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Abstract

Infrared (IR) spectroscopic imaging is of potentially wide use in medical imaging applications 

due to its ability to capture both chemical and spatial information. This complexity of the data 

both necessitates using machine intelligence as well as presents an opportunity to harness a 

high-dimensionality data set that offers far more information than today’s manually-interpreted 

images. While convolutional neural networks (CNNs), including the well-known U-Net model, 

have demonstrated impressive performance in image segmentation, the inherent locality of 

convolution limits the effectiveness of these models for encoding IR data, resulting in suboptimal 

performance. In this work, we propose an INfrared Spectroscopic imaging-based TRAnsformers 

for medical image Segmentation (INSTRAS). This novel model leverages the strength of the 

transformer encoders to segment IR breast images effectively. Incorporating skip-connection and 

transformer encoders, INSTRAS overcomes the issue of pure convolution models, such as the 

difficulty of capturing long-range dependencies. To evaluate the performance of our model and 

existing convolutional models, we conducted training on various encoder–decoder models using 

a breast dataset of IR images. INSTRAS, utilizing 9 spectral bands for segmentation, achieved 

a remarkable AUC score of 0.9788, underscoring its superior capabilities compared to purely 

convolutional models. These experimental results attest to INSTRAS’s advanced and improved 

segmentation abilities for IR imaging.
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1. Introduction

Chemical imaging techniques are very attractive for many scientific disciplines, allowing for 

understanding both the molecular and morphological structure of specimens. By relying on 

the intrinsic composition of the sample, these techniques eliminate the need for extrinsic 

labeling. Such an approach not only maintains sample integrity but also provides a direct and 

accurate representation of its unique characteristics. Among the available imaging methods, 

Infrared (IR) imaging distinctly stands out. With its capacity to offer molecular insights 

through fundamental vibrational modes, and ensuring minimal disruption to samples, IR 

imaging has been a preferred choice, especially in scenarios where sample integrity is 

critical (Baker et al., 2014; Bhargava, 2023; Geinguenaud, Militello, & Arluison, 2020; 

Kedzierski et al., 2019; Zhang, Gao, & Yilmaz, 2020). Traditionally, the analytical approach 

to IR images, particularly for segmentation tasks, has been heavily pixel-centric (Fernandez, 

Bhargava, Hewitt, & Levin, 2005; Lasch, Diem, Hänsch, & Naumann, 2006). Each pixel 

was typically analyzed in isolation, focusing on its spectral properties without considering 

the broader spatial context. However, the integration of computational advancements, 

especially in the realm of deep learning, suggests a more holistic approach. Convolutional 

neural networks (CNNs) and transformers propose a potential for a detailed analysis of 

IR data, integrating both spectral depth and spatial context. This combined approach can 

illuminate subtle patterns and richer insights in the IR data.

In the recent past, CNN-based models (Chen, Papandreou, Kokkinos, Murphy, & Yuille, 

2018; Pang, Du, Orgun, & Yu, 2018; Ronneberger, Fischer, & Brox, 2015) have made 

significant strides in the domain of biomedical image segmentation. The architecture 

of such models, with its convolution layers intertwined with skip connections, ensures 

the retention of crucial feature information even amidst complex data transformations. 

However, when confronted with IR data’s multidimensional nature and its burgeoning 

band complexity, conventional convolution layers might struggle. The challenge lies in 

encapsulating the intricate dependencies and relationships inherent in such expansive IR 

datasets. Transformers offer a potential solution to this challenge. Originally conceptualized 

for natural language processing (NLP) (Devlin, Chang, Lee, & Toutanova, 2019; Radford 

& Narasimhan, 2018; Vaswani et al., 2017), transformers are anchored by a self-attention 

mechanism. This mechanism is tailored to capture long-range dependencies, a trait that 

is invaluable in the context of hyperspectral imaging. Given the spectral richness of each 

pixel in such imaging, understanding the inter-band relationships is crucial. Transformers, 

with their self-attention mechanism, are well-equipped to cater to this analytical demand, as 

supported by emerging research (Dosovitskiy et al., 2021; Hatamizadeh, Yang, Roth, & Xu, 

2021; Liu et al., 2021).

Capitalizing on this foundation, our study introduces INSTRAS, a novel deep learning 

architecture. INSTRAS seamlessly integrates the virtues of transformers with the tried-and-
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tested capabilities of the U-Net structures. Our aim with this innovation is to elevate the 

efficacy of multi-class IR medical image segmentation. Preliminary empirical evaluation 

showcases the prowess of INSTRAS, indicating its superior performance over established 

models, such as U-Net and attention U-Net. This positions INSTRAS as a potential 

foundation in the future landscape of IR data analysis within medical imaging.

2. Related work

2.1. CNN-based models

The evolution of image segmentation techniques has been marked by the increasing 

prominence of fully convolutional networks (FCNs). Unlike their predecessors, which were 

rooted in manual data handling, FCNs are equipped to adapt to a myriad of images and 

tasks. This adaptability is manifest in the development of architectures like VGG (Simonyan 

& Zisserman, 2015), ResNet (He, Zhang, Ren, & Sun, 2015), and Mask R-CNN (He, 

Gkioxari, Dollár, & Girshick, 2017). By integrating CNNs with fully connected layers, 

advancements in segmentation have been observed across diverse medical imaging areas 

such as skin (Esteva et al., 2017; Li & Shen, 2018), colon (Chen et al., 2017; Graham 

et al., 2019), and breast (Hatipoglu & Bilgin, 2017). U-Net’s success (Ronneberger et al., 

2015) further underscores the remarkable feature extraction capabilities of CNNs, leading to 

subsequent models employing the U-Net’s encoder–decoder architecture (Alom, Yakopcic, 

Hasan, Taha, & Asari, 2019; Isensee et al., 2018; Zhou, Siddiquee, Tajbakhsh, & Liang, 

2018; Zhuang, 2018). However, with the technological advancements in image acquisition 

producing increasingly high-resolution images, CNNs confront challenges regarding their 

receptive field. Various architectures attempt to expand the receptive field either through 

larger kernel sizes or by implementing dilated convolution (Yu & Koltun, 2015). Yet, 

capturing long-range information throughout an image remains an area that needs further 

exploration. In our current study, we enhance the U-Net architecture by integrating the 

transformer layer to supplant traditional convolution.

2.2. Transformer models

The impact of transformers, initially observed within the realm of NLP (Devlin et al., 

2019; Radford & Narasimhan, 2018; Vaswani et al., 2017), has found its place within 

the visual processing domain. One of the most salient attributes of transformers is their 

self-attention mechanism, which addresses the locality constraints endemic to conventional 

CNN encoders. The Vision Transformer (ViT) (Dosovitskiy et al., 2021) approach emerged 

as a significant milestone in this arena. By extracting non-overlapping image patches and 

repurposing them as sequential inputs to the transformer encoder, it was able to integrate and 

process spatial information effectively. This was further enhanced with the introduction of 

positional embeddings, ensuring that spatial relationships between patches were maintained. 

The overarching principle underscoring this design is the transformer’s ability to discern 

intricate, high-level features, which becomes especially invaluable when confronted with 

complex datasets like IR images. This pioneering work with ViT catalyzed the exploration 

of diverse architectures tailored for distinct vision tasks.
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The DETR model (Carion et al., 2020), for instance, presented a unique fusion of the 

self-attention mechanism with CNN encoders. This amalgamation not only streamlined the 

object detection process but also eliminated the need for multiple hand-crafted components, 

rendering the process more end-to-end. The SWIN Transformer (Liu et al., 2021) brought 

in another evolution, introducing a hierarchical structure reminiscent of pyramid networks. 

By leveraging shifted windows and strategic partitioning of self-attention computation, 

SWIN balanced the need for both global and local information extraction, while ensuring 

computational efficiency. Recent innovations in medical imaging have underscored the 

potential of hybrid models. The TransUNet (Chen, Lu et al., 2021), for example, employs 

a hybrid encoder interweaving both CNNs and vision transformers. This encoder, when 

combined with a U-Net style decoder supplemented with skip connections, has proven 

effective at medical image segmentation tasks. Similarly, the UNETR model (Hatamizadeh 

et al., 2021) takes this hybrid approach into the realm of 3D imaging. Here, non-overlapping 

3D patches extracted from input volumes are transformed using linear embedding and 

positional encoding. Once processed through the transformer blocks, these features are 

subsequently decoded using a U-Net inspired 3D structure, illustrating the versatility 

of transformer-based approaches across imaging modalities. In summary, transformer 

architectures, initially conceptualized for text, have shown immense promise in visual 

domains, from general object detection to specialized medical imaging tasks, highlighting 

their adaptability and potential for future explorations.

2.3. Deep learning for IR imaging

The fusion of IR imaging with deep learning has opened up new avenues for advancing 

scientific research. Historically, IR imaging has been valued for its capability to probe the 

molecular composition of samples, delivering insights without the requirement for external 

labels. This unique advantage is even more pronounced when combined with deep learning 

techniques, given their capacity to extract patterns from complex datasets (Pradhan, Guo, 

Ryabchykov, Popp, & Bocklitz, 2020). Recent years have seen a noteworthy upswing in 

the application of deep learning models to IR imaging. These methods, while previously 

constrained to conventional imaging modalities, have now demonstrated immense promise 

in the IR spectrum (Keogan et al., 2021; Muniz, Baffa, Garcia, Bachmann, & Felipe, 

2023). Conventional convolutional neural networks, for instance, have been employed to 

segment and distinguish varying regions of interest within IR images, achieving a level of 

precision previously unattained (Berisha et al., 2019; Falahkheirkhah, Yeh, Mittal, Pfister, 

& Bhargava, 2021; Tiwari, Falahkheirkhah, Cheng, & Bhargava, 2022). Furthermore, these 

deep learning techniques have not just been limited to analysis but have also made strides 

in enhancing the raw IR data quality. Advanced algorithms have been developed to refine 

the resolution, suppress noise, and improve the overall reliability of the collected IR data, 

further elevating the value and accuracy of subsequent analyses (Falahkheirkhah, Yeh, 

Confer, & Bhargava, 2022; Magnussen et al., 2020).
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3. Proposed method

3.1. Overview

In this section, we present our model architecture and loss function. An overview of the 

proposed method, which is composed of seven main modules, is shown in Fig. 1. First, 

a P × P  convolution layer with stride size P  is utilized for linear projection and patch 

embedding, where P  is the patch size. Second, a multi-head transformer layer is designed for 

image feature encoding. Third, a patch merging layer is used after each transformer block 

and aims to down-sampling features and increase the channel dimension. Fourth, several 

sequences 3 × 3 convolution layer followed by batch normalization and a Rectified Linear 

Unit (RELU) activation serves as a decoder for feature extraction. Fifth, an attention gate 

with three 1 × 1 convolution layers is applied to help the network to focus on relevant 

regions. Sixth, a 2 × 2 transposed convolution layer is implemented for feature extraction 

and upsampling. Finally, a 1 × 1 Convolution layer is used as the output layer to generate the 

final segmentation result.

The motivation behind this design is to fully utilize the U-Net shape structure to compress 

multidimensional spatial information. Simultaneously, the self-attention mechanism allows 

the model to focus on the long-range relevant patterns. The combination ensures coherent 

feature propagation and optimizes the model’s capability to process the multidimensional 

nature of IR data.

3.2. INSTRAS architecture

Given an input image I ∈ RH × W × C and a patch size of P , we uniformly extract non-

overlapping patches each with the size of P × P  to form a new shape of xp ∈ RN × P2 × C, 

where N = H
P × W

P .

We then project flattened patches xp into E dimensional space with a linear layer. To 

maintain the spatial information, we apply a learnable positional embedding to xp, which can 

be represented as:

z0 = xp
1E; xp

2; …; xp
NE + Epos,

(1)

where the E ∈ R P2 ⋅ C × E and Epos ∈ RN × E denote the embedding projection, and the 

positional embedding respectively. Notice that unlike the transformer used in NLP and ViT, 

we do not have the xClass  since our task is about image segmentation but not classification.

The embedded patches are fed into a transformer encoder, consisting of four transformer 

blocks and four patch merging blocks. Each transformer block consists of L layers of 

multiheaded self-attention (MSA) and Multi-Layer Perceptron (MLP) blocks. Thus each 

layer of the transformer encoder can be written as:
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zl
′ = MSA LN zl − 1 + zl − 1,

(2)

zl = MLP LN zl
′ + zl

′,

(3)

where LN is the layer normalization and l ∈ [1, L] denotes the layer number.

Inspired by the U-Net (Ronneberger et al., 2015) and Swin-Unet (Liu et al., 2021) 

architectures, we extract four transformer block outputs and merge them back to the 

original image size. Convolution and transpose convolution layers are used for decoding 

and upsampling features, respectively. We use an attention gate (Oktay et al., 2018) before 

each concatenation operation to selectively weight feature maps. For each pixel xi
n ∈ RFn at 

skip-connection level n with Fn size of the feature map, and its corresponding gating signal 

gi ∈ RFg taken from its previous level, the attention gate can be represented as:

qatt
n = ψT σ1 W x

Txi
n + W g

Tgi + bg + bψ,

(4)

σ2(x) = 1
1 + exp( − x) ,

(5)

αi
n = σ2 qatt

n xi
n, gi; Θatt ,

(6)

where W x ∈ RFn × k, W g ∈ RFn × k, and ψ ∈ Rk × 1 are linear projections implemented by 

using 1 × 1 2D Convolutions. We typically set the hidden dimension of k as half of the input 

dimension Fn. The bg ∈ Rk and bψ ∈ R are added as bias terms. The σ1 is an activation layer 

that RELU implements. The σ2 is a sigmoid function that maps the attention into the range 

between 0 and 1. The qatt
n  represents the process of the attention calculation for level n with 

the attention gate parameters Θatt. After getting the attention coefficient αi
n, we time it to the 

input vector xn to get the attention results:

xn = αnxn,

(7)
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where the xn is the output of the attention gate, whose spatial regions are selected by the 

information from its lower skip-connections.

We utilize the dense layer to implement the patch merging blocks. These merging 

blocks play a crucial role in dividing the input feature into four parts and subsequently 

concatenating them together. Afterward, the dense layer is responsible for transforming the 

resulting four-dimensional feature into a two-dimensional representation.

3.3. Loss function

To train our model, we use a combination of the Soft Dice (Milletari, Navab, & Ahmadi, 

2016) loss function and SoftMax cross entropy. The Soft Dice can be represented as:

LDICE(P , Y ) = 1 − 2∑c = 1
C ∑i = 1

N P icY ic + ϵ
∑c = 1

C ∑i = 1
N P ic

2 + ∑c = 1
C ∑i = 1

N Y ic
2 + ϵ

,

(8)

where P  and Y  are the predicted output probability and the target label for all C classes, 

respectively, and N is the number of pixels in the image. A small positive value ϵ is added to 

avoid division by zero.

The SoftMax cross entropy loss calculates the difference between the predicted class 

probability processed by a softmax activation function and the target labels. The cross 

entropy loss is defined as following:

LCE(P , Y ) = − 1
N ∑

i = 1

N
∑

c = 1

C
Y iclog P ic ,

(9)

and the final loss is a combination of LDICE and LCE:

L(P , Y ) = (1 − λ)LDICE(P , Y ) + λLCE(P , Y ),

(10)

where λ is a constant that balances the weight between dice loss and cross entropy loss. 

Experimentally, we set λ as 0.98 for all trainings in this study.

4. Experiments and results

4.1. Dataset

A breast Tissue MicroArray (TMA) known as BR1003, sourced from US Biomax Inc., 

comprising 101 cores with a 1 mm diameter obtained from 47 individuals was used in this 

study. The TMA was constructed from formalin fixed paraffin-embedded tissue and was 

processed as per typically protocols prior to imaging (Fernandez et al., 2005). We used 

Hematoxylin and Eosin (H&E) and smooth muscle actin to stain two of the sections, which 
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were then viewed under a light microscope. An unstained section of the same TMA, 5 μm 

in thickness, was positioned on a BaF2 salt plate for FT-IR imaging, utilizing transmission 

mode. The FT-IR imaging data were recorded using a 680-IR spectrometer that was paired 

with a 620-IR imaging microscope from Agilent Technologies. This setup had a numerical 

aperture of 0.62 and employed a Mercury Cadmium Telluride (MCT) 128 × 128 focal 

plane array detector, which was cooled by liquid nitrogen. More details about the dataset 

has been published previously (Mittal et al., 2018). We constructed INSTRAS utilizing 

weakly-supervised methods for the purpose of classifying breast tissue into key histological 

categories. The model leverages a previously designed random forest classifier for training 

label creation (Mittal et al., 2018). Essentially, pathologists annotate the FT-IR images – 

obtained from the FT-IR device – based on corresponding images from H&E-stained glass 

slides. This forms the basis or ‘‘ground truth’’ for the classification process. Subsequently, 

manually created metrics like peak height or area ratios serve as the input features for 

the network. The random forest classifier then uses these metrics and labels to establish 

a pixel-level classification model. This resulting classified imagery is then used to train 

INSTRAS. It is worth noting that this label generation procedure is a one-time training 

process used to train the model. Once complete, the model can segment the tissue with no 

additional intervention needed. Using weak labels to train IR images has been published 

previously (Falahkheirkhah et al., 2021).

This study employs the following six histological categories: dense stroma, loose stroma, 

reactive stroma, benign, epithelium, and malignant epithelium. We also include other cell 

types, grouped under the category ‘‘others’’ as previously defined. Based on biological 

significance, 9 IR bands were selected as the image channels: 1545, 3288, 1238, 2956, 1454, 

2848, 1084, 1404, 1655 cm−1.

4.2. Metrics

We use the Receiver Operating Characteristic (ROC) curve, Accuracy, and the Area 

Under the Curve (AUC) as the performance metrics for evaluation of the effectiveness of 

segmentation.

The ROC curve is a graph that shows the model performance for all different classification 

thresholds, represented by the true positive rate (Recall) against the false positive rate 

(Fall-Out). The true positive rate and the false positive rate can be written as:

TPR = TP
TP + FN ,

(11)

FPR = FP
FP + TN ,

(12)

where the TPR and FPR are the true positive rate and false positive rate, respectively. TP, FP, 

FN are a number of true positives, false positives, and false negatives. All TP, FP, and FP are 
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calculated with the one-vs-all method, which treats each class as positive and other classes 

as negative.

The AUC is defined by the total area under the ROC curve, which measures the model’s 

ability to distinguish the positive and negative samples. We can define the AUC as:

AUC = ∫
0

1
TPR(x), dx,

(13)

where the domain of x is the false positive rate.

4.3. Implementation details

The networks in this study are implemented using the PyTorch deep learning library and 

executed on NVIDIA DGX A100 40 GB system with CUDA 11.0. To optimize the network 

performance, we used AdamW (Loshchilov & Hutter, 2017) as the optimizer with a learning 

rate of 0.001 and a weight decay rate of 0.001 for 1500 epochs. With a batch size of 32, the 

average training duration is around 21 h.

The training images have varying widths ranging from 900 to 1280 pixels and heights 

ranging from 900 to 1230 pixels. To ensure a fixed input image size, we randomly crop 

ten 224 × 224 pixel patches from each image for each iteration. Since the size of our data 

set is limited, we augment our data by flipping each patch along the vertical axis (with a 

0.5 probability), rotating each patch by 90, 180, and 270 degrees (with a 0.25 probability 

for each angle), and adding a uniform noise (between 0 to 0.2) to each pixel (with a 0.5 

probability).

We use the Embedding size E as 48, the patch size P  as 2, and transformer layers number L
for each transformer block as 3. All the transformer layers have 12 heads with a dropout rate 

of 0.1.

4.4. Comparison with pure convolution methods

To evaluate our proposed method and demonstrate that the IR images can be well encoded 

by involving a transformer, we compare the performance of INSTRAS with the widely used 

U-Net model and the attention U-Net. We train all the models using 6 and 9 IR bands. The 

IR bands we used follow the order mentioned in Section 4.1, which means if we train a 

6-channel model, we use 1545, 3288, 1238, 2956, 1454, and 2848 cm−1 bands.

The ROC curves of both INSTRAS and U-Net trained on 9 IR bands are illustrated in Fig. 

2. We use the validation set of 32 image patches from two external validation samples. 

By evaluating the area under the ROC curves, we observed in Table 1 that the AUC
scores across various histological components reflect a clear advantage of our proposed 

method over other models for both 6 and 9 band analyses. Specifically, INSTRAS achieved 

mean AUC scores of 0.9595 and 0.9788 for 6 and 9 IR bands respectively, indicating an 

improvement in segmentation prediction over both U-Net and Attention U-Net. A detailed 

Lin et al. Page 9

Mach Learn Appl. Author manuscript; available in PMC 2024 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inspection of the AUC scores for each histological component further emphasizes the 

superiority of our proposed method, notably within noncancerous epithelium and reactive 

stroma.

Table 2 displays the performance accuracy of each model, with our proposed method, 

INSTRAS, outperforming all others across all evaluated cases. In addition to these 

quantitative evaluations, we also demonstrated the qualitative aspect by comparing the 

segmentation masks produced by INSTRAS and the U-Net models. Fig. 2 shows each 

model’s prediction under different IR band configurations against the target mask. We 

employ an orange dashed box to underscore the pronounced differences between the 

outputs. The segmentation mask generated by our method retains more intricate information, 

whereas the U-Net versions tend to overlook some of the histological units. For instance, the 

segmentation offered by both the U-Net and Attention U-Net models inaccurately represents 

the shape of the malignant epithelium in the center of the second sample.

4.5. Entire image inference

As our model employs a transformer encoder designed to process a fixed number of patches 

of a specific size, it is incapable of directly predicting the entirety of a high-resolution IR 

image in a single inference. To surmount this limitation, we introduce an overlapping image 

patch-based prediction technique.

Our inference method divides the input image into overlapping patches, each adhering to 

the size requirements of the model’s input. This scheme ensures efficient image processing 

while preserving the consistent input shape of our model. By significantly overlapping each 

patch with its neighbors, we aim to harness broader contextual data, thereby minimizing 

the potential discrepancies at the patch boundaries. For every image pixel, the prediction 

probabilities from all overlapping patch inferences are aggregated. Once all patches undergo 

processing, the class garnering the highest cumulative value gets designated as the ultimate 

prediction for that particular pixel.

Table 3 elucidates the interplay between the average inference time, the prediction accuracy 

of INSTRAS9, and the overlapping coefficient δ. This coefficient represents the overlap 

percentage between adjacent patches. It is imperative to highlight that a larger overlap area 

can yield more accurate predictions, albeit at the expense of a more prolonged inference 

duration. However, as the δ increases, the gain in accuracy brought by additional inference 

time diminishes. By configuring δ to be less than 50%, we can attain real-time inference on a 

1k × 1k high-resolution IR image without compromising the quality of the results.

5. Discussion

Based on our experimental results, we have demonstrated that INSTRAS outperforms 

traditional, purely convolutional models in the task of IR image segmentation. This 

superiority becomes particularly evident when the IR image encompasses a large number of 

bands. The advent of discrete frequency IR (DF-IR) imaging (Mittal et al., 2018) indicates 

a significant acceleration in data acquisition speed, primarily by recording only those bands 

pertinent to specific downstream tasks. It is also noteworthy that, unlike traditional visible 
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light images which primarily rely on three channels (RGB), IR data is hyperspectral. This 

multi-channel property poses a unique advantage for transformers in IR segmentation. The 

ability to discern complex interrelationships across spectral bands and efficiently process 

high-dimensional data enhances scalability and effectiveness.

While prior studies have demonstrated advancements in achieving accurate medical image 

segmentation, it is crucial to note that transformer-based machine learning techniques 

generally require more computational resources compared to traditional convolutional 

approaches (Chen, Yang et al., 2021; Lu et al., 2023; Tang, Nan, Walsh, & Yang, 2023). 

As a result, transformer models inherently have longer inference times. Empirical data 

showcases that while the UNet model averages an inference time of 0.399 s on the test 

dataset and the Attention UNet completes the inference in approximately 0.554 s, INSTRAS 

requires about 2 s using default settings. But, with the self-attention mechanism intrinsic 

to transformers, there is a distinct advantage: the ability to model long-range dependencies 

across images and enable parallel sequence processing. With the monumental advancements 

in computational hardware in recent years, transformers can exploit these resources more 

effectively. Their proficiency in feature extraction and inherent scalability designates 

transformers as a promising avenue for future medical imaging tasks. The flexibility of 

INSTRAS, characterized by its adaptability to various data types and the customizable 

number of transformer layers in the encoder, emphasizes its potential utility in a myriad 

of medical imaging applications. The model’s design allows for seamless retraining on 

new datasets, even with a divergent number of segmentation features. While transformer-

based models offer numerous benefits, they also present several limitations. For instance, 

these models typically require large datasets, making the provision of extensive datasets 

for biomedical imaging both resource-intensive and challenging. Furthermore, transformer 

models tend to have longer training times due to their complex architectures, potentially 

prolonging the development cycle of machine learning projects in the biomedical field. 

Another significant drawback is their longer inference time, which poses challenges for 

real-time analysis and applications requiring immediate results.

As shown in Table 4, our model, in its default configuration, boasts trainable parameters 

comparable to conventional convolutional models. Nonetheless, its self-attention mechanism 

necessitates an extensive dataset of labeled samples. Securing high-quality IR biomedical 

images is both cost-intensive and intricate, making it difficult to obtain very large sets of 

IR images annotated with the ground truth. Predominantly, research in this domain hinges 

on expert evaluations and is supplemented by statistical methodologies, such as leveraging 

random forests (Breiman, 2001). In our study, the dataset labels, though comprehensive, are 

not flawless, hinting at potential annotation inconsistencies that could influence the training 

phase.

6. Conclusion

In this study, we introduced a novel U-Net-like deep learning architecture that incorporates 

a transformer encoder. Our findings indicate that this architecture outperforms both U-Net 

and Attention U-Net in the multi-class IR medical image segmentation task. The results 

underscore the transformer’s superior capability to extract features from IR images in 
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comparison to conventional convolution encoders. Moreover, it retains finer details of the 

microenvironment throughout the segmentation process. Future research directions can aim 

to enhance the explainability of such transformer models. This effort will enable their 

better integration into the medical imaging domain, potentially further improving their 

performance (Yang, Ye, & Xia, 2022). Overall, the proposed method provides a significant 

edge in harnessing the rich information embedded in hyperspectral images.
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Fig. 1. 
The overview of INSTRAS architecture. Input IR images (C is up to 9 in our data set) 

are divided into equal size patches and fed to a linear embedding layer with positional 

encoding. The embedded patches are then passed to L multi-head attention blocks, and four 

intermediate output features Z1 to Z4 with E embedding size are extracted and merged by the 

convolution decoder with attention gates.
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Fig. 2. 
Visualization of results for INSTRAS, U-Net, and Attention U-Net under the same training 

settings. The images contain both models’ predictions trained on 9 IR bands. We use red 

dashed boxes to highlight the major difference between each prediction. (f) and (g) show 

the ROC curves of INSTRAS and UNET respectively. The meaning of the pixel color is 

shown in (h). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Table 2

The accuracy↑ of INSTRAS (proposed), U-Net, and Attention U-Net model on the validation data set. We 

train all networks by six, and nine IR bands. The accuracy is the average value over the 6 classes. The best 
results and the second best results are set in red and bold, respectively.

Models Accuracy↑

U-Net6 81.419

Attention U-Net6 81.276

INSTRAS6 81.674

U-Net9 84.836

Attention U-Net9 83.758

INSTRAS9 85.811
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Table 3

The average INSTRAS9 inference time over entire IR image using different patch overlapping coefficient δ, 

and the accuracy of prediction over the entire image.

δ Inference time (s) Accuracy↑

0 0.7573 85.76

25 1.181 85.80

50% 2.069 85.81

75% 9.040 85.90

87.5% 33.45 85.93
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Table 4

Trainable parameters number of each model taking 9 IR bands.

Model Trainable parameters

U-Net9 34530k

Attention U-Net9 34882k

INSTRAS9 33882k
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