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Abstract: This study characterizes the error that results when performing quantitative analysis
of abbreviated dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data of the
breast with the Standard Kety–Tofts (SKT) model and its Patlak variant. More specifically, we
used simulations and patient data to determine the accuracy with which abbreviated time course
data could reproduce the pharmacokinetic parameters, Ktrans (volume transfer constant) and ve

(extravascular/extracellular volume fraction), when compared to the full time course data. SKT
analysis of simulated abbreviated time courses (ATCs) based on the imaging parameters from two
available datasets (collected with a 3T MRI scanner) at a temporal resolution of 15 s (N = 15) and
7.23 s (N = 15) found a concordance correlation coefficient (CCC) greater than 0.80 for ATCs of length
3.0 and 2.5 min, respectively, for the Ktrans parameter. Analysis of the experimental data found that
at least 90% of patients met this CCC cut-off of 0.80 for the ATCs of the aforementioned lengths.
Patlak analysis of experimental data found that 80% of patients from the 15 s resolution dataset
and 90% of patients from the 7.27 s resolution dataset met the 0.80 CCC cut-off for ATC lengths of
1.25 and 1.09 min, respectively. This study provides evidence for both the feasibility and potential
utility of performing a quantitative analysis of abbreviated breast DCE-MRI in conjunction with
acquisition of current standard-of-care high resolution scans without significant loss of information
in the community setting.

Keywords: Patlak; Kety–Tofts; dynamic contrast-enhanced MRI; abbreviated breast MRI; quantita-
tive MRI
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1. Introduction

While X-ray mammography is the accepted screening method for the early detection
of breast cancer in the general population of women, magnetic resonance imaging (MRI)
of the breast has seen a recent increase in use. MRI offers superior soft tissue contrast
and, as a result, greater sensitivity to suspicious lesions [1–3], especially with the use of
a contrast agent [4,5]. Breast MRI is particularly beneficial to women who are at higher
risk for breast cancer due to genetic factors and to women with dense breast tissue, as well
as for pretreatment planning [6,7]. In one study of 501 women, MRI yielded a sensitivity
of 91%, compared to 18% for clinical breast exam, 50% for mammography, and 52% for
ultrasonography [1]. In terms of clinical outcome, MRI alone has increased the detection
of lesions in the pre-invasive phase, and MRI quantitative methods as a whole have been
shown to increase the diagnostic power of clinical evaluations [8,9].

One fundamental issue with breast MRI, however, is its high cost due (partly) to an
examination time of approximately 40 min [10]. For this reason, there is a push to develop
a so-called “abbreviated” breast examination, which aims to reduce the total amount of
time that is required for imaging so that screening costs can be reduced without sacrificing
diagnostic information [10–12]. One strategy is to limit the timing of the contrast-enhanced
component of the scan to capture only the enhancement phase, which has previously been
shown to differentiate between benign and malignant breast lesions [13,14]. Using this
strategy, Kuhl et al. were able to achieve a sensitivity of 100% and a specificity of 94%
using an abbreviated protocol that took just three minutes to acquire [10]. Another study
by Grimm et al. showed that adding additional post-enhancement images did not increase
the specificity of the two abbreviated protocols in question [15]. This same study found
that there was no significant difference (p > 0.05) between the sensitivities of these two
abbreviated protocols and a full protocol breast MRI exam [15].

While MRI exhibits superior sensitivity overall compared to other standard screening
techniques (e.g., mammography and ultrasound), its specificity has been shown to be
lower in the context of ductal carcinoma in situ (DCIS). One study by Kuhl et al. revealed
that low-grade DCIS was the only cancer missed by MRI but detected by mammogra-
phy [8,10,16]. False positives may lead to unnecessary biopsies with concomitant stress to
the patient and cost to the healthcare system [8,16]. Additionally, due to intra-tumoral het-
erogeneity, the results from histological analysis of biopsy samples may be inaccurate [17].
Thus, there is substantial effort to increase the diagnostic specificity of breast MRI in the
abbreviated setting and interest in the development and translation of quantitative imaging
schemes [18]. Dynamic contrast enhanced MRI (DCE-MRI) is one imaging modality that
can quantitatively report on properties related to tissue vascularity and volume fractions
and thereby potentially add specificity to exams.

DCE-MRI is the sequential acquisition of T1-weighted images before, during, and
after the injection of a gadolinium-based contrast agent. To perform quantitative DCE-MRI
analysis, in addition to the time course data just mentioned, a pre-contrast T1 map, an
arterial input function (an estimate of the time rate of change of the concentration of the
contrast agent in the blood plasma), and a pharmacokinetic model to analyze the result-
ing data are also required. Typical pharmacokinetic analyses include the Kety–Tofts [19],
tissue homogeneity [20], reference region [21], shutter-speed [22], and Patlak models [23].
Quantitative information derived from full-length DCE-MRI acquisitions (approximately
10 min in length) has demonstrated added benefit in distinguishing malignancies [5,13,24].
Specifically, the volume transfer constant, Ktrans, has been shown to statistically distinguish
malignant from benign lesions, including in the ultra-fast DCE-MRI setting with superior
temporal resolution [13,24–26]. Still, quantitative DCE-MRI can be challenging to incorpo-
rate into the clinical workflow as it requires higher temporal resolution data which comes
at the expense of missing spatial resolution in the images required by radiologists. This is a
pronounced problem in the ultra-fast regime that lacks high spatial resolution [24] and thus
does not provide a viable solution for quantitative imaging in the clinical workflow. Impor-
tantly, no studies have been published that seek to characterize the errors introduced into
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pharmacokinetic modeling that is performed on the shortened time course data acquired
from an abbreviated protocol.

The overall goal of this contribution is to systematically determine the error that
results when applying reference region and Patlak analyses on retrospectively abbreviated
quantitative DCE-MRI data. More specifically, we characterize the error induced in the
volume transfer rate (Ktrans) and the extravascular/extracellular volume fraction (ve) when
we apply these models to both simulated and experimentally measured DCE-MRI data
obtained in two different clinical breast imaging settings: a multi-site, network-based clini-
cal trial and a single site, community-based imaging center. Analysis in multiple settings
provides a robust approach for future feasibility and widespread implementation. For each
abbreviated time course, we quantify the error in the parameter values as compared to
those measured using the original, full-time course data to determine a recommendation
on how quantitative analysis of abbreviated DCE-MRI of the breast can be performed in
the clinical setting.

2. Methodology

Two DCE-MRI datasets were analyzed in this study. One was from the International
Breast MR Consortium (IBMC) 6883 multi-site trial provided by the American College of
Radiology Imaging Network (ACRIN) [6,13] while the other consisted of imaging data
collected at a regional imaging center in the community setting in a major metropolitan city
in the United States. No identifying information was associated with any patient dataset.

2.1. ACRIN 6883 Trial DCE-MRI Acquisition

Patients (N = 821) (often more than one lesion per patient) who enrolled in the
IBMC 6883 multi-site trial were initially referred for breast biopsy due to the detection of
suspicious lesions [6]. All women received a BI-RADS equivalent label for each lesion [6]
and were scanned using a 1.5 T scanner equipped with a dedicated breast coil. A subset
of patient datasets (N = 35) available to the authors had multi-TR data, collected at TRs
of (110, 200, 300, 1200 ms), which was analyzed with the spoiled gradient echo model
to compute pre-contrast T1 maps for the imaged tissue. DCE-MRI data was collected
with TR/TE = 100/4–5 ms, a flip angle of α = 90◦, and an acquisition matrix of 256 ×
128 over a (160–180) × (160 to 180) mm2 field-of-view (FOV) with a slice thickness of
4 mm. Each of the 11-slice sets was collected in 15 s over various scan times ranging
from 14 total time points (3.50 min) to 37 total time points (9.25 min). The dynamic scan
was initiated simultaneously with the delivery of 0.1 mmol/kg of a gadolinium chelate
(Omniscan, GE Healthcare; Prohance, Bracco; or Magnevist, Berlex) administered over 10 s
through a catheter placed within an antecubital vein followed by a saline flush. No arterial
input function was available for this study; however, dynamic data were collected from
reference regions drawn within the chest wall muscle of each patient, thereby enabling a
reference region analysis. To determine the tumor regions-of-interest (ROIs), a conservative
boundary was drawn around each lesion and refined by selecting voxels with a percent
enhancement greater than 50% [6]. Going forward, we will refer to these data as the ACRIN
dataset. The acquisition details were sourced from previous studies [6,13].

2.2. Single-Site DCE-MRI Acquisition

Patients (N = 22) (often a single lesion per patient) with locally advanced breast cancer
were scanned prior to beginning neoadjuvant therapy using a 3 T Skyra (Siemens, Erlangan,
Germany) equipped with a 16-channel receive double-breast coil (Invivo, Gainsville, FL,
USA). Variable-flip angle (VFA) data was collected at flip angles of 2◦ to 20◦ in increments
of 2◦. This VFA data was then fit to the spoiled gradient echo (SPGR) model, implemented
in MATLAB (Mathworks, Natick, MA, USA) using B1-corrected flip angles to estimate
pre-contrast T1 maps for the imaged tissue. The data for the B1-correction were obtained
via the Siemens TurboFLASH sequence with a pre-conditioning radiofrequency pulse [27]
with TR/TE = 8680/2 ms, a flip angle of α = 8◦, an acquisition matrix of 96 × 96, and a slice
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thickness of 5 mm. DCE-MRI data was collected with TR/TE = 7.02/4.60 ms, a flip angle
of α = 6◦, an acquisition matrix of 192 × 192 over a 256 × 256 mm2 FOV, a slice thickness of
5 mm, and a GRAPPA (generalized autocalibrating partial parallel acquisition) acceleration
factor of 2. Each of the 10-slice sets was collected in 7.27 s across 66 total time points
for 8 min of total DCE-MRI scan time. After collecting one minute of baseline dynamic
scans (i.e., the first eight time points), 10 mL of Gadavist (Bayer, Whippany, NJ, USA)
was delivered at 2 mL/sec followed by a saline flush through a catheter placed within an
antecubital vein. A population averaged arterial input function was established from the
present dataset based on previously established methodology [7]. To determine the tumor
ROIs, a conservative bounding-box was manually drawn over each focal lesion using
the percent enhancement map (increase over 50% compared to baseline signal intensity)
obtained from the DCE-MRI data. These ROIs were then refined using a fuzzy c-means
clustering algorithm [28]. Going forward, we will refer to these data as the single-site
dataset.

2.3. DCE-MRI Data Analysis

Fifteen representative patients were chosen from both the single-site and the ACRIN
datasets for a total of 30 DCE-MRI patient datasets to be analyzed using two models: the
Standard Kety–Tofts (SKT) model [19] and the Patlak model [23]. Due to the absence of an
arterial input function for the ACRIN dataset, we employed reference regions modifications
of the SKT and Patlak models to analyze the entire 30 patient dataset. The volume transfer
constant (Ktrans) characterizes the delivery and retention of contrast agent in both the SKT
and Patlak models, while the extravascular extracellular volume fraction (ve) is exclusive
to the SKT models.

The full time courses (FTCs) (N = 30) were retrospectively truncated into a series of
abbreviated time courses (ATCs). An ATC containing the first n post-injection time points
of a DCE-MRI time course is referred to as “ATCn”. For application of the SKT model to the
ACRIN dataset, n was selected as the inclusive set of integers from 7 to 18, incrementing by
one (an increment of 0.25 min); for the single-site dataset, n was chosen to be the inclusive
set ranging from 13 through 53, incrementing by eight (an increment of 1.0 min) to span
the entirety of the eight-minute FTC. For the Patlak analysis of the ACRIN dataset, n was
chosen as the inclusive set of integers from 2 to 7, incrementing by one (an increment of
0.25 min); and, for the single-site dataset, n was chosen as the inclusive set of integers from
5 to 14, incrementing by one (an increment of 0.12 min). Because the Patlak model assumes
no washout occurs in the early part of perfusion, the range of n for the Patlak analysis of
both datasets was chosen to include the enhancement phase across varying ATCs with
an effort to exclude the washout phase entirely. The SKT and Patlak models were fit to
the FTCs, as well as the ATCs, to estimate Ktrans (SKT and Patlak) and ve (SKT only) using
the “lsqnonlin” function implemented in MATLAB (Mathworks, Natick, MA). Voxels for
which the estimated parameters fell outside of the physiological range (the range being
0.001 < Ktrans < 5.0 and 0.001 < ve < 1.0) were eliminated from further analysis. The FTC
parameter estimates were considered to be the gold standard to which all ATCn parameter
estimates were compared on a voxel-wise basis.

2.4. DCE-MRI Simulated Data Analysis

To systematically determine errors resulting from a quantitative analysis of a truncated
DCE-MRI time course, we simulated data based on the SKT model and the details of each
of the 30 patients described in the previous sections. To construct such data, we started
with the pulse-sequence and the Ktrans and ve FTC parameter values from each voxel within
each patient’s acquisition to construct a set of zero-noise DCE-MRI time courses via the
SKT model. Next, the signal-to-noise ratio (SNR) from each patient’s DCE-MRI study was
calculated using the first seven pre-contrast time points from the adipose for the single-site
dataset and the first seven time points from the adipose tissue for the ACRIN dataset.
Finally, the voxel-wise SNR was averaged over the tumor ROI for the entire cohort such
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that each patient dataset is characterized by a single SNR value (Table 1). The ATCn of the
simulated data were generated in the same fashion as in the experimental data through
truncation of the simulated FTC data. The SKT and Patlak models were then fit to the
both the noiseless and noisy versions of each simulated DCE-MRI time course to arrive at
Ktrans and ve values for each voxel in the simulated tumor ROI. Again, the FTC parameter
estimates were treated as the gold standard to which all ATCn parameters were compared.

Table 1. Summary of the ACRIN (top sub-table) and single-site (bottom sub-table) datasets.

Patient Site Length SNR Diagnosis
(benign = 0/malig = 1)

15 1 19 14 0

22 1 24 22 0

183 1 24 26 1

276 1 27 26 0

310 1 27 24 1

718 1 27 25 0

724 3 25 16 1

770 1 31 30 1

867 2 22 18 1

882 2 22 22 1

439 3 25 22 0

84 1 20 13 1

27 1 21 28 0

143 1 24 33 1

725 1 29 6 0

Patient 3 6 7 8 9 11 13 15 17 18 19 22 23 26 28

SNR 19 19 26 19 14 27 24 21 26 19 8 21 25 22 27

2.5. Statistical Analysis

For all 30 patient datasets and all 30 simulated datasets, the voxel values of Ktrans

(from both the SKT and Patlak models) and ve (SKT model only) estimated from fitting the
FTCs and ATCs were averaged over the ROI to produce mean values and 95% confidence
intervals (CIs) for each patient. Additionally, the absolute average percent error between
the ATCn and FTC parameter values were computed and averaged over the tumor ROI
along with their 95% CIs over the ACRIN and single-site patient datasets, respectively. To
determine the similarity between the ATCn and FTC (gold-standard) parameter values for
each voxel within the tumor ROIs, the concordance correlation coefficient (CCC, ranging
from 0 to 1) was used to assess the level of agreement between each FTC–ATCn pair from
each patient dataset. The Pearson’s linear correlation coefficient (r, ranging from −1 to 1)
was used as a measure of goodness of fit for all models to all FTC and ATCn data.

Please note that the clinical methods were presented before the simulation methods
to allow for a cleaner exposition of the simulation as it was based on the clinical imaging
methods. In the Results section, however, we present the simulation results first so that we
can then directly compare their predictions to the results of the clinical analysis.

3. Results

First, we examine the results from the pharmacokinetic analysis related to the ACRIN
data. The SKT model was fit to one FTC and 12 ATCns, yielding 13 sets of mean Ktrans and
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ve parameter values and the corresponding 95% CIs. Similarly, the Patlak analysis of these
same patients, one FTC and six ATCns, were analyzed to yield seven mean Ktrans parameter
values and the corresponding 95% CIs. An analogous set of results was computed from
the 15 sets of simulated data based on patient-specific signal-to-noise (SNR) values and
imaging parameters of the ACRIN acquisition protocol.

3.1. Pharmacokinetic Assessment of ACRIN-Based Simulated Data

For each ATCn simulated from each patient, a pair of ROI-averaged Ktrans (Figure 1A)
and ve (Figure S1A) values were compared to the corresponding FTC average parameter
values obtained from the SKT model. In all simulated patients, the mean estimates of Ktrans

and ve tended to be greater than their FTC “gold-standard” counterparts (p > 0.05 for all
ATCs except ATC7, ATC8, and ATC9 for ve only, where p < 0.05), revealing a systematic
overestimation of both parameters as the time series were increasingly truncated. A direct
relationship was observed in the CCC values of both parameters (Figures S1B and S2A),
which asymptotically approached a value of 1.0 as the ATCs were lengthened. Choosing a
CCC cut-off value of 0.90 for Ktrans, we observed that 14 patients met this cut-off for ATC15
(i.e., 3.8 min of scan time), with the mean and standard deviation of the CCCs being 0.94
± 0.07. Choosing a less conservative CCC value of 0.80 as the cut-off, then the shortest
ATC for which all patients met this cut-off increased to ATC17 (i.e., 4.25 min of scan time)
with mean and standard deviation of 0.97 ± 0.05. The average percent error between the
ATCns and FTC Ktrans values monotonically decreased with longer ATCs (e.g., 11.30% error
for ATC18 compared to 77.25% error for ATC7) (Figure 1B), though the percent error was
significantly higher (p < 0.05) in ve than in Ktrans (44.60% error for ATC18 compared to
106.68% error for ATC7) (Supplemental Figure S1C) over all ATCn lengths.
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Figure 1. SKT and Patlak analysis of ACRIN-based simulated data and ACRIN clinical data. (A) Mean and 95% confidence
intervals (CI) for simulated Ktrans values from the SKT model with the ATC length (denoted in legend) increasing from left
to right in the bar plots for each patient (only a subset of all ATCs are displayed for simplicity in viewing). (B) Average
percent error in Ktrans as a function of ATC length with 95% CIs. (C,D) present the analogous data for the Patlak analysis of
the simulated data. The absolute error in (B,D) decreases as the ATCs are increased, but only up to a certain ATC in panel D
at ATC6. (E) Mean and 95% confidence intervals (CI) for Ktrans values from analyzing the clinical data with the SKT model
(only a subset of all ATCs are displayed for clarity). (F) Average percent error in Ktrans as a function of ATC length with 95%
CIs. (G,H) present the analogous data for the Patlak analysis of the clinical data and, similar to (D), (H) shows the absolute
error in Ktrans decreasing up to ATC5 before increasing again.
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Next, we look at the corresponding results from the Patlak analysis. In nearly all
simulated patients, the mean estimates of Ktrans (Figure 1C) from all ATCns were closer
in value to their FTC “gold-standard” counterparts as the time series were increasingly
truncated. The CCCs (Supplemental Figure S2B) did not monotonically increase toward a
value of 1.0 for all patients, instead more often peaking at a specific ATCn before decreasing
again; and two patients exhibited monotonically decreasing CCCs. Choosing a CCC cut-off
value of 0.90 for Ktrans yielded a maximum of two patients that meet this cut-off for ATC3
(i.e., 0.75 min of scan time), with the mean and standard deviation of the CCCs being
0.75 ± 0.13. For a less conservative CCC value of 0.80 as the cut-off, a maximum of seven
patients met this cut-off at ATC4 (i.e., 1.0 min of scan time) with a mean and standard
deviation of 0.76 ± 0.14. The average percent error between the ATCn and FTC Ktrans

values monotonically decreased until a minimum was reached at ATC6 (32.66% error)
before increasing again with ATC7 (34.18% error) (Figure 1D).

3.2. Pharmacokinetic Assessment of ACRIN Clinical Data

After examining the simulated data, we applied the same analysis with the SKT model
to the ACRIN clinical data. The mean estimates of Ktrans (Figure 1E) and ve (Figure S1D)
from all ATCns were not significantly different from their FTC “gold-standard” counterparts
(p > 0.05 for all ATCs except ATC7, ATC8, and ATC7 for ve only, where p < 0.05), revealing
a systematic underestimation in Ktrans and overestimation in ve as the time series were
increasingly truncated (Figure 2A–C and Figure 3A–C, Figures S5A–C and S6A–C). A
direct relationship was observed in the CCC values of both parameters (Figures S1E and
S2C), which asymptotically approached a value of 1.0 as the lengths of the ATCns were
increased. Choosing a CCC cut-off value of 0.90 for Ktrans, we observed that at most 11
patients met this cut-off for ATC14 (i.e., 3.5 min of scan time) with CCCs of 0.88 ± 0.16.
If we choose a less conservative CCC value of 0.80 as the cut-off, then the shortest ATCn
for which a maximum of 12 patients met this cut-off is again ATC14 (i.e., 3.5 min of scan
time). The average percent error between the ATCns and FTC Ktrans values monotonically
decreased with longer ATCns (9.77% error for ATC18 compared to 30.60% error for ATC7)
(Figure 1F), though the percent error was higher (p = 0.08) in ve than in Ktrans over nearly all
ATCn lengths except ATC18 (9.16% error for ATC18 compared to 106.61% error for ATC7)
(Supplemental Figure S1F).

The Patlak analysis of these same data reveal that in nearly all patient datasets, the
mean estimates of Ktrans (Figure 1G) from all ATCns approached their FTC “gold-standard”
counterparts for intermediary abbreviations rather than the shortest or longest ones (Figure
2G–I and Figure 3G–I). The CCCs (Figure S2D) did not monotonically increase toward a
value of 1.0 for all patients, instead more often peaking at a specific ATCn before fluctuating
in value thereafter. Choosing a CCC cut-off value of 0.90, a maximum of four patients
met this cut-off for ATC4 (i.e., 1.0 min of scan time) with mean and standard deviation
of the CCCs being of 0.74 ± 0.21. For a CCC cut-off value of 0.80, the shortest ATC for
which a maximum number of patients, namely eight, met this CCC cut-off was ATC5 (i.e.,
1.25 min of scan time) with a mean and standard deviation of 0.77 ± 0.18. The average
percent error between the ATC and FTC Ktrans values monotonically decreased until a
minimum was reached at ATC5 (30.51% error) before increasing again with ATC6 (30.79%
error) (Figure 1H).

We now turn to the pharmacokinetic analysis of the 15 single-site patient datasets.
The SKT model was fit to one FTC and six ATCns, yielding seven sets of mean Ktrans and ve
parameter values and the corresponding 95% CIs. Similarly, for analysis with the Patlak
model of these same patients, one FTC and ten ATCns were analyzed, yielding eleven mean
Ktrans parameter values and the corresponding 95% CIs. An analogous set of results was
computed from the 15 sets of simulated data based on patient-specific SNR values and the
imaging parameters of the single-site acquisition protocol.
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in (C,F) as well as in the analogous Patlak fits in (H,K) and the Patlak parameters in (I,L).
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3.3. Pharmacokinetic Assessment of Single-Site-Based Simulated Data

By fitting the SKT model to the simulated patients, we find that the mean estimates
of Ktrans (Figure 4A) and ve (Figure S3A) from all ATCns tented to be greater than their
FTC “gold-standard” counterparts (p > 0.05). A direct relationship was observed in the
CCC values of both parameters (Figures S3B and S4A), which asymptotically approached
a value of 1.0 as the ATCs were lengthened. Choosing a CCC cut-off value of 0.90 for
Ktrans, we observed that all ten patients met this cut-off for ATC37 (i.e., 4.5 min of scan
time) with the mean and standard deviation of the CCCs being 0.99 ± 0.02. If we choose
a less conservative CCC value of 0.80 as the cut-off, then the shortest ATC for which all
patients meet this cut-off is ATC29 (i.e., 3.5 min of scan time) with a mean and standard
deviation of 0.98 ± 0.02. The average percent error between the ATCns and FTC Ktrans

values monotonically decreased with longer ATCs (1.93% error for ATC53 compared to
28.51% error for ATC13) (Figure 4B). This percent error was systematically higher (p = 0.07),
in ve (4.23% error for ATC53 compared to 135.13% error for ATC13) (Figure S3C) than in
Ktrans over the course of all ATCn lengths.
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Figure 4. SKT and Patlak analysis of single-site-based simulated data and single-site clinical data. (A) Mean and 95%
confidence intervals (CI) for simulated Ktrans values from the SKT model with the ATC length (denoted in legend) increasing
from left to right in the bar plots for each patient (only a subset of all ATCs are displayed for clarity). (B) Average percent
error in Ktrans as a function of ATC length with 95% CIs. (C,D) present the analogous data for the Patlak analysis of the
simulated data. The absolute error in (B,D) decreases as the ATCs are increased, but only up to a certain ATC in panel D at
ATC12. (E) Mean and 95% confidence intervals (CI) for Ktrans values from analyzing the clinical data with the SKT model
(only a subset of all ATCs are displayed for simplicity in viewing) (F) Average percent error in Ktrans as a function of ATC
length with 95% CIs. (G,H) present the analogous data for the Patlak analysis of the clinical data and, similar to (D), (H)
shows the absolute error in Ktrans decreasing up to ATC12 before increasing again.

Applying the Patlak model in an analogous manner, we find that the mean estimates
of Ktrans (Figure 4C) from all ATCs were closer in value to their FTC “gold-standard”
counterparts as the time series were increasingly abbreviated. The CCCs (Figure S4B) did
not monotonically increase toward a value of 1.0 for all patients, instead more often peaking
at a specific ATCn before fluctuating in value thereafter. Choosing a CCC cut-off value of
0.90 for Ktrans, we observe that a maximum of nine patients met this cut-off for ATC9 (i.e.,
1.09 min of scan time) with CCCs of 0.88 ± 0.10. If we choose a less conservative CCC
value of 0.80 as the cut-off, then the shortest ATCn for which a maximum of 13 patients met
this CCC cut-off was ATC6 (i.e., 0.73 min of scan time). The average percent error between
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the ATCns and FTC Ktrans values monotonically decreased until a minimum was reached at
ATC12 (17.34% error) before increasing again with ATC13 (17.40% error) (Figure 4D).

3.4. Pharmacokinetic Assessment of Single-Site Clinical Data

Next, we summarize the SKT analysis of the experimental data. In all patient datasets,
the mean estimates of Ktrans (Figure 4E) and ve (Figure S3D) from all ATCns were, respec-
tively, greater than and less than (p > 0.05) their FTC “gold-standard” counterparts (except
for significance in ATC13 for Ktrans where p < 0.05). This reveals a systematic overesti-
mation in Ktrans and underestimation in ve as the time series were increasingly truncated
(Figure 2D–F and Figure 3D–F, Figures S5D–F and S6D–F). A direct relationship was ob-
served in the CCC values of both parameters (Figures S3E and S4C), which asymptotically
approached a value of 1.0 as the lengths of the ATCns were lengthened. Choosing a CCC
cut-off value of 0.90 for Ktrans, all ten patients met this cut-off for ATC37 (i.e., 4.5 min of scan
time) with the mean and standard deviation of the CCCs being 0.99 ± 0.02. If we choose a
less conservative CCC value of 0.80 as the cut-off, then the shortest ATC for which 14 out
of 15 patients met this CCC cut-off was ATC29 (i.e., 3.5 min of scan time) with a mean and
standard deviation of 0.94 ± 0.04. The average percent error between the ATCn and FTC
Ktrans values decreased monotonically with longer ATCns (0.63% error for ATC53 compared
to 117.34% error for ATC13) (Figure 4F), though the percent error was higher (p = 0.59) in
ve than in Ktrans over the course of nearly all ATC lengths except ATC13 (2.19% error for
ATC53 compared to 74.27% error for ATC13) (Figure S3F).

Applying the Patlak model in an analogous manner, we find that the mean estimates
of Ktrans (Figure 4G) from all ATCs deviated from their FTC “gold-standard” counterparts
in nearly all simulated patients as the time series were increasingly abbreviated, with
significant differences observed in ATC5 (p = 0.005) (Figure 2J-L and Figure 3J–L). The
CCCs (Figure S4D) were again observed to not monotonically increase toward a value of
1.0 for all patients, instead more often peaking at a specific ATC before fluctuating in value
thereafter. Choosing a CCC cut-off value of 0.90, we observed that at most 12 patients meet
this cut-off for ATC10 (i.e., 1.20 min of scan time) from the set of CCCs with a mean and
standard deviation of 0.91 ± 0.09. If we choose a less conservative CCC value of 0.80 as
the cut-off, then the shortest ATCn for which a maximum of 12 patients meets this CCC
cut-off is ATC10 again. The average percent error between the ATC and FTC Ktrans values
decreased monotonically until a minimum was reached at ATC12 (7.67% error) before
increasing again with ATC13 (7.95% error) (Figure 4H).

4. Discussion

To the best of our knowledge, this work provides the first quantitative characterization
of the errors associated with a pharmacokinetic analysis of abbreviated DCE-MRI time
courses. The primary finding of this study showed that Ktrans exhibits substantially low
error and high CCC values across ATCs for both the SKT and Patlak analyses. This strongly
suggests that the length of a DCE-MRI measurement can be substantially shortened without
a substantial reduction in the ability to quantify the pharmacokinetics. Our results indicate
it is feasible for 80% of patients from the single-site cohort analyzed by the Patlak model
to exceed a CCC for Ktrans of 0.80 for an abbreviated time course as short as 1.20 min.
Similarly, it is feasible for 60% of patients from the ACRIN cohort (with a substantially
poorer temporal resolution) analyzed by the Patlak model to exceed a CCC for Ktrans of 0.80
for an abbreviated time course as short as 1.25 min. This implies that abbreviated—but still
quantitative—DCE-MRI can be performed for screening high-risk patients. This reduction
in total scan time can then be “spent” on making additional measurements of interest
(e.g., diffusion-weighted MRI [29,30]), or simply be used to shorten the entire examination.
In particular, Ktrans may add specificity in distinguishing malignant lesions in DCE-MRI
screening scans for high-risk women [13]. Conversely, as ve has not yet been shown to
statistically separate malignant from benign tissue, collecting the full extent of the washout
phase may not be necessary. It is important to recall that this study also made use of
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data acquired in two very different settings: a multi-site, clinical trial run at academic
research-oriented medical centers, and a single-site, community-based care setting. Thus,
the results have the potential to be generalizable across clinical imaging environments.

As a larger portion of the washout phase of the DCE-MRI time course was excluded
from the single-site and ACRIN patient datasets, the absolute error in ve from the SKT
model was consistently higher than the absolute error in Ktrans across most ATCns when
compared to the FTC. Ktrans and ve are largely determined by the enhancement and washout
phases, respectively; thus, as the data truncation did not exclude the enhancement phase,
a smaller absolute error is expected in Ktrans than in ve. In terms of CCCs from the SKT
analysis, we found that a similar number of patients met the higher CCC cut-off for
Ktrans of 0.90 in the single-site cohort (93% in the experimental data analysis for a 3.5 min
abbreviation, 100% in the simulation data analysis for a 3.5 min abbreviation) and the
ACRIN cohort (80% in the experimental data analysis for a 4.25 min abbreviation, 100%
in the simulation data analysis for a 3.5 min abbreviation). The Patlak analysis of the
single-site cohort achieved smaller absolute error in both the simulated (17.34% error for a
1.5 min abbreviation) and experimental (7.67% error for a 1.5 min abbreviation) datasets
compared to the Patlak analysis of the ACRIN cohort in both the simulated (32.66% error
for a 1.25 min abbreviation) and experimental (30.51% error for a 1.5 min abbreviation)
datasets. This difference is most likely due to the superior temporal resolution of the
single-site study compared to the ACRIN study (7.27 versus 15 s). In terms of CCCs from
the Patlak analysis, we found that more patients met the higher CCC cut-off of 0.90 in the
single-site cohort (80% in the experimental data analysis for a 1.2 min abbreviation, 60%
in the simulation data analysis for 1.2 and 1.09 min abbreviations, respectively) than the
ACRIN cohort did (27% in the experimental data analysis for a 1.0 min abbreviation, 13% in
the simulation data analysis for a 0.75 min abbreviation). The Patlak model will improve in
accuracy as long as the amount of data from the enhancement phase of the DCE-MRI time
course is being increased; but once the data begins to include the plateauing and washout
phases of the time course, the Patlak model is no longer an appropriate model, and its
accuracy in parameter estimation begins to decrease. Overall, these findings indicate that
an abbreviated DCE-MRI breast scan with sufficient temporal resolution can be feasibly
analyzed with the Patlak model as well as the SKT model to produce Ktrans values that
closely match those from analyzing a full-length scan with the SKT model.

While the SKT and Patlak model analysis is amendable to quantitative DCE-MRI scans,
clinicians in practice rely on the semi-quantitative signal enhancement ratio (SER) that is
often computed using an image captured at the end of a clinical DCE-MRI scan. While we
do not consider this measure in our abbreviated study, it remains possible that the SER
may be computed by capturing a final washout image after the abbreviated quantitative
DCE-MRI protocol and any additional scans are completed within the standard time of a
clinical scan.

There are multiple opportunities to strengthen the results of this study. For instance, it
has been shown that incorporation of intra-voxel diffusion into DCE-MRI models leads
to more accurate estimation of pharmacokinetic parameters [31]; therefore, it may be of
interest to investigate the effect of contrast agent diffusion on the DCE-MRI data acquired
in the abbreviated setting. To perform such an analysis would require higher temporal
resolution data, though compared to the high spatial resolution DCE-MRI scans acquired
in the standard-of-scare setting, the datasets in this study already have much higher
temporal resolution. Increasing the temporal resolution further to characterize the diffusion
phenomenon may potentially limit the ability to translate abbreviated, quantitative DCE-
MRI to widespread clinical application since an increase in temporal resolution would
lead to a further decrease in spatial resolution. Similarly, the lower SNR associated with
high temporal resolution DCE-MRI data also makes application in standard radiological
practice less attractive. Another limitation is that it is very difficult to directly compare
the results obtained from the two datasets utilized in this study due to the differences
in their respective imaging protocols including, in particular, the flip angles of 6◦ and
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90◦ for the single-site and ACRIN protocols, respectively. The DCE-MRI time course
data from the patients scanned at the single-site, community setting typically reached a
saturated signal intensity, making it difficult to accurately quantify ve; this can be remedied
by employing a larger flip angle. Conversely, the 90◦ flip angle employed in the ACRIN
study will limit the image contrast and reduce the overall SNR (being far away from the
Ernst angle). In addition, the presence and location of breast clips post-biopsy and how
they affected the signal intensity curves in the surrounding tissue were not available and
thus not considered in the perfusion model analyses [32]. Lastly, while strides have been
made toward reproducible quantitative DCE-MRI of the breast across multiple sites [33,34],
the results of the present study could be strengthened by being repeated in prospectively
abbreviated quantitative scans with uniform imaging parameters across multiple sites.

In summary, this work quantifies the errors introduced in pharmacokinetic model
parameters as a function of the length of the time series for two distinct quantitative
DCE-MRI datasets with different temporal resolutions. The ability to compute Ktrans in
the abbreviated setting has shown promise with 100% of patients meeting a stringent
CCC cut-off of 0.90 for Ktrans from the SKT analysis in the single-site cohort for a 4.5 min
abbreviation and at least 73% of patients from the ACRIN cohort for a 3.5 min abbreviation).
At least 80% of patients met a stringent CCC cut-off of 0.90 from the Patlak analysis for the
single-site cohort. These robust results indicate the potential for employing abbreviated
quantitative DCE-MRI scans for screening high-risk patients in the routine clinical setting.
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