
Frontiers in Oncology | www.frontiersin.org

Edited by:
Wojciech Golusiński,
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Traditional analysis of genomic data from bulk sequencing experiments seek to group and
compare sample cohorts into biologically meaningful groups. To accomplish this task,
large scale databases of patient-derived samples, like that of TCGA, have been
established, giving the ability to interrogate multiple data modalities per tumor. We have
developed a computational strategy employing multimodal integration paired with spectral
clustering and modern dimension reduction techniques such as PHATE to provide a more
robust method for cancer sub-type classification. Using this integrated approach, we have
examined 514 Head and Neck Squamous Carcinoma (HNSC) tumor samples from TCGA
across gene-expression, DNA-methylation, and microbiome data modalities. We show
that these approaches, primarily developed for single-cell sequencing can be efficiently
applied to bulk tumor sequencing data. Our multimodal analysis captures the dynamic
heterogeneity, identifies new and refines subtypes of HNSC, and orders tumor samples
along well-defined cellular trajectories. Collectively, these results showcase the inherent
molecular complexity of tumors and offer insights into carcinogenesis and importance of
targeted therapy. Computational techniques as highlighted in our study provide an
organic and powerful approach to identify granular patterns in large and noisy datasets
that may otherwise be overlooked.

Keywords: multimodal, integration, multiomics, squamous cell carcinoma, classification
INTRODUCTION

Significant efforts have been made over the years to better characterize and partition tumors into
biologically and molecularly meaningful distinct subtypes. The rationale behind such tumor
classification was to enable more precise, effective, and targeted therapeutic strategies. Such
efforts have been rewarded, as in the case for breast cancer where death rates have dropped by
39% since 1989 (1), in part due to accurate subtype classification leading to efficacious treatments
(2). This is particularly the case for the highly heterogenous group of triple negative breast cancers,
where better understanding of the complex tumor microenvironment has facilitated tailored
treatment regimens, including effective immunomodulation therapies (3, 4).
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Similar subtype classification has been attempted for other
tumor types with varied success. For example, head and neck
cancers (HNSC) are clinically defined using the tumor-node-
metastases (TNM) classification system and more recently the
AJCC/UICC staging system, which rely heavily on pathological
features such as primary tumor characteristics, lymph node
spread, and distant metastasis, as well as relevant clinical
history like smoking and alcohol usage (5, 6). Recent inclusion
of using p16INK4A status for HPV+ Oropharyngeal cancer in the
eighth edition of TNM guidelines (7, 8) and PDL-1 expression
paired with tumor mutational burden prior to treatment with
pembrolizumab (9) represents examples where biomarkers have
proven to be valuable for better diagnosis and therapy. Despite
these advances, for many of the patients with advanced HNSC,
histological and clinical staging do not correlate with clinical
responses or prognosis (10). Therefore, continued efforts in
subtype classification with the goal of more precise targeted
therapeutics based on molecular signatures are needed.

Data mining of the TCGA datasets, primarily those based on
transcriptomic signatures has resulted in subtyping of
carcinomas from various anatomical sites. In the case of
HNSC, tumors have been classified into four primary groups,
Atypical (HPV+), Classical, Mesenchymal, and Basal subtypes
(11, 12). However, given that HNSCs are inherently diverse and
complex diseases of profound inter- and intra-tumoral
heterogeneity, it is likely that additional subtypes exist. Support
for such molecular diversity of HNSC comes from the discovery
of a distinct subtype with impaired H3K36 function based on
DNA methylation states (13) and from a meta-analysis approach
that integrated multiple datasets (14). In general, classification of
HNSC (and similarly other tumors) has by and large relied on a
single facet of tumor biology, such as global gene expression
profile, methylation patterns, somatic mutation states, or HPV
infection status (15). Although such single-data driven approach
has improved identification and our overall understanding of
tumor subtypes, it is likely that application of an integrated
bioinformatics-driven method that takes into account multiple
data modalities might offer a powerful tool for new discoveries
(16, 17).

Here, we establish a generalizable approach to integrate
multimodal datasets for tumor subtype classification. Using
HNSC as an example, we have performed a de novo integrated
analysis of the bulk gene expression, methylation array, and
microbiome datasets from TCGA Squamous Carcinoma
patients. Specifically, we utilized multimodal spectral clustering
followed by uniform manifold approximation and projection
(UMAP), and potential of heat diffusion for affinity-based
transition embedding (PHATE) dimension reduction (18–20).
Our results demonstrate that data integration, followed by two-
dimensional projection of the integrated similarity matrix
perform robustly in partitioning samples, while preserving
biological significance. Importantly, we show that during this
process, the full range of molecular heterogeneity of HNSC
tumors are captured, avoiding information loss. Furthermore,
PHATE dimension reduction captures a dynamic gradient of
expression in HNSC, ordering samples along a cellular trajectory
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toward more invasive Squamous Cell Carcinoma (SCC) as
evident by tell-tale gene expression profiles. These results have
broad implications for the challenge of accurate cancer subtype
prediction by providing a robust strategy of multimodal data
integration, leading to more accurate subtyping, with the
potential for guiding future therapeutic intervention.
MATERIALS AND METHODS

Pan-Squamous Transcriptomic Expression
Data Acquisition and Analysis
RNA expression profiles for each cohort were accessed using the
gdc.cancer.gov portal for Hoadley et al. (21). RNA-expression
data for HNSC, LUSC, ESCA, BLCA, and CESC were extracted
from the batch corrected matrix file labelled EBPlusPlus
AdjustPANCAN_illuminaHiSeq_RNASeq.v2.geneExp.tsv,
resulting in a 1,925-sample x 20,531-gene matrix. This
expression matrix was then passed into the UMAP and
PHATE algorithms to derive 2-dimensional projections, using
default parameters. To derive cross-cohort clusters, the
expression matrix was supplied into the R package Spectrum
v1.1, producing 9 clusters. For UMAP dimension reduction, the
uwot v0.1.11 package was used with default parameters on the
expression matrix. For PHATE dimension reduction the phateR
v1.0.7 algorithm was used with default parameters on the pan-
SCC rna-expression matrix.

HNSC Transcriptomic Expression Data
Acquisition and Analysis
For the HNSC specific analysis, a 514 samples x 20,531 gene matrix
and associatedmetadata was constructed in R from the RSEM batch
corrected file labelled “data_RNA_Seq_v2_expression_median.txt”
available for download in CBioPortal (22). Pairwise statistical
analysis utilized the R package rstatix v0.7.0 was used to preform
Wilcoxon rank sum tests for changes in expression between
clusters, correcting for multiple testing using the Holm-
Bonferroni method. Data scaling for visualization was preformed
using the base R function scale. Kaplan-Meier curves were
generated using the R packages Survival v3.2-11 and Survminer
v0.4.9. Overall survival status for each patient were provided as
input and time-to-median survival outcomes were calculated. The
sum of the normalized expression for mesenchymal associated
genes (FN1, VIM, ZEB1, CRS, TWIST2, SNAI2, CDH2) and
epithelial markers (CLDN4, CLDN7, TJP3, PEMT, and CDH1)
was subtracted from the expression sum of basal markers
(SLC2A, SLC16A1, H1F1A, LAMC, COL17A1, ITGB1, AREG,
EGFR, CDH3, KRT16, KRT17, and KRT14) to compute a basal
composite score, a similar strategy to that of Salt et al. (23).

HNSC Illumina 450k Array Methylation
Data Acquisition and Filtering
Per-sample methylation data was retrieved from the GDC data
portal using the gdc-client command line utility. This dataset is
comprised of 580 HNSC samples (528 solid tumor, 2 tumor
metastatic, and 50 adjacent normal tissue), level 3 TCGA data
July 2022 | Volume 12 | Article 892207
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release. Samples with associated transcriptomic data were subset
and 514 solid tumors were chosen for follow-up analysis. Probes
associating with or targeting SNPs, as well as sex-chromosome
associated probes were filtered from the analysis per Papillion-
Cavanagh et al. NSD1/H3K36 mutation group labels were taken
as provided in Supplemental Table 5 from Papillion-Cavanagh
et al. (13). Our filtration cascade resulted in a 514-sample x
310,325-probe matrix used for subsequent analysis.

HNSC Microbiome Data Acquisition
Per-sample microbiome measurements produced by Poore et al.
were downloaded from CBioPortal using the file labelled
“data_microbiome.txt” (24). This data is the result of the
batched corrected Voom-SNM Kraken workflow described by
Poore et al, with all putative contaminants removed (24). Samples
with associated transcriptomic and methylation profiles were
subset, resulting in a 514-sample x 1406-genus log2 CPM matrix
which was used for subsequent integration analysis.
HNSC Multimodal Integration Using
Diffusion of Tensor Product Graphs
Methylation, transcriptomic, and microbiome data matrices
were ordered by patient-sample ID, representing 514 head and
neck solid tumors with complete multi-omic profiles. Each data
modality was next introduced as an independent matrix to a self-
adapting density-aware kernel developed by John et al. to
produce a single sample-to-sample similarity matrix (25). This
strategy dynamically accounts for the local density of k-nearest-
neighboring samples, effectively amplifying the similarity
between tumors with highly-similar profiles. Next, the three-
resulting single-view derived similarity matrices are linearly
combined using kernel addition prior to diffusion of the
tensor-product graph (25, 26).The resulting similarity matrix
(514x514) is then treated as input into subsequent spectral
clustering by Spectrum, and for UMAP and PHATE
dimension reduction analysis.
HNSC Dimension Reduction Analysis and
Data Visualization
UMAP dimension reduction analysis was performed using the R
package uwot v0.1.11, using default parameters (20). PHATE
dimension reduction analysis was preformed using the R package
phateR v.1.0.7 (19). Default parameters for UMAP were used.
For PHATE dimension reduction, the t = 200 was chosen, which
controls the power of diffusion. For all dimension reduction
techniques, the resulting 2-dimensional embeddings were
extracted and stored in an R data frame associating sample
names, spectral cluster assignment, clinical features, and X,Y
coordinate. Visualizations were generated using the R package
ggplot2 v3.3.5, ggpubr v0.4.0, and cowplot v.1.1.1 packages, and
clinical variables, expression profiles, methylation beta values,
and microbiome quantifications were overlayed. Clustering was
performed using the R package Spectrum, using the
multimodality gap method (method=2) and kernel tuning
(tunekernel=t) parameters (25).
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Code Availability and Workflow
A graphical depiction of our analysis workflow for the panSCC
and focused HNSC analysis is shown in Supplemental Figure 16.
Analysis code is available at https://github.com/jebard/
multimodal-tcga-hnsc. Clustering results and sample
assignments can be accessed in CBioPortal as virtual study
cohorts of the larger TCGA PanCancer HNSC 2019 set utilizing
the following link: https://www.cbioportal.org/comparison/
overlap?comparisonId=60804602e4b0242bd5d4984c.
RESULTS

Dimension Reduction of TCGA PanCancer
Transcriptomes Provide Efficient and
Dynamic Representation of Tumor
Samples
Large datasets such as bulk RNA-seq of tumors in TCGA have
been traditionally analyzed by hierarchical clustering, k-means
clustering, and matrix factorization approaches like principal
component analysis. These techniques, though powerful, have
some inherent limitations due to the high-dimensional, often-
sparse and noisy nature of such datasets, and thus may miss non-
linear relationships hidden in the complex data (27, 28). Such
limitations prompted the development of non-linear
computational methods such as t-SNE and UMAP (20, 29) to
overcome the challenges associated with the massive amount of
data and the excess noise level when it came to analysis of single-
cell RNA sequencing (scRNA-seq) outputs. These methods have
succeeded in providing intuitive and biologically meaningful
displays by representing the high-dimensional scRNA-seq data
in a low-dimensional space, while preserving the relevant local
structure of the data. Indeed, there has been a growing interest in
application of dimension reduction and visualization strategies
to efficiently and accurately model many large-scale data types
(30). We intuited that these robust techniques such as those
developed for single-cell analysis could potentially be re-
purposed and applied to large-scale bulk tumor datasets such
as those generated by the TCGA project. We initially examined
RNA-seq data from 1,925 tumors from 5 different anatomical
sites, including lung (LUSC), head and neck (HNSC), esophageal
(ESCA), cervical (CESC), and bladder cancers (BLCA) to test and
evaluate the scalability of dimension reduction strategies on bulk
sequencing datasets. These samples were chosen since they
represent a broad range of tumors of primarily epithelial origin
that share common gene-expression patterns and constitute a
molecularly distinct pan-SCC cohort (31, 32).

For our analysis, we first decided to test two dimension-
reduction techniques, Uniform Manifold and Approximation
and Projection (UMAP) and Potential of Heat-diffusion for
Affinity-based Transition Embedding (PHATE). While UMAP
was chosen due to its wide-spread adoption across single-cell
analysis pipelines, PHATE was selected since it offers
visualization that preserves the local and global structure of the
data, denoises the data using heat-diffusion, and preserves
sample-to-sample affinities when reduced to low dimensions (19).
July 2022 | Volume 12 | Article 892207
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For both PHATE and UMAP based analysis, tumor samples
across all cohorts were widely distributed (Figure 1A,
Supplemental Figures 1A, B). Also strikingly visible, most
clearly in the PHATE reduction output, a large spread of
HNSC samples across the PHATE1 axis was observed
(Figure 1B). We suspect that this is likely due to PHATE’s use
of diffusion mapping techniques, and increased valuation of
sample-to-sample affinities (33, 34). This large spread of
HNSC samples was not entirely surprising given the wide
range of tumor heterogeneity and subtypes resulting from
different etiological origins.

Although a large proportion of samples included in our
analysis were primarily squamous in nature, a subset of
tumors from bladder, cervical, and esophageal samples are
adenocarcinomas. We next evaluated whether PHATE reduction
preserved and separated tumors of varying cellular origins. We
found that for both CESC and ESCA samples, adenocarcinoma
tumors were tightly associated with other adenocarcinoma
tumors, while CESC, ESCA, and HNSC squamous tumors were
spread across the PHATE projection (Figure 1C). Interestingly,
the adenocarcinoma tumors also grouped more closely with the
majority of BLCA samples, which are of urothelial transitional-
Frontiers in Oncology | www.frontiersin.org 4
epithelial cell origin, suggesting stronger transcriptional
similarities between these two tumor types as compared to
tumors of squamous cell origin.

The success of the UMAP and PHATE based analysis
prompted us to consider the possibility that this approach can
be extended to even larger datasets such as those representing
~11,000 TCGA tumor samples. To this end, we used PHATE
successfully to process the bulk RNA-seq data from these tumor
samples and as shown in Supplemental Figure 2, patient cohorts
were finely grouped largely based on tissue of origin. Collectively,
these results affirmed the notion that dimension reduction
techniques such as UMAP and PHATE provide a robust
strategy for visualizing high-dimensional bulk-transcriptomic
data from large sample numbers and features, and importantly
provide a powerful visualization tool for further characterization.

Spectral Cluster Analysis Reveals Hallmarks of
Mesenchymal Transition and Provide Robust
Clustering of Bulk Tumor Samples
Formation of discrete groups of tumors based on shared
biological signal is paramount to cancer subtype analysis, this
can indeed guide well informed treatment options and precision
A

B

C

FIGURE 1 | PHATE dimension reductions of 1,925 squamous cell carcinoma subtypes. (A) Batch-normalized v2 transcriptomic data of HNSC, LUSC, CESC
patient cohorts reduced by PHATE. (B) PHATE reductions split by cancer type (C) CESC and ESCA adenocarcinomas partition with BLCA urothelial tumors and
away from SCC.
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medicine. Recently, John et al. developed a strategy to cluster
both single and multimodal datasets using spectral clustering,
capable of efficiently clustering thousands of input samples with
variable distributions (25). We applied this clustering technique
to the pan-SCC dataset to assess whether this approach could be
extended to large sets of tumor samples.

Spectral clustering analysis resulted in the partitioning of the
1,925 tumor samples into nine clusters (Figure 2A; Supplemental
Figure 3A). Across these nine clusters, tumors crossed cohort
boundaries, though each cluster was predominantly anchored by
a specific cohort (Supplemental Figure 3B, C). For example, out
of the 422 samples in cluster 7, 312 (74%) originated from LUSC,
while 89% (84/94) tumors in cluster 5 are BLCA, as marked by
urothelial specific marker PPARG (Figure 2B; Supplemental
Figure 3C) (35, 36). Cluster formation was also driven by the
adenocarcinoma tumors present in our studies. Cluster 3 captured
79.3% (69/87) ESCA adenocarcinomas tumors, and 83.7% (36/
43) CESC adenocarcinoma tumors (Supplemental Figure 3C).
Conversely, clusters 1, 8, and 9 showed significant representation
from all five studies, suggesting a strongly conserved squamous
cell expression pattern (Supplemental Figure 3C).

Next, candidate gene expression profiles were evaluated
following differential expression analysis between clusters to
Frontiers in Oncology | www.frontiersin.org 5
further contextualize cluster specific gene expression patterns.
Immediately apparent and consistent with previous work were
hallmark gene signatures of the Epithelial-Mesenchymal
Transition (EMT) characterized by high levels of TWIST, VIM,
PDGFRA/B, SNAI1, CYR61 (Figure 2B; Supplemental Figure 4)
(37–40). These signals localize predominantly in cluster 9, and to
a lesser extent cluster 1, in agreement with a split in EMT signal
previously reported between LUSC and HNSC (Figure 2B;
Supplemental Figure 4) (31). Lastly, as expected, CDKN2A,
E2F1, E2F2 and RPA1, hallmarks of HPV+ tumors, showed
enriched expression localized to CESC and a subset of HNSC
samples (Figure 2B; Supplemental Figure 4).

We next sought to understand the relative positioning of tumors
in the two-dimensional projections to further extend this analysis.
We observed a striking expression gradient in key epithelial
associated basal keratin markers such as KRT14, as well as in the
concerted downregulation of desmosome components including
members of the plakophilin family PKP1 and PKP3, and
desmosomal cadherin members desmoglein (DSG1 and DSG3),
desmocollin (DSC2 AND DSC3), and junction plakoglobin JUP.
(Figure 2C; Supplemental Figure 4). In this context, it is worth
noting that the loss of desmosome structures has been shown to
result in decreased cell-cell adhesion, cancer progression, and
A

B

C

FIGURE 2 | Spectral cluster analysis on 1,925 bulk tumor transcriptomic samples. (A) PHATE reductions with spectral clustering results in nine groups of tumors
with variable participation for each tumor cohort. (B) Expression for PPARG, TWIST1, CDKN2A highlight the heterogeneity across the different cohorts. (C)
Conserved squamous and epithelial markers genes (PKP1, TP63, KRT14) show a dynamic range of expression in tumors of squamous origin.
July 2022 | Volume 12 | Article 892207
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increased metastatic potential in head and neck cancers (41). In
contrast, TP63, a crucial regulatory transcription factor important in
development and oncogenesis of epithelial-rich tissues, showed
broad and widespread expression across squamous, but not in
adenocarcinoma or urothelial tumors (Figure 2C) (42–45). This
previously undescribed gradient of epithelial gene expression was
especially apparent within the HNSC population and to a lesser
extent in all five tumor subtypes of squamous origin. The detection
of an expression gradient is particularly encouraging, as PHATE’s
encoding of local affinities prior to diffusion specifically seek to
preserve this latent structure within the data.

These results showcased the strength of dimension reduction
techniques, which when paired with spectral clustering can allow
for powerful visualization. Importantly, the clustering analysis
was performed in an unbiased fashion using the complete
transcriptomic profiles of the tumors, without prior feature
selection. These results also suggest that this strategy can serve
as a generalized framework, and can be applied to diverse tumor
populations for in-depth cancer-specific subtyping and
molecular analysis.
Multimodal Dimension Reduction and
Classification of HNSC Tumors
A hallmark of head and neck cancer is the immense
heterogeneity seen as a result of varying anatomical locations
and underlying molecular etiology (31). Due to this fact, and our
novel finding of a conserved loss of epithelial and desmosome
signatures seen in the pan-SCC analysis, we next performed a
robust characterization and subtyping analysis for 514 TCGA
HNSC samples. Furthermore, to enhance subtype identification
and analysis, we sought to fully integrate multiple data
modalities. We posited that molecular classification of the
HNSC tumor samples using single data modalities, like RNA-
seq or methylation array datasets, might fail to capture the full
range of inter tumor heterogeneity and effects of known
etiological agents, like HPV+ or NSD1/H3K36 impairment.
Towards this end, we applied trimodal spectral clustering
analysis paired with PHATE reduction to incorporate RNA-
seq, DNA-methylation, and microbiome data that was available
for the 514 HNSC samples. For our integrated analysis, each data
modality was reduced to a single-view graph, and integrated
using cross-view tensor-products, and diffused prior to spectral
clustering and dimension reduction using PHATE (25, 26)..

We tracked samples belonging to two well characterized
causes of HNSC, HPV positivity and the methylation-array
based signature of impaired H3K36 methylation described by
Papillon-Cavanagh et al. (13) to evaluate the effectiveness of
multimodal data integration prior to PHATE analysis. PHATE
analysis of RNA-seq alone was insufficient in separating the
H3K36 impaired tumors, and indeed only showed modest
granularity for HPV+ tumors (Figure 3). Conversely, PHATE
analysis of over 300,00 methylation probe beta values concisely
detected impaired H3K36 tumors, as well as HPV+ tumors
(Figure 3). However, aside from these two cohorts the vast
majority of samples remained grouped, suggesting that
methylation data alone is insufficient in recapitulating the full
Frontiers in Oncology | www.frontiersin.org 6
range of previously described subtypes. Similarly, using
microbiome CPM, PHATE was unable to separate either
tumor types (Figure 3). Using our fully integrated similarity
matrix as input into PHATE, we were able to effectively separate
both impaired H3K36 methylation and HPV+ tumor samples,
while maintaining the spread of samples previously seen in the
RNA-only analysis (Figure 3). For these reasons, we chose
PHATE analysis of the fully integrated similarity matrix for
further multimodal subtype analysis.

Multimodal Spectral Clustering of HNSC Tumors to
Elucidate Subtype Heterogeneity
We next sought to test whether multimodal spectral clustering
would partition tumors into biologically meaningful clusters
using our multimodal PHATE projection as the basis for
visualization. Spectral clustering analysis of 514 HNSC tumor
samples generated nine clusters, ranging from 17 samples
(cluster A1) to 76 samples (EMT+) with a median sample-per-
group count of 62 (Figure 4A; Supplemental Figure 5). Previous
analysis of HNSC had revealed four predominant subtypes—
Basal, Classical, Mesenchymal, and Atypical/HPV+ (12, 46–49).
We next evaluated if our clustering was rooted in the four-
subtype system, or if multimodal inputs provided a more
granular partitioning of the HNSC patient cohort that more
accurately mirrored the multiple etiologies and the underlying
distinct transcriptomic and DNA methylation status of
the tumors.
FIGURE 3 | Multimodality dimension reduction as compared to individual data
datasets. PHATE dimension reduction on RNA, methylation, or microbiome
datasets alone or after being combined into a similarity matrix. Left: NSD1
segmentation was only detectable using the methylation and multimodal
reduction. Right: RNA-Seq, methylation and multimodal reductions segment
HPV+ tumors.
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HPV+ and Impaired H3K36 HNSC Subtypes Partition Into
Discrete Clusters
Using available clinical metadata, we first evaluated the HNSC HPV
subtype, revealing that HPV+ tumor samples generated one
predominant group (46/72, 64%) located at the left extreme of the
PHATE1 axis (Figures 4A, B). Recent additions of microbiome
measurements for TCGA patient cohorts enabled us to include a
thirdmodality for our analysis (24). As expected, the top genus, Alpha
papillomavirus was upregulated in the HPV+ cluster (Figure 4C).
Indeed, visualization of a well-established HPV+ marker, E2F2,
confirmed the HPV+ group positioning (Figure 4D) (47).
Frontiers in Oncology | www.frontiersin.org 7
Encouraged by the accurate clustering of HPV+ tumors, and
their defining microbiome and transcriptional signatures, we
next sought to evaluate if our multimodal clustering approach
could efficiently segregate the subset of HNSC tumors that were
previously identified by methylation-based signature of NSD1/
H3K36 impairment (13). Since the previous analysis was
performed using only the top 1,000 variable probes, we
employed the complete set of methylation arrays, with over
300,000 probe beta-values for our multimodal analysis. Indeed,
multimodal clustering was sensitive to this methylation-based
signature, grouping 56 out of the 60 (93%) tumor samples into a
A

B D

E F G

IH J

C

FIGURE 4 | Multimodal clustering and projection of 514 HNSC tumor samples. (A) PHATE reduction of the multimodal integrated similarity matrix of transcriptomic,
methylation, and microbiome datasets. Spectral clustering generated 9 distinct clusters. (B) HPV+ samples predominantly clustered into a single group. (C) Alpha
papillomavirus counts-per-million from the microbiome dataset are shown for each cluster. (D) PHATE projection with expression profile for E2F2, HPV+ marker
gene. (E) H3K36/NSD1 subtype predominantly cluster into a single group. H3K36/NSD1 are defined by Papillon-Cavanagh (13). (F) Mean DNA methylation beta
values across all probes. (G) PHATE projection with global methylation levels. (H) Estimate of the Epithelial-Mesenchymal Transition using the Salt et al. EMT score
(23). (I) AKR1C2 gene expression marks the classical HNSC subtype. (J) Composite score measuring basal marker expression shows a gradient of expression
forming from clusters A1-C1.
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single cluster harboring a mutation in NSD1/H3K36
(Figures 4A, E). Our result demonstrated that no-prior sub
setting of methylation probes was required and that a complete
representation of the methylation dataset in downstream
analyses is feasible, if needed. Also consistent with the results
from Papillion-Cavanagh et al., was the global hypomethylated
state in the NSD1/H3K36 tumors (Figures 4F, G). Beyond the
advantage of the inclusion of large-scale data points, our
approach also enabled us to examine data at probe-specific
resolution. For example, two probes previously reported as
differentially methylated at TP63 transcriptional start sites were
cluster specific, cg16764781 and cg06520450 (31). Our analysis
reveals that the probe cg16764781 is hypomethylated in the HPV
+ group, and is largely specific to that subtype (Supplemental
Figure 6). Taken together, integration of these datasets allowed
for precise evaluation of differential expression, microbiome
abundances, and methylation statuses both at the global and
individual probe level.

Traditional Markers of Epithelial-Mesenchymal Transition,
High Tumor Mutational Burden, and an Epithelial
Gradient of Expression Defines Specific HNSC Clusters
To further characterize the remaining clusters, we focused on
mesenchymal markers and utilized a gene-expression based on
the Epithelial-Mesenchymal Transition (EMT) score as previously
described (23). The estimated EMT score increased from clusters
A1 to our labelled EMT+ cluster, with the highest expression
levels of known mesenchymal markers in EMT+ as compared
to all other clusters (Figure 4H; Supplemental Figure 7). Our
EMT+ subtype exhibit elevated markers VIM, SNAI1, and ZEB1,
consistent with our pan-cancer analysis and with known
molecular features of epithelial-mesenchymal transition.

Upon resolving the identity of the remaining clusters, we
found cluster C1 to be enriched for markers associated with the
classical HNSC subtype, such as ALDH3A1, AKR1C1, and
ARK1C3 (Figure 4I) (12). AKR1C1/3 are up regulated in
response to xenobiotic substances like cigarette smoke, a
primary HNSC cancer etiological agent (46). C1 tumors also
harbor high mutational burden, as well as loss of 1P, and 4P, and
amplification of chr3 q26.33-q27.1 in >40% of the samples
(Supplemental Figure 8). This amplified genomic segment
referred to as the q26.33 OncCassett, includes the gene for
SOX2, a well characterized transcription factor involved in
maintaining stem-like phenotypes in HNSC (Supplemental
Figure 9) (46, 48, 50, 51). Lastly, we found that cluster A1
exhibited variable differences in transcriptional and microbiome
signatures and is comprised of only 17 tumor samples. The
variability of A1 cluster, we suspect is likely influenced by its low
sample number.

In contrast to the EMT+, impaired NSD1/H3K36, and HPV+
tumors, which formed relatively discrete clusters, evaluation of
epithelial markers using a composite basal score of epithelial
markers, displayed decreasing levels across four clusters, labelled
B1, B2, B3, and B4 (Figure 4J). This expression gradient was
consistent with the HNSC spread seen in the pan-cancer analysis,
with decreased expression in the keratin and desmosomal family
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of genes as shown in our pan-SCC analysis (Supplemental
Figure 4). Taken together, our multimodal spectral cluster
analysis of the 514 HNSC tumors using methylation,
transcriptomic, and microbiome-based signatures, partitioned
samples into biologically meaningful cohorts, in large agreement
with previously established subtyping. However, the existence of
a well-defined gradient of gene expression pattern across the
basal subtype was a novel observation and thus became the focus
of our follow-up analyses.

Basal Subtype Analysis Confirm Loss Of Epithelial and
Desmosomal Gene Expression, Changes in Methylation
Patterns, and Altered Tumor Microbiome
To further characterize the basal subclusters, we first identified
key transcriptomic features through pairwise differential
expression between basal subgroups. Top differentially
expressed genes exhibit a decreasing gradient of expression
along the PHATE1 axis of several Keratin and desmosome
genes including KRT14, DSC2, KRT5, PKP1, DSP, JUP as well
as SIX4, RUNX2, and S100A8 (Figures 5A, C, E; Supplemental
Table 1). We suspect that this conserved expression gradient
prevalent across numerous genes is likely the driver of the
PHATE1 axis spread, similar to the gradient formed in the
pan-SCC analysis. This is consistent with diffusion mapping
algorithms which encoded both local sample-to-sample affinities,
as well as global structure between individual samples (33, 34).
Indeed, these tumors exhibited gradients in all three data
modalities. For example, KRT14 and DSC2 associated probes
increased in methylation levels across the PHATE1 axis, and
microbiome levels as seen across numerous genus (Figures 5B,
D; Supplemental Figure 10). Strikingly, within the microbiome
data distinct patterns of genus abundance are detected within our
clusters, with Lactobacillus, Manheimia, Prosthecomicrobium,
and Microvirga showing similar gradients across the basal
clusters (Supplemental Figure 10). Extending this analysis by
overlaying tumor hypoxia estimates using the Ragnum Hypoxic
Score also resulted in a gradient along the basal spectrum, with
highest hypoxic levels in the B4 and C1 clusters (Supplemental
Figure 11). Furthermore, Ingenuity pathway analysis of up and
down regulated genes between the two extremes of the basal
spectrum showed transition from normal epithelial
differentiation in B1 cluster to more invasive and aggressive
SCC in B4 (including activation of proliferation, migration, and
invasion ontologies) (Supplemental Figure 12, Supplemental
Table 2) that correlated with increasing tumor grade
(Supplemental Figure 13).

Immune and Stromal Cell Influence and Partial-EMT
Through the use of single-cell sequencing data, the
transcriptomic signatures that underlie EMT have been
deconvoluted from tumors with high immune and stromal
influences (52–54). We applied the ESTIMATE algorithm,
which measures the immune and stromal content of tumor
samples to evaluate whether any of our clusters showed high
immune and stromal cell influence. ESTIMATE showed our
EMT+ cluster had increased scores for both immune and
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stromal signatures, as well as a decrease in tumor purity as
estimated by Aran et al. (55) (Figures 6A, B). This, we suspect,
is likely the source of the separation of the EMT+ cluster from
the B1-B4 basal groups (Figure 6A). We found TWIST1 and
VIM to be increased along the basal trajectory, while SNAI2
showed higher expression in B3 and B4, while not significantly
different in the EMT group (Figure 6B). This pattern of SNAI2
“peaking” expression in cluster B3 suggests SNAI2 occupies an
intermediate stage of the EMT process as reported previously
(57). Similarly, ITGA5 was found to be enriched in both the
B3/B4 and EMT+ clusters, consistent with the oncogenic
integrin signaling between tumor microenvironment and the
recently described EMT-like tumor specific keratinocyte (TSK)
cell populations in cutaneous SCC (Supplemental Figure 14)
(54). Lastly, LAMC2, S100A8, and KLK11 expression patterns
were in agreement with the partial-EMT state of HNSC as
described by Puram et al. (Supplemental Figure 14) (53, 54).
The robust detection of the nuanced partial-EMT states in
bulk-tumors further highlight the efficacy of our multimodal
analysis strategy.
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Multimodal Clustering Segments Tumor Groups With
Variable Survival Outcomes
We next sought to evaluate clinical outcome for our HNSC
clusters. Kaplan-Meier survival curve analysis illustrated stark
differences in 5-year overall-survival rates, indicating clinical
ramifications for the underlying heterogeneity seen in our
multimodal spectral clusters (Figure 7). HPV+ samples, EMT+,
and NSD1/H3K36 groups were associated with the best median
survival of ~62 months, while cluster B4 had the lowest among the
four basal clusters. Indeed, tumors grouped in B4 had the worst
median survival of ~26.5 months, across all 9 groups. The median
survival outcomes for the B1 group were nearly twice as long at a
median of 56.48 months. Lastly, cluster B1 exhibits elevated
expression of CYSRT1, a gene previously identified as positively
correlated to overall-survival, consistent with Kaplan-Meier curve
analysis (Supplemental Figure 15) (58). The pairing of two
flexible analysis strategies, PHATE dimension reduction and
multimodal spectral clustering, aided in us in identifying
subgroup heterogeneity linked with survival outcomes in HNSC,
and allowed for detailed interrogation of underlying methylation,
A

B

D

E

C

FIGURE 5 | Basal-focused subgroup analysis exploring transcriptional expression gradients. (A) KRT14 gene expression across the PHATE1 axis using loess curve
smoothing, and on the PHATE projection. (B) DNA methylation at KRT14 associated probes across the PHATE1 axis using loess curve smoothing, and on the
PHATE projection. (C) DSC2 gene expression across the PHATE1 axis using loess curve smoothing, and on the PHATE projection. (D) DNA methylation at DSC2
associated probes across the PHATE1 axis using loess curve smoothing, and on the PHATE projection. (E) Heatmap of the top 30 DEGs between cluster B1 and
B4 show shift of epithelial and desmosome gene expression, ordered by the PHATE1 axis.
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transcriptional, and microbiome patterns through unbiased
multimodal data integration.
DISCUSSION

Large scale and integrated analysis of tumors, often based on
multiple data modalities has revealed immense heterogeneity for
most cancers. What has become quite clear from such studies is that
cancers originating from the same human tissue or organ can
dramatically differ in their etiology, pathology and the underlying
genomic and epigenomic alterations. Precise tumor classification
and identification of cancer subtypes based on underlyingmolecular
signatures is thus an important step towards better understanding of
the disease and importantly, for targeted therapy. This has led to
recent studies such as the PanCancer Atlas integrative analysis,
which identified 28 distinct molecular subtypes arising from the 33
different tumor types (21). Indeed, the unsupervised consensus
clustering of tumor profiles performed across multiple TCGA
genome-wide platforms including DNA methylation and RNA
sequencing in the aforementioned study have reaffirmed the
striking diversity of tumors and offered new insights into their
molecular taxonomy. However, despite these advances, it is likely
that there exist fine-grained tumor subtypes that are yet to be
discovered. Such discovery would benefit from integrated
application of new analytical and visualization tools to better
parse the diverse sets of multi-dimensional data generated by
high-throughput technologies.
B

C

A

FIGURE 6 | The Epithelial-mesenchymal transition and detection of pEMT. (A) ESTIMATE stromal and immune scores across the B1 to B4 and EMT+ clusters (56).
Pairwise Wilcoxon tests for each cluster compared back to B1, with associated p-values (B) Consensus tumor purity score derived by Aran et al. (55) (C) Expression
of the EMT marker genes across basal clusters.
FIGURE 7 | HNSC subgroups have differing times to median survival and long-
term survival. Top: Kaplan-Meier curve analysis of all 9 multimodal clusters overall
survival using the Log Rank Test with pval = 0.0380 (q=0.076). Bottom: Kaplan-
Meier curve analysis of B1 and B4 clusters using the Log Rank Test with pval =
0.0178 (q=0.0308).
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Towards this end, several powerful strategies have been
developed to interrogate multi-omic datasets (59). Examples of
such strategies include low rank approximation based multi-
omics data clustering (LRAcluster), which relied on linearly
concatenate multi-omic profiles prior to probabilistic modeling
and clustering of a latent subspace (60). This dimension
reduction strategy allowed for integrative clustering of large-
scale cancer multi-omics data. Other examples, including
perturbation clustering for data integration and disease
subtyping (PINS) and cluster-of-cluster assignments (COCA),
which cluster each data view separately before they are integrated
through consensus clustering strategies (61, 62). Similarly,
statistical approaches using Bayesian statistics like canonical
correlation analysis (CCA), iClusterBayes, BCC, are also
capable of multi-modal analysis, with the added benefit of
providing the probability of a sample belonging to a given
cluster (63–66).

As an alternative to such integration algorithms, similarity-
based strategies rely on first computing sample-to-sample
measures of similarity or differences, prior to integration. This
initial computation lends itself well to omic-based datasets of
variable distributions (59). Recently, MoGCN has parlayed the
advantage of autoencoders paired with neural networks for
cancer subtype classification and analysis of breast invasive
carcinoma (BRCA) samples (67). Indeed, similarity-based
integration paired with spectral clustering techniques have
provided an efficient method to handle complex genomic
datasets of varying distributions (25, 26). Building upon these
studies, here we present a computationally efficient analysis
framework using similarity-based integration that allows
for inter-cluster inspection and visualization at a much
granular resolution.

We showcase the benefit of an integrated approach that relies
on multimodality spectral clustering paired with dimension
reduction techniques on large and complementary cancer
genomic datasets. Indeed, we demonstrate the flexibility and
performance of these algorithms, which in a seamless and robust
fashion can handle datasets of varying size such as the pan-
Cancer, pan-SCC and the HNSC patient cohorts from TCGA.
Additionally, our strategy overcomes the limitation of traditional
clustering approaches, which operate on single-view
representations of a given sample set, and are designed to
assign community participation based on a distance heuristic
(68). This is particularly relevant for high dimensional data, like
those analyzed in this study. Our results also suggest that the
traditional classification approach of organizing tumor samples
into discrete bins prior to calculating an average tumor profile
based on a single mode of data offers only a static and limited
view. Cancer progression is intimately associated with dynamic
molecular changes in the molecular gene expression, DNA
methylation states, and other modalities that are often
transient in nature. We show that powerful dimension
reduction techniques such as PHATE offer a better
understanding of these transitions by ordering individual
samples along these trajectories thus generating a non-discrete
Frontiers in Oncology | www.frontiersin.org 11
representation of the heterogeneity that is deeply inherent to
most tumors.

We sought to probe the efficacy of dimension reduction and
multi-view clustering strategies on HNSC tumors given that
these represent distinct anatomical locations, diverse molecular
mechanisms of carcinogenesis and highly heterogeneous tumor
microenvironment. Unsurprisingly, patients with HNSC tumors
have varying clinical responses among the 3-5 molecularly
defined subtypes that have been primarily clustered anchored
on single-data-view representations (69, 70). For our approach,
we utilized integrated methylome, transcriptome, and
microbiome signatures on TCGA HNSC tumors using recent
advances in multi-graph integration using three data modalities.
The nine clusters that were identified in our analysis included
known HNSC subtypes such as the HPV+ and NSD1/H3K36
impaired groups, aided by inclusion of the tumor-specific
microbiome, and DNA-methylation status, respectively.
However, unlike previous reports, we found the basal subtype
to be quite complex with four well-partitioned clusters that
reflected a gradient of gene expression typified on one end by
keratin enriched (B1) and mesenchymal markers (B4) on the
other. These clusters also exhibited gradients in DNA
methylation states and associated microbiome (Lactobacillus,
Wolbachia, and Mannheimia among others) levels, further
highlighting the power of the multimodal analysis. The
incorporation of the microbiome state in our analysis is
particularly interesting and worth further investigation because
it is becoming clear that oral and gut microbiome are associated
with HNSC development, progression, treatment and its
potential side effects (71).

Several additional observations from our analysis of the
HNSC tumors are note-worthy. First, by preserving global
sample-to-sample relationships while ordering tumors by local
affinities, PHATE highlighted the dynamic range of expression
along the Epithelial-Mesenchymal transition (EMT) state in
HNSC tumors. Furthermore. our study reaffirmed the evolving
notion that tumor ecosystems often exhibit a continuum of
meta-stable, intermediary pEMT (or hybrid) states between the
epithelial and mesenchymal poles (72, 73). Second, clear
segmentation of tumor samples characterized by heterogeneous
cell populations and low tumor purity, such as stromal and
immune cells, demonstrate the robustness and sensitivity of
dimension reduction algorithms. We posit that unlike in the
case of principal component analysis where the first two to three
dimensions are driven by global variance, PHATE allowed us to
model a broader and accurate representation of the multi-cellular
tumor ecosystem. Indeed, this information is often lost using
commonly used hierarchical clustering strategies which rely on
pre-selected gene lists or only subsets identified a priori by
principal component analysis.

Current treatment options for HNSC primarily consist of
surgery, radiation and chemotherapy, administered in single or
multi-modality regimens. However, these treatments still leave
room for substantial improvement in efficacy and importantly
does not consider molecularly defined subsets. Furthermore,
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approval of immunotherapy drugs such pembrolizumab and
nivolumab for adjuvant treatment of recurrent and metastatic,
or advanced unresectable HNSC, underscore the urgent need for
research into tumor heterogeneity to better identify patients that
are likely to be responders (74, 75). Given the complex link
between immunomodulation and tumor microenvironment, a
more robust and accurate classification strategy will be beneficial
(76). Although we used HNSC to test our multimodal strategy,
our studies provide a generalizable framework that can be
applied to any cancer or other diseases. In addition, our
approach can easily incorporate additional genomics data
beyond methylation, transcriptome, and the microbiome.
Finally, it is also important to consider novel data imputation
strategies to maintain robust sample numbers in the event that
not all data modalities are collected and available for each
patient. Evolving techniques such as generative adversarial
neural networks, among other machine learning strategies, can
provide accurate predictions of both transcriptomic and
methylation states that could be incorporated for multimodal
clustering (77–79). Development of rapid and scalable
multiomics data integration and mining strategies will
continue to enable better modeling of the inherent
heterogeneity of tumors and offer molecular insights into their
complex and granular landscape.
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