rates.

Read compression was applied to the results of filtering as
an unbiased determinant of base calling accuracy. Read depth
refers to the frequency of reads aligning uniquely to a given

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab092#supplementary-data
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Figure 4. Quality scores from four Illumina platforms measured within barcode regions of reads. The empirical rate of base-calling errors (squares) were sequentially

calculated using increasing Hamming distance in the ngsComposer demultiplexing tool, anemone. The Q scores for these bases reported by Illumina software reveal

underestimation of base-calling error. Open shapes indicate the mean Q scores, while solid shapes indicate Q scores for individual base positions along the barcode

region.

Table 1. Efficacy of filtering methods using an unbiased estimate, read compression

Illumina platform Filtering
method(s)

� Compressiona (R1) Failed (%)b � Compressiona (R2) Failed (%)b

Pass Fail Pass Fail

MiSeq Q30/P90 3.42 −9.3 12.33 4.54 −10.27 16.1
Motif 2.48 −5.06/−4.9c 7.55 0.88 −3.03/−2.7c 2.75
Q30/P90 + motif 6.06 −4.14 18.92 5.29 −0.7 17.99

HiSeq 2500 (Rapid
Run)

Q30/P90 11.08 −40.29 21.16 23.74 −24.36 47.63
Motif 0.72 −36.63/−32.4c 1.06 1.98 −21.69/−19.2c 4.78
Q30/P90 + motif 11.58 −20.24 21.73 25.22 −8.74 49

HiSeq 2500 (High
Output)

Q30/P90 5.07 −17.09 22.06 4.4 −24.93 14.65
Motif 0.45 −30.56/−26.0c 1.08 0.73 −41.08/−36.4c 1.08
Q30/P90 + motif 5.46 −20.51 22.53 4.68 −11.84 15.1

NovaSeq 6000 Q30/P90 7.25 −35.9 16.3 10.63 −33.8 23.12
Motif 1.6 −8.03/−6.6c 8 2.89 −2.24/−0.7c 21.65
Q30/P90 + motif 8.59 1.75 22.71 12.43 12.23 38.52

a� Compression: change in compression rates of filtered reads were normalized against randomly subsampled raw data.
bThe percentage of raw reads that did not pass the given filtering technique.
cCompression rates in reads failing presence of motif were recalculated using only the non-motif portion of the read.

reference locus. The restriction enzyme-based qRRS libraries
examined in this study consist of numerous, identical fragments
of DNA that align flush and perfectly overlap the other allelic
sequences originating from the same locus and across samples.
Collapsing instances of identical sequence reads within NGS
datasets, termed the compression rate, were used as a proxy
for unbiased error rate estimates. The compression rate value
approximates the average read depth across the genome, i.e.
number of times an allele was sequenced. High error rates will

increase the generation of new novel reads and consequently
lower compression rates. The compression rate was found to be
a more sensitive metric for error rate estimation compared to
using a reference genome, where alignment scores (e.g. E-value)
are sensitive to sequence length and other parameters in the
alignment algorithm [24].

The motif-based filtering approach complemented the Q
score threshold-filtering approach. In all datasets analyzed
across all NGS sequencing platforms in this study, the highest
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Figure 5. Sample results using Q score threshold-filtering and motif-based filtering. The difference in read compression between the subsetted filtered reads was

normalized against compression of MiSeq-derived raw data of the same sample size. Reads passing both tools have the highest compression values indicating a

reduction in sequencing error. Both filtering methods detect erroneous reads that are non-overlapping, hence, underscoring the need of both strategies.

compression was achieved when both filtering approaches
were applied (Figure 5). Read sequences failing these filtering
approaches consisted of more unique/singleton reads due to
increased error rates and consequently had a negative change
in compression when normalized against random sampling
of the unfiltered dataset to account for the effect of reduced
sample size. These patterns persisted in the failed reads
even when limiting the scope to the body of the read while
excluding the motif region, further validating that a failure
to sequence the motif accurately will lead to miscall within
the rest of the read (Table 1). Motif-filtering improvement of
compression was found to be most effective in the MiSeq dataset

(2.48% improvement alone, 6.06% improvement combined with
threshold of q30 at 90%). In some instances, the improvement
was marginal (0.45% improvement in HiSeq 2500 high output);
however, the number of reads removed using motif-filtering
was much lower than with threshold filtering (Table 1). It is
also worth noting that the OmeSeq protocol produced raw
sequence reads with high-quality, hence, we would typically
expect significantly higher improvement with data derived
from most library preparation protocols. The subset of reads
removed by the two filtering methods had little overlap as
each appeared to target nearly distinct reads within the
overall dataset.
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Table 2. Comparison of adapter removal tools on simulated NGS reads. Filtering settings includes using Illumina adapters without (single
adapter) and with barcode sequences (96 barcoded adapters) as contaminating sequences

Approach Tools Read False negatives (%) False positives (reads) Total user time (seconds)

Single adapter AdapterRemoval R1 29.4 3044 13.0
R2 29.5 3075

Cutadapt R1 28.6 0 24.9
R2 28.9 0

Porifera (standalone)R1 30.0 2 29.2
R2 30.5 1

Skewer R1 29.5 0 24.5
R2 29.7 0

96 barcoded adapters AdapterRemoval R1 11.7 161 932 571.7
R2 11.3 160 429

Cutadapt R1 12.5 644 2699.4
R2 12.7 689

Porifera (standalone)R1 15.2 63 543.1
R2 16.3 4

Porifera
(ngsComposer)

R1 14.1 4 79.4a

R2 14.5 2
Skewer R1 13.5 5 3050.7

R2 13.6 107

aSimultaneous run time for R1 and R2 (as part of ngsComposer pipeline).
Note: Analysis of simulated data for all tools was performed on a MacBook Air (8 GB 3733 MHz LPDDR4X, 1.1 GHz Quad-Core Intel Core i5) using a single thread.

Improved adapter detection using barcode-specific
search schema

Adapter removal is an important step in many NGS libraries
and detection can be improved using expected motifs. Adapter
sequences including barcode and restriction site motifs are
expected to increase adapter detection sensitivity as these
sequences are further upstream of the characteristic 3′ drop in
sequence quality [21, 25]. Herten et al. [11] showed the inclusion
of restriction motifs improved adapter detection. Here, the tool
porifera.py has been developed to k-mer walk through a list of
adapters (i.e. combination of adapter, buffer sequences, barcode
sequences and known motifs) and search a user-defined number
of rounds (or default) until aligned k-mers point to the same start
index or a read is deemed to be adapter-free. The k-mer approach
avoids local alignment issues encountered when a string of ‘A’
or ‘G’ sequencing artifacts appear in the instance of a deeply
embedded adapter. The ngsComposer pipeline narrows the
adapter search space by only attempting to align reads with their
associated adapters, which contain sample-specific barcodes.
Adapters including barcodes and barcodes with restriction sites
detected reads at a higher frequency and removed non-genomic
DNA (Figure 2C).

Validating software performance using simulated reads

Simulation of Illumina reads allowed for testing the performance
of the motif-based NGS filtering approach highlighted in
the ngsComposer pipeline and tools. We confirmed our
findings that a motif-based filtering approach is useful for
NGS data filtering, as shown in both real and simulated data
(Supplementary Figures S9 and S10). We also confirmed the
obvious benefit to including barcodes, a contaminating non-
genomic sequence, in the adapter searching step (Table 2,
Supplementary Figures S11 and S12). Overall, the false positive
rates were similar across all tools except for AdapterRemoval,
which had very high false positive rates. While including
the barcodes as part of the contaminating adapter sequence
should be considered best practice for multiplexed libraries, we

evaluated a naïve approach that only uses the Illumina adapter
sequence. While using a single adapter sequence also produced
low false positives, it led to about twice as much false negative
rate (i.e. reduced detection of adapters in reads). The false
negative rates were similar across all tools tested, with Cutadapt
and AdapterRemoval performing slightly better but typically at
the expense of elevated false positive rates. The ngsComposer
pipeline leverages speed and accuracy by only searching for
those adapters containing the unique barcodes associated with
the appropriate sample (Table 2). In pipeline mode, porifera is
7–38 times faster compared to other tools tested. In standalone
mode, the speed is similar to AdapterRemoval and 5–5.6 times
faster than Cutadapt and Skewer, respectively (Table 2).

Implementation

The software, ngsComposer, is designed with simplified user
input at every critical step in data filtering. Any of the provided
tools may be run individually or as an automated pipeline. In
pipeline mode, users have the option to see read summaries and
qc plots and re-define variables on the fly as a part of ‘walk-
through’ mode. Multiple libraries from different sequencing runs
may be combined for preprocessing, each with its own set of
barcodes and associated unique sample IDs. In pipeline mode,
paired end reads are automatically recognized and pairing pre-
served throughout. Reads that become unmated due to removal
of paired R1 or R2 reads are retained in all subsequent steps in a
single end reads directory.

Discussion
Filtering NGS data are a routine procedure intended to retrieve
sequence reads with minimal base calling error, as well as identi-
fication and removal of low-quality base calls by trimming reads
at the 5′ and 3′ ends. Traditionally, Q scores are the exclusive
determinant of the reliability of sequencing certainty. While Q
scores are useful as a filtering metric, there is mounting evidence
and suggesting that Q scores should not be taken at face value

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab092#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab092#supplementary-data
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and can have variable interpretations across NGS platforms.
The higher empirical estimates of error rates in the barcode
and restriction site regions described here imply that Q scores
may not match the expected logarithmic Phred base-calling
error probability. Some SNP calling and filtering approaches have
opted to ignore Q scores altogether due to a biasing tendency
against SNPs on distal ends of reads [26]. Only a few efforts
exist that attempt to determine read accuracy with certainty
and independent of platform-derived quality scores. Alignment
to reference assemblies is possible with smaller genomes but
may vary based on reference assembly and the significance of
single base mutations may not be captured by alignment scoring
penalties alone. Studies reveal that accuracy of various error
correction algorithms differed considerably across all types of
data set [24].

Our pipeline works off the assumption that reads containing
high-quality base calls in expected sequence (barcodes, restric-
tion site and A-tailed reads) near the 5′ end will contain higher
quality base-calling across the entire read length and will con-
tain fewer erroneous base calls internal to the read body. This
assumption was confirmed by elevated error rates in entire
read length whenever there was base calling error in the motif.
Emphasizing motif-filtering retains reliable high-quality base-
calls required for applications such as variant calling, strain-
level microbiome profiling and de novo assembly of genomes and
transcriptomes. Motif-detection is independent of platform and
encompasses some of the errors that might be detected in other
filtering approaches.

To provide additional validation for the efficacy of motif-
based filtering, we used the read compression rates to confirm
that errors in motif region are often tied to additional error
elsewhere in the body of the read. Read compression is an
unbiased measure of sequencing accuracy. Lower compression
rates indicate that at least one base miscall or indel has occurred
in the read. An increase in read compression indicates that
filtering has recovered high-quality reads and eliminated unique
reads derived from erroneous base calls that would normally
reduce compression. Not surprisingly, read reliability was most
improved by implementing empirical motif-detection alongside
machine-generated Q score threshold-filtering. In combination
with the motif-based approach, Q score filtering thresholds can
be relaxed to reduce false negative rates without the conse-
quence of increasing false positive rates. While subsets of reads
filtered by motif-presence always had an improvement in read
compression, these reads were often classified independently
from reads containing high Q score composition. This under-
scores the sensitivity of motif-based filtering and utility for iden-
tifying false negatives associated with Q score-based filtering.
Motif inclusion has been a previously subtle feature investigated
by Herten et al. [11]. It has the potential to bypass platform and
even sequencing run variation. It is possible that strict motif-
filtering and the compression rate analysis reported here could
have applications in reviving the wealth of previously published
sequencing data.

The ngsComposer software is a fastq preprocessing pipeline
designed for straightforward and repeatable results that extend
the power of Q score-based filtering. As revealed by the datasets
generated with the OmeSeq protocol, reported here, consider-
ation of assay design during library preparation can improve
overall sequencing reaction quality and features in library con-
structs can provide information and quality control that can
enhance data preprocessing. Furthermore, ngsComposer pro-
vides researchers with a practical framework to reliably han-
dle multi-sample projects with complex barcoding schema and

organizing paired-end data from their raw to analysis-ready
state.

Key Points
• The filtering pipeline, ngsComposer, automates and

simplifies NGS data preprocessing while effectively
mitigating barcode swapping during demultiplexing.

• Phred-like Q scores remain a useful benchmark for
filtering, but empirical evidence presented here reveal
they tend to be overinflated.

• The use of an empirically based approach that
employs known motifs for error detection and filtering
yields high-quality sequence reads not detected with
Q scores alone.

• An objective compression rate metric, presented here,
provides a sensitive and unbiased method for estimat-
ing error rates within NGS data.

• The pipeline also features an adapter removal tool
that is robust for deeply embedded contaminating
adapter sequences existing within the context of base
calling errors and strings of A and G artifacts.
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