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Quantum enhanced multiple-phase estimation with
multi-mode N00N states
Seongjin Hong1, Junaid ur Rehman 1,2, Yong-Su Kim1,3, Young-Wook Cho1,4, Seung-Woo Lee1, Hojoong Jung1,

Sung Moon1,3, Sang-Wook Han1,3 & Hyang-Tag Lim 1,3✉

Quantum metrology can achieve enhanced sensitivity for estimating unknown parameters

beyond the standard quantum limit. Recently, multiple-phase estimation exploiting quantum

resources has attracted intensive interest for its applications in quantum imaging and sensor

networks. For multiple-phase estimation, the amount of enhanced sensitivity is dependent on

quantum probe states, and multi-mode N00N states are known to be a key resource for this.

However, its experimental demonstration has been missing so far since generating such

states is highly challenging. Here, we report generation of multi-mode N00N states and

experimental demonstration of quantum enhanced multiple-phase estimation using the

multi-mode N00N states. In particular, we show that the quantum Cramer-Rao bound can be

saturated using our two-photon four-mode N00N state and measurement scheme using a

4 × 4 multi-mode beam splitter. Our multiple-phase estimation strategy provides a faithful

platform to investigate multiple parameter estimation scenarios.

https://doi.org/10.1038/s41467-021-25451-4 OPEN

1 Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul, Korea. 2 Department of Electronics and Information Convergence
Engineering, Kyung Hee University, Yongin, Korea. 3 Division of Nano and Information Technology, KIST School, Korea University of Science and Technology,
Seoul, Korea. 4 Department of Physics, Yonsei University, Seoul, Korea. ✉email: hyangtag.lim@kist.re.kr

NATURE COMMUNICATIONS | (2021) 12:5211 | https://doi.org/10.1038/s41467-021-25451-4 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25451-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25451-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25451-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25451-4&domain=pdf
http://orcid.org/0000-0002-2933-8609
http://orcid.org/0000-0002-2933-8609
http://orcid.org/0000-0002-2933-8609
http://orcid.org/0000-0002-2933-8609
http://orcid.org/0000-0002-2933-8609
http://orcid.org/0000-0002-4068-2902
http://orcid.org/0000-0002-4068-2902
http://orcid.org/0000-0002-4068-2902
http://orcid.org/0000-0002-4068-2902
http://orcid.org/0000-0002-4068-2902
mailto:hyangtag.lim@kist.re.kr
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Quantum metrology has attracted intensive interest in
recent years, as it allows us to estimate an unknown
parameter with enhanced sensitivity over classical

approaches. Developments are now directed towards various
applications such as microscopy1–5, biological imaging6–10 and
sensor network11–13. In such practical applications, quantum
metrology is naturally extended to multiple parameter scenario,
since the number of parameters that affect a physical process is
generally more than one. For estimating multiple parameters,
simultaneous estimation is desirable as it can achieve higher
precision than an individual estimation of each parameter using
the same amount of resources14,15. Furthermore, if a physical
system of interest has time dynamics, estimation of multiple
parameters has to be done simultaneously. However, unlike single
parameter estimation, it is non-trivial to optimize multiple
parameter estimation to achieve the maximum sensitivity. Var-
ious strategies have been thus proposed to enhance the sensitivity
by optimizing either the probe states or the measurement
scheme14–22. For example, quantum strategies exploiting various
quantum probe states such as Greenberger–Horne–Zeilinger
states23, single-photon Fock states24, squeezed states12,25–28,
Holland-Bernett states29–31, and N00N states14,32,33 have been
extensively studied.

In particular, N00N states have been outstanding to investigate
the fundamental quantum limit of quantum metrology given by
the Heisenberg uncertainty principle with a fixed number of
particles34. In a single-phase estimation scheme, N00N states can
saturate the Heisenberg limit thanks to its largest number var-
iance between the two modes34. Enhanced sensitivity beyond the
standard quantum limit has been experimentally demonstrated
with N00N states35,36. Recently, the concept of N00N states has
been extended to generalized multi-mode N00N states to inves-
tigate the quantum enhancement in multiple-phase estimation14.
Moreover, for multiple-phase estimation with limited resources, it
has been known that multi-mode N00N states allow achieving the
enhanced sensitivity outperforming the other quantum probe
states or classical strategies for a multi-mode
interferometer14,15,32. However, since generation of such multi-
mode quantum probe states is challenging, experimental
demonstrations of multiple parameter quantum metrology have
been limited to utilizing quantum states other than multi-mode
N00N states12,15,23,24,27,29.

In this work, we experimentally demonstrate quantum
enhanced multiple-phase estimation using a multi-mode N00N
state with photon number N= 2 and mode number m= 4. To
this end, we propose a scheme for generating multi-mode N00N
states. At first, we observe that the measured interference fringes
exhibit phase super-resolution as a function of phase differences
φi (i= 1, 2, 3) of the generated 4-mode 2002 state with a mea-
surement scheme using a 4 × 4 multi-mode beam splitter, so-
called a quarter37,38. Then, we demonstrate quantum enhanced
phase sensitivity of the 4-mode 2002 state by analyzing the
Cramer-Rao bound (CRB) and the quantum Cramer-Rao bound
(QCRB)14,16,17,39. Moreover, we show that the measured sensi-
tivity is better than a coherent state jαi, which is a classical probe
state, as well as another quantum probe state prepared by single-
photon Fock states24. Our results can motivate an investigation
into the quantum strategies using multi-mode and multi-particle
entanglement to develop the quantum enhanced multiple para-
meter metrology.

Results
Multiple-phase estimation scenario. Let us begin by introducing
the system model for multiple-phase estimation schemes with

multi-mode N00N states defined as

ψN
m

�� � ¼ 1ffiffiffiffi
m

p ð N0 � � � 0j i þ 0N0 � � � 0j i þ � � � þ 0 � � � 0Nj iÞ; ð1Þ

where N is the number of photons, and they are distributed along
m modes14,32,33. The multi-mode N00N state is a coherent
superposition of all possibilities where N photons in one mode
and none in any of the other m− 1 modes34. Then, we theore-
tically analyze the sensing scheme of d=m− 1 unknown mul-
tiple phases and the fixed photon number N= 2 with different
probe states. A quantum probe state undergoes individual phase
shifts φ= {φ1, φ2,⋯ , φd} and the phase shifted state is combined
using an m ×m multi-mode beam splitter and then detected by
photon number-resolving detectors (PNRDs) at each mode. Here,
the goal is to minimize the total uncertainty of the phase esti-
mation governed by the CRB and the QCRB. The lower bound of
the sum of the variance of each phase estimation given by the
CRB and the QCRB is14,16,17,39

∑
d

i¼1
jΔφij2 ≥

Tr ½F�1
C ðφÞ�
μ

≥
Tr ½F�1

Q ðφÞ�
μ

; ð2Þ

where FC(φ) is the classical Fisher information matrix (CFIM),
FQ(φ) is the quantum Fisher information matrix (QFIM), and μ is
the number of measurements. Note that F−1 refers to the inverse
of the Fisher information matrix F. The first and second
inequalities are direct consequences of the CRB and the QCRB,
respectively. Note that in our experiments, the CRB can always be
saturated, asymptotically in μ, by using maximum likelihood
estimator, and the mean of phases are expected to converge to the
true values17,39.

We theoretically analyze the CRB and the QCRB of d multiple-
phase estimation scheme with two different probe states. The first
probe state we consider is a classical state prepared by injecting a
coherent state αj i with an average photon number N ¼ 2 into
one of the input ports of an m ×m multi-mode beam splitter
(Fig. 1a), and the other probe state is the two-photon m-mode
N00N state (Fig. 1b). The measurement scheme is identical for
two probe states. Each mode of the probe states is combined at
another m ×m multi-mode beam splitter after undergoing phase
shifts, and then measured by PNRDs. We provide the CRB and
the QCRB values of the total variance∑ Δφ

�� ��2 for two probe states
of coherent states and multi-mode N00N states with various
number of phases d in Fig. 1c. Note that multi-mode N00N states
always have lower phase uncertainty than coherent states, i.e.,
classical probe states.

Generation of the 4-mode 2002 state. The conceptual diagram of
our proposed scheme for preparing the multi-mode N00N state
with N= 2 and m= 4 is shown in Fig. 2a. The generation process
of 4-mode 2002 state jψ2

4i is the following:

jΦþi ¼ 1ffiffiffi
2

p j1Hα0 1
H
α1
i þ j1Vα01

V
α1
i

� �
!BS 1

2
j2Hβ00β1i þ j0β0 2

H
β1
i þ j2Vβ00β1i þ j0β0 2

V
β1
i

� �
!PBS;HWP 1

2
j2Ha0 0a1 0a20a3i þ j0a0 2

H
a1
0a20a3i

�
þ j0a0 0a12

H
a2
0a3i þ j0a0 0a10a22

H
a3
i
�
:

ð3Þ

Here, jΦþi ¼ 1ffiffi
2

p ðj1Hα01Hα1i þ j1Vα0 1Vα1iÞ is the triplet Bell state

where, for example, j1Hα0i denotes the horizontally polarized
single-photon state in the mode α0. Our scheme can generate
ψ2
4

�� �
with a unity conversion probability from the pre-selected
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initial Φþ�� �
state into ψ2

4

�� �
, thus two-photons always move

together, see Methods for the detailed information. Then, pre-
pared ψ2

4

�� �
undergoes phase encoding φi (i= 1, 2, 3) and it is

combined by a quarter as shown in Fig. 2b. The output states are
measured by single-photon detectors located at each mode. Note
that one output port of the quarter is split into two (b00 and b0″)
using a 50/50 fiber beam splitter to implement a pseudo-PNRD.
Post-selected two-photon coincidence counts of both output port
b00 and b0″ correspond to the two-photon counting at b0 with
success probability of 1/2. The schematic of experimental setup is
shown in Fig. 2c.

As a first step to verify the generation of ψ2
4

�� �
, we investigate

the coherence among all four modes of ψ2
4

�� �
by observing the

interference fringes between the reference mode (a0) and one of
the other modes (ai). We measure the two-photon coincidence
counts on b00 and b0″, Cb00b000 , of two input modes while we block
the other two input modes. The phase shift φi is realized by
adjusting the optic axis angle θi of the half waveplate (HWP)
located between two quarter waveplates (QWPs). Note that
φi= 2θi. As shown in Fig. 3a–c, results of Cb00b000 clearly reveal two
times faster sinusoidal modulations compared to the single-
photon input case due to the λ/2 photonic de Broglie wavelength
of two-photon N00N states40–42.

Then, in order to directly confirm the generation of ψ2
4

�� �
, we

measure two-photon probability distributions for the output
states when we use all of the input modes a0, a1, a2, and a3 of ψ2

4

�� �
while we vary one of the phase encoding φi. The experimental
results of the interference fringes from all of the modes are shown
in Fig. 3d–f, and they are compared with the theoretical
calculations. We obtain the theoretical predictions of Cb0b0

,

Cb0b1
, Cb0b2

, and Cb0b3
based on the ideal ψ2

4

�� �
and the

experimentally reconstructed quarter transition matrix. Then we
experimentally measured post-selected coincidence counts of Ci

for i ¼ b00b000 ; b00b1; b00b2 and b00b3. See Supplementary Note 1 for
the detailed information on a quarter transition matrix and
theoretical calculations. The results of Fig. 3d–f shows that the
experimentally obtained interference fringes without normal-
ization are very well-matched to the theoretical calculations, thus
we can confirm that the prepared input state is ψ2

4

�� �
.

Experimental multiple-phase estimation. Then, we investigate
the sensitivity bound of multiple-phase estimation using our pre-
pared ψ2

4

�� �
as a probe state. At first, we theoretically calculate the

CRB with an ideal ψ2
4

�� �
and an ideal quarter when the CRB satu-

rates the QCRB. We obtain the theoretical two-photon detection
probability set of {Pl(φ)} (l= 0, 1, . . . , 9) with a set of projectors
fΠ̂lg ¼ 2000j if 2000h j, 0200j i 0200h j, 0020j i 0020h j, 0002j i 0002h j,
1100j i 1100h j, 0011j i 0011h j, 1010j i 1010h j, 0101j i 0101h j,
1001j i 1001h j, 0110j i 0110h jg satisfying the normalizing condition
∑lPl(φ)= 1. Note that P0= P1= P2= P3, P4= P5, P6= P7, and
P8= P9 for all φ (See Methods). Then CFIM is given by

FCðj;kÞ ¼ ∑
9

l¼0

1
PlðφÞ

∂PlðφÞ
∂φj

 !
∂PlðφÞ
∂φk

� �
; ð4Þ

where j and k can be 1, 2, and 3. The minimum value of the CRB is
obtained to be Tr ½F�1

C ðφÞ�= 1.5 where φ1≃ π/2, φ2= 0, and
φ3= π/2, and it saturates the QCRB= 1.5. In order to experi-
mentally estimate the CRB value, we obtained interference fringes
by scanning φ1 near the point where we expected both the CRB and
the QCRB to be saturated (φ2=−0.07π and φ3= 0.52π) for the
prepared ψ2

4

�� �
exp probe state (See Methods). Two-photon detection

probabilities Pmb0b0 , P
m
b0b1

, Pmb0b2 and Pmb0b3 are then obtained from the
measured post-selected coincidence counts with μ≃ 8, 144, Ci,
(i ¼ b00b000 ; b00b1; b00b2, and b00b3), which were appropriately nor-
malized assuming the following relations
Pexp
0 ¼ Pexp

1 ¼ Pexp
2 ¼ Pexp

3 ¼ Pmb0b0 , Pexp
4 ¼ Pexp

5 ¼ Pmb0b1 ,

Pexp
6 ¼ Pexp

7 ¼ Pmb0b2 , and Pexp
8 ¼ Pexp

9 ¼ Pmb0b3 . Note that the
assumed relations are always satisfied for Pl(φ) with an ideal quarter
and the experimentally reconstructed quarter transition matrix is
close to an ideal quarter. Then obtained Pexp

l ðφÞ are functions of
unknown phases φ and used to calculate the derivatives in Eq. (4).
The detailed relation between Pexp

l ðφÞ and Pmbibj are provided in

Supplementary Note 3.
Experimentally obtained two-photon detection probabilities are

shown in Fig. 4a where our experimental data are well-matched to
our fitting function Pexp

l ðφÞ, which are obtained from ψ2
4

�� �
exp

and

Uq;exp (see “Methods”). The CFIM can be obtained by using
Pexp
l ðφÞ, and the diagonal terms of the CFIM at various φ1 are

plotted in Fig. 4b (see “Methods” for the detailed information).
Note that the maximum values of all diagonal terms of the CFIM
are 3 at φ1≃ 0.5π with an ideal ψ2

4

�� �
state and an ideal quarter.

Then we numerically find the minimum CRB of Tr ½ðFexpC Þ�1ðφÞ� ¼
1:85 ± 0:01 when φ1≃ 0.47π, φ2=−0.07π, and φ3= 0.52π from

Fig. 1 Quantum enhanced multiple-phase estimation scheme. The goal is
to estimate the d multiple phases with phase shifts φ1,…, φd while
minimizing the total uncertainty of phase estimation governed by the CRB
and the QCRB. To estimate the multiple phases, coherent states with N ¼ 2
(a) and (d+ 1)-mode N00N states with N= 2 (b) are used for probe states.
c The total variance of multiple-phase estimation obtained by the CRB and
the QCRB as a function of the number of unknown phases d with two probe
states. It clearly shows that multi-mode N00N states always have better
sensitivity compared to coherent states.
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Pexp
l ðφÞ, which is clearly smaller than the CRB of the coherent state
Tr ½ðFC;cohÞ�1ðφÞ� ¼ 3 with the same average photon number N ¼
2 as shown in Fig. 4c (see Supplementary Note 3 for the detailed
calculation on estimating the CRB and results with respect to φ2
and φ3.). Note that the ideal CRB value can achieve 1.5 to saturate
the QCRB with an ideal ψ2

4

�� �
state and an ideal quarter at φ1≃ 0.5π,

φ2= 0, and φ3= 0.5π.

In our experiment, experimental errors are mainly from non-
unity visibility of the observed interference, a phase fluctuation in
each arm of an interferometer, a normalization assumption due
to lack of superconducting nanowire single-photon detector
(SNSPD) channels, and the fact that the quarter (Uq;exp) used in
our experiment is slightly different from an ideal quarter Uq, see
Methods for comparison between Uq;exp and Uq. In particular, in

Fig. 2 Schematic of the experimental setup. a A simplified scheme of preparing 4-mode 2002 state ψ2
4

�� �
from Φþ�� �

using the Hong-Ou-Mandel
interference effect48, see Eq. (3). b The prepared ψ2

4

�� �
undergoes the phase shift φi (i= 1, 2, 3) in each mode. After the phase encoding, a quarter is used

for combining four modes of the probe state, and then the two-photon output states are detected using single-photon detectors. In particular, one of the
output modes of quarter (b0) is divided into two modes using a FBS for two-photon detection in that mode. c Experimental setup for generating ψ2

4

�� �
state

and performing quantum enhanced multiple-phase estimation. See Methods for detailed information on ψ2
4

�� �
state generation. The prepared probe state

ψ2
4

�� �
undergoes phase encoding using a set of Q*-H-Q* located in each mode. Then, after the quarter and the FBS, the two-photon coincidence counts are

measured using SNSPDs. BS: beam splitter; PBS: polarizing beam splitter; DM: dichroic mirror; DWH: dual wavelength half waveplate; PPKTP: periodically
poled KTiOPO; M: mirror; LPF: long pass filter; SMF: single mode fiber; Q: quarter waveplate; H: half waveplate; LBS: lateral beam splitter; Q*: quater
waveplate with an optic axis of 45∘; FBS: 50/50 fiber beam splitter; SNSPD: superconducting nanowire single-photon detector.

Fig. 3 Measured interference fringes for the ψ2
4

�� �
probe state. a–c Among four modes of ψ2

4

�� �
, two input modes are blocked while the reference mode a0

and the one of the other modes ai with i= 1, 2, 3 are used. Two-photon coincidence counts Cb00 b000
between two modes b00 and b000 are measured with varying

the phase encoding φi. Experimental data are fitted with a sinusoidal function, which has two times faster modulation period with respect to the single-
photon input case and has a good agreement with the visibility V= 0.920 (a), 0.980 (b), and 0.979 (c), respectively. d–f Interference fringes obtained by
two-photon coincidences of Cb00 b000

, Cb00 b1
, Cb00 b2

, and Cb00 b3
(black, red, blue, and green, respectively) with scanning one of φi(i= 1, 2, 3) when all of the

input modes of ψ2
4

�� �
are used. Solid lines represent theoretical calculations based on an ideal ψ2

4

�� �
input state and an experimentally reconstructed quarter

transition matrix. All error bars represent one standard deviation.
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Eq. (4), with an ideal quarter, ∂Pl(φ)/∂φj= 0 should be at the
same φj value for all Pl(φ), however, a non-ideal quarter transition
matrix Uq;exp makes ∂Pexp

l ðφÞ=∂φj ¼ 0 happens at slightly

different φj values. One can notice it from Fig. 4a that Pmb0b0 ,

Pmb0b1 , and Pmb0b3 (Pmb0b2 ) do not have their minimum (maximum)
value at φ1= 0.5π. This is the reason why the minimum value of
the CRB is not obtained at φ1≃ 0.5π but φ1≃ 0.47π.

Furthermore, we emphasize that the enhanced sensitivity can
be obtained by the prepared ψ2

4

�� �
probe state compared to other

quantum probe states using single-photon Fock states ψFock
�� �

proposed in ref. 24, where 1100j i state is used as an input state
instead of αj i in Fig. 1a (detailed calculations are provided in
Supplementary Note 2). Moreover, we theoretically compare the
sensitivity bounds between our multi-mode N00N state and an
amplitude-unbalanced multi-mode N00N state ψu

�� �
, which is

proposed in refs. 14,15,39. The amplitude-unbalanced multi-mode
N00N state has the form of ψu

�� � ¼ α N0 � � � 0j i þ βð 0N0 � � � 0j i þ
� � � þ 0 � � � 0Nj iÞ with α2+ dβ2= 1 and β ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ

ffiffiffi
d

pp
. ψu

�� �
is

known to have the minimum QCRB among the multi-mode
N00N states14,15,39. In a measurement scheme using a quarter and

PNRDs, the QCRB and the CRB values of ψu

�� �
with N= 2 and

d= 3 are theoretically calculated to be 1.4 and 1.62, respectively.
Here, we find that even though ψu

�� �
has the lower QCRB of 1.4

than 1.5 of our ψ2
4

�� �
, ψ2

4

�� �
can provide a better sensitivity (smaller

CRB) 1.5 than 1.62 of ψu

�� �
with a realistic measurement scheme

using a quarter. Note that an optimal measurement saturating the
QCRB may not be experimentally feasible14,17.

In Table 1, we summarize the ideal QCRB and CRB values for
various probe states as well as the CRB values obtained from our
experimental results. We emphasize that the experimentally
obtained CRB value of 1.85 ± 0.01 provides a better sensitivity
than the ideal CRB values of 3 for αj i and 2.44 for ψFock

�� �
.

Our experiments use the post-selection technique and does not
consider the photonic losses due to experimental imperfection43

and lack of high-efficiency PNRDs36. By considering the post-
selection probability and photon losses, the CRB of our ψ2

4

�� �
state

cannot outperform the classical strategy. However, a genuine
quantum enhancement can be achieved if one uses the state-of-
art technologies such as high-efficiency PNRDs and optimized
low-loss optical components with our ψ2

4

�� �
state. Note that the

post-selection technique does not affect the proof-of-concept
verification of quantum enhancement and post-selection is
standard technique used in almost previous quantum metrology
experiment15,23,24,29. The corresponding quantitative analysis as
well as the detailed discussions on photonic losses in our
experimental setup are provided in Supplementary Note 4.

Discussion
In conclusion, we proposed a scheme for generating a multi-
mode N00N state and experimentally demonstrate that the pre-
pared quantum probe state is the 4-mode 2002 state by observing
various interference fringes shown in Fig. 3 using a quarter and
photon number resolving detection using post-selective pseudo-
PNRDs. Moreover, we exploit the prepared 4-mode 2002 state as
a quantum probe state for simultaneously estimating three phases
of a 4-mode interferometer with quantum enhanced sensitivity.
Then, we confirm that the CRB obtained by our 4-mode
2002 state and measurement scheme can saturate the QCRB.
Our results provide a practical platform to investigate intriguing
issues in the field of quantum multiple parameter metrology. At
first, we emphasize that our scheme can be extended to genera-
tion of higher-mode N00N states. For instance, one can exploit a
multiple-path Sagnac interferometer44 to increase the number of
modes from 4 to 4n, i.e., ψ2

4n

�� �
, where n is the number of Sagnac

interferometers, and then one can estimate up to 4n− 1 phases
simultaneously. Note that another scheme for generating multi-
mode N00N states with N ≥ 2 has been theoretically proposed33.
However, experimental demonstration seems to be challenging
within current technology since it requires extremely strong
nonlinearity or deterministic generation of multi-photon states.
Another interesting future direction would be finding a realistic

Fig. 4 Measured two-photon detection probabilities with scanning φ1 and
the corresponding Fisher information and CRB. a Pmb0b0 , P

m
b0b1

, Pmb0b2 , and
Pmb0b3 (black, red, blue, and green, respectively) at φ2=−0.07π and
φ3= 0.52π. Solid lines represent fitting functions using the ψ2

4

�� �
exp

probe
state and the experimentally reconstructed quarter transition matrix Uq;exp.
b Corresponding orthogonal term of CFIM obtained from the measured
probabilities Pmb0b0 , P

m
b0b1

, Pmb0b2 , and Pmb0b3 as a function of φ1. c Corresponding
CRB values. Orange and green lines correspond to the experimental results
and the theoretical calculation, respectively. Dashed purple and cyan lines
refer to the minimum CRB values: 3 for a coherent state (N ¼ 2) and 2.44
for ψFock
�� �

using an ideal quarter, respectively. All error bars represent one
standard deviation and shaded areas correspond to the one standard
deviation from uncertainty of the fitting parameter.

Table 1 CRB and QCRB for total variances of ∑∣Δφ∣2 with
various probe states.

Probe state U QCRB CRB

αj i (N ¼ 2) Uq 3 3
ψFock
�� �

24 Uq 2.33 2.44
ψu

�� �
14 Uq 1.4 1.62

ψ2
4

�� �
Uq 1.5 1.5

ψ2
4

�� �
exp

Uq;exp 1.54 ± 0.01 1.85 ± 0.01
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measurement scheme for minimizing the CRB. In general, the
CRB obtained by measurement scheme using a balanced multi-
mode beam splitter cannot saturate the QCRB, see Fig. 1c with
d= 2, 4, 5. Since the optimal measurement saturating the QCRB
involves complex multi-photon states, it may not be experimen-
tally feasible14,17. Hence, finding an experimentally realistic
measurement scheme minimizing the CRB is essential for prac-
tical applications. Our results have direct applications for the
quantum enhanced phase object imaging requiring a low photon
flux7,45,46. In addition, our results can pave the way for demon-
strating distributed quantum enhanced multiple-phase estimation
by increasing the number of phases in local interferometers
consisting of distributed quantum sensors12,23,27.

Methods
4-mode 2002 state preparation. We used a CW single frequency laser operating
at a center wavelength of 780 nm. The polarization of pump laser is set to Dj i ¼
Hj i þ Vj ið Þ= ffiffiffi

2
p

polarization. The 10 mm-thick type-II periodically poled
KTiOPO4 (PPKTP) crystal with 46.15 μm poling period is located at the center of
the Sagnac interferometer, which consists of a dual wavelength polarizing beam
splitter (PBS), a dual wavelength HWP whose optic axis is oriented at 45∘, and two
dual wavelength mirrors as shown in Fig. 2c47. Here, dual wavelength optical
components are designed for working at both 780 and 1560 nm photons. The
horizontal (vertical) polarization component of the pump laser is transmitted
(reflected) at dual wavelength PBS. The vertically polarized pump laser is changed
to the horizontal polarization after transmitting a dual wavelength HWP. Then, the
both of clockwise and counter-clockwise propagating pump laser have horizontal
polarization in front of the PPKTP crystal and they probabilistically create photon
pairs having orthogonal polarizations of Hj i and Vj i, respectively, via degenerate
spontaneous parametric down conversion process. Then, after passing through the
dual wavelength PBS, the counter propagating photon pair states are emerging to
ð HVj i þ eiϕ VHj iÞ= ffiffiffi

2
p

, where ϕ is relative phase between two states. Then, we can
prepare Φþ�� �

state using a set of WPs. The measured heralding efficiency of Φþ�� �
state is 37% with our SNSPD whose detection efficiency is 80%.

Two photons prepared in Φþ�� �
state simultaneously entered at both input ports

of a lateral beam splitter (LBS), then we can observe the Hong-Ou-Mandel (HOM)
interference48. The path length difference between two photons are matched to
minimize the coincidence count rate detected at both output ports. See
Supplementary Note 1 for the HOM interference results with Φþ�� �

input state.
After the LBS, we can prepare the two-photon N00N state with different
polarization (See the second line of Eq. (3)). The horizontally (vertically) polarized
photons are transmitted (reflected) at the PBS so that they split into 4 path modes
depending on the polarization states. Note that only two-photon states can exist in
each mode. By rotating the polarization state of the vertically polarized photons
into the horizontal polarization, we can prepare ψ2

4

�� �
.

Theoretical analysis of ψ2
4

�� �
. Our probe state is the 4-mode 2002 state of the form

ψ2
4

�� � ¼ 1

2
ffiffiffi
2

p ðây0 ây0 þ ây1 â
y
1 þ ây2 â

y
2 þ ây3 â

y
3Þ 0j i; ð5Þ

where ây0 is a creation operator, which creates a single-photon in the input mode a0
of a quarter. A quarter has four input modes (a0, a1, a2, a3) and four output modes
(b0, b1, b2, b3), respectively, as shown in Fig. 2c. The unitary matrices for the phase
encoding Uφ and the ideal quarter transition Uq are given by37,38,

Uφ ¼

1 0 0 0

0 eiφ1 0 0

0 0 eiφ2 0

0 0 0 eiφ3

0
BBB@

1
CCCA; ð6Þ

and

Uq ¼
1
2

1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

0
BBB@

1
CCCA; ð7Þ

respectively. After the initial state ψ2
4

�� �
undergoes the phase encoding and the

quarter transformation, then the output state ψout
�� � ¼ UqUφ ψ2

4

�� �
becomes

ψout
�� � ¼ c0 2000j i þ c1 0200j i þ c2 0020j i þ c3 0002j i

þ c4 1100j i þ c5 0011j i þ c6 1010j i
þ c7 0101j i þ c8 1001j i þ c9 0110j i;

ð8Þ

with c0= c1= c2= c3, c4= c5, c6= c7, and c8= c9. Then, one can obtain the two-
photon detection probability of Pl(φ)= ∣cl∣2 (l= 0, 1, ..., 9), and it satisfies the
normalizing condition∑lPl(φ)= 1. Pl(φ) is a function of φ, and used for theoretical
calculations in Fig. 3. See Supplementary Note 3 for the detailed information on
Pl(φ)= ∣cl∣2.

Analysis considering experimental errors. In order to include the errors caused
by our experimental imperfection, we consider the generation of 4-mode 2002 state
ψ2
4

�� �
exp

from an imperfect Bell state of jΦþ
expi, which is given by49

jΦþ
expi ¼ ϵ

1ffiffiffi
2

p ðα̂Hy
0 α̂Hy

1 þ α̂Vy0 α̂Vy1 Þ 0j i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jϵj2

q
1ffiffiffi
2

p ðα̂0Hy
0 α̂Hy

1 þ α̂
0Vy
0 α̂Vy1 Þ 0j i;

ð9Þ

where α̂Hy
j (α̂Vyj ) creates a photon at αj with a horizontal (vertical) polarization

shown in Fig. 2c, and α̂
0Hy
j (α̂

0Vy
j ) creates a distinguishable photon with α̂Hy

j (α̂Vyj ) at
same position due to experimental imperfection. Note that photons created from
α̂Hy
j (α̂Vyj ) and α̂

0Hy
j (α̂

0Vy
j ) are distinguishable and they do not interfere each other,

and ϵ is real parameter varying from 0 to 1. Then after LBS, PBS, and HWP at 45∘,
the experimentally prepared ψ2

4

�� �
exp

becomes

ψ2
4

�� �
exp

¼ ϵ
1

2
ffiffiffi
2

p ðây0 ây0 þ ây1 â
y
1 þ ây2 â

y
2 þ ây3 â

y
3Þ 0j i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jϵj2

q
1

2
ffiffiffi
2

p ây0 â
0y
0 þ ây1 â

0y
1 þ ây2 â

0y
2 þ ây3 â

0y
3

�
þ i â

0y
0 â

y
1 þ ây0 â

0y
1 þ â

0y
2 â

y
3 þ ây2 â

0y
3

� ��
0j i;

ð10Þ

where âyi creates a photon at input port of quarter ai and â
0y
i creates a distin-

guishable photon due to experimental imperfection. Note that photons created

from âyi and â
0y
i are distinguishable and they do not interfere each other. After

ψ2
4

�� �
exp

undergoes the phase encoding Uφ and the experimentally reconstructed

quarter transition matrix Uq;exp, then the output state becomes

ψout
�� �

exp
¼ Uq;expUφ ψ2

4

�� �
exp

. Here, Uq;exp is given by

Uq;exp ¼

0:498 0:469 0:514 0:478

0:483 0:496 0:504ei0:261 �0:509

0:529 0:504ei0:244 0:505ei0:126 0:499ei0:346

0:489 �0:530 0:477ei0:356 0:516

0
BBB@

1
CCCA: ð11Þ

Then experimental two-photon detection probabilities are obtained as Pexp
l ðφÞ, it is

used for fitting curves in Fig. 4a. See Supplementary Note 3 for the detailed cal-
culations on our error analysis.

Quantum Fisher information matrix and CRB. The QFIM is given by

FQðj;kÞ ¼ 4 Re ðh∂φj
ψφj∂φk

ψφi � h∂φj
ψφjψφihψφj∂φk

ψφiÞ: ð12Þ
By calculating FQ, one can obtain the QCRB from Tr ½F�1

Q �14,16,17,39. For a ψ2
4

�� �
probe state, the QCRB is calculated to be Tr ½F�1

Q � = 1.5, and the minimum value of
the CRB is obtained at φ1≃ 0.5π, φ2= 0, and φ3= 0.5π, and it saturates the QCRB
with Tr ½F�1

Q �= Tr ½F�1
C ðφÞ� = 1.5. The ideal FC(φ) and FQ matrices are obtained to

be

FCðφÞ ¼ FQ ¼
3 �1 �1

�1 3 �1

�1 �1 3

0
B@

1
CA: ð13Þ

where φ1≃ 0.5π, φ2= 0, and φ3= 0.5π.
The experimentally obtained FexpC ðφÞ matrix using Pexp

l ðφÞ is given as below:

FexpC ðφÞ ¼
2:33 �0:63 �0:93

�0:63 2:70 �1:09

�0:93 �1:09 2:66

0
B@

1
CA: ð14Þ

where φ1≃ 0.47π, φ2=−0.07π, and φ3= 0.52π. The experimentally obtained CRB
is evaluated to be 1.85 ± 0.01. The detailed calculations are provided in
Supplementary Note 3.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used to generate the figures within this paper and other findings of this study
are available from the corresponding author upon reasonable request.
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