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ABSTRACT

Objective: With COVID-19, there was a need for a rapidly scalable annotation system that facilitated real-time in-

tegration with clinical decision support systems (CDS). Current annotation systems suffer from a high-resource

utilization and poor scalability limiting real-world integration with CDS. A potential solution to mitigate these

issues is to use the rule-based gazetteer developed at our institution.

Materials and Methods: Performance, resource utilization, and runtime of the rule-based gazetteer were com-

pared with five annotation systems: BioMedICUS, cTAKES, MetaMap, CLAMP, and MedTagger.

Results: This rule-based gazetteer was the fastest, had a low resource footprint, and similar performance for

weighted microaverage and macroaverage measures of precision, recall, and f1-score compared to other anno-

tation systems.

Discussion: Opportunities to increase its performance include fine-tuning lexical rules for symptom identifica-

tion. Additionally, it could run on multiple compute nodes for faster runtime.

Conclusion: This rule-based gazetteer overcame key technical limitations facilitating real-time symptomatology

identification for COVID-19 and integration of unstructured data elements into our CDS. It is ideal for large-scale

deployment across a wide variety of healthcare settings for surveillance of acute COVID-19 symptoms for inte-

gration into prognostic modeling. Such a system is currently being leveraged for monitoring of postacute se-

quelae of COVID-19 (PASC) progression in COVID-19 survivors. This study conducted the first in-depth analysis

and developed a rule-based gazetteer for COVID-19 symptom extraction with the following key features: low

processor and memory utilization, faster runtime, and similar weighted microaverage and macroaverage meas-

ures for precision, recall, and f1-score compared to industry-standard annotation systems.
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BACKGROUND AND SIGNIFICANCE

With COVID-19 came an unprecedented need to identify symptoms

of COVID-19 PUIs in a time-sensitive, resource-efficient, and accu-

rate manner. When attempting to identify COVID-19 symptoms

from clinical notes in near-real-time, we identified significant limita-

tions with industry-standard annotation systems (hereby referred to

as “annotation systems”) including (1) poor scalability with increas-

ing number of notes and (2) high resource needs.

While available annotation systems perform well for smaller

healthcare settings, they fail to scale in larger healthcare systems

(like ours), where 10 000þ clinical notes are generated a day. For

example, one instance of MetaMap takes approximately 105 h;

CLAMP 28 h, and cTAKES 9 h to process 12 000 notes limiting

scalability especially for time-sensitive prognosis such as for

COVID-19 PUIs. Similar issues were also found by other research-

ers.1,2 Solutions proposed to mitigate scalability issues included: in-

creasing number of servers, NLP engines, and databases. Although

these solutions led to improved runtime, they still did not address

the key issue of high resource utilization, being problematic for

healthcare sites lacking robust infrastructure.

After evaluating several potential annotation systems to address

the above-mentioned limitations, we developed a solution using a

dictionary of terms (called as a gazetteer) with significantly lower re-

source utilization, faster runtime, and similar weighted microaver-

age and macroaverage measures compared to annotation systems.

When time-sensitive decisions with minimal patient contact are cru-

cial, such as during the COVID-19 pandemic, this was extremely

important. This study presents our findings.

Multiple studies have demonstrated the success of rule-based gaz-

etteers consisting of domain-specific lexica as an alternative to anno-

tation systems. In one study, Liu et al.3 successfully used a gazetteer

to select cohorts of heart failure and peripheral arterial disease

patients from unstructured text, while Wagholikar et al.4 used a gaz-

etteer based on radiological findings to automate limb fracture classi-

fication. Gazetteer lexicons are highly targeted within clinical

domains through construction by subject matter experts, especially

when combined with appropriate lexical rules5,6 and work very well7

with continuous maintenance.8 Gazetteers can easily be deployed to-

gether as a standalone tool using containerization technologies, and

their rule-base alone can be deployed as part of an existing infrastruc-

ture, such as developed by the Open Health NLP (OHNLP) consor-

tium for the National COVID Cohort Collaborative (N3C).9,10

This study developed a rule-based gazetteer based on a lexicon

of COVID-19 symptoms (hereby referred to as “COVID-19 gaz-

etteer”) and compared it to five annotation systems in terms of (1)

document processing times; (2) resource needs; and (3) performance

in terms of weighted microaverage and macroaverage measures for

precision, recall, and f1-score.

MATERIALS AND METHODS

Metrics used for comparing annotation systems
Runtime

Amount of time taken by an annotation system to process a given

set of documents.

Resource utilization

Central processing units (CPUs) and random access memory (RAM)

utilized by an annotation system. Henceforth, CPUs are referred to

as “processor” and RAM is referred to as “memory.”

Weighted microaverage and macroaverage measures

Weighted microaverage (henceforth referred to as “microaverage

performance measures”) and macroaverage measures for positive

predictive value (precision), sensitivity (recall), and harmonic mean

(f1-score) for the task of symptom identification.

System overview
Runtime evaluations were performed on a computing system with

configurations listed in Supplementary Appendix A. All annotation

systems were containerized using Docker.11 To ensure equal access

to system resources all tests were serially executed in a Kubernetes/

Argo12 workflow where each annotation system ran as a single

Kubernetes pod.

Data
Notes were collected from M Health Fairview affiliated with the

University of Minnesota (UMN), comprising 12 hospitals and serv-

ices in the ambulatory and postacute settings. There are over 368

000 ED visits with 9% to 30% cases admitted as inpatients each

year. Between March 2020 to December 2020 there were 19 924 to-

tal ED visits for 10 110 unique COVID-19 positive patients. 12 000
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notes were randomly selected from the pool of ED notes for compar-

ing runtime and resource utilization of the annotation systems.

Expert-curated manually annotated reference corpora
At the time of this study, there were no existing corpora annotated

for COVID-19 symptoms. Small corpora of notes were quickly de-

veloped by UMN and Mayo Clinic to assess COVID-19 symptom

identification performance of annotation systems. Due to the small

corpora size, the results obtained would not be sufficient to establish

which annotation system is better than the other for symptom iden-

tification. In their study of UMLS-extracted symptoms for predictive

modeling of influenza,13 Stephens et al. used only 20 randomly se-

lected notes (with only 200 labeled symptoms) to assess their extrac-

tion process, suggesting the corpora used in this study is adequate

for testing symptom identification performance and finding poten-

tial gaps between annotation systems.

UMN reference corpus

Forty-six notes from M Health Fairview (hereby referred to as

“UMNCor”) were randomly selected and manually annotated by a

board-certified critical care physician with 12 years of clinical expe-

rience who is also a board-certified clinical informaticist (CT). The

annotator had experience treating over 250 COVID-19 positive

patients and was blinded to the results of annotation systems. Notes

in UMNCor were manually reviewed for positive and negative

document-level mentions of 11 acute COVID-19 symptoms as docu-

mented by the Center for Disease Control and Prevention (CDC)14

(hereby referred to as “acute CDC symptoms’’). The phrase

“positive document-level mention” means at least one positive men-

tion of the acute CDC symptom in the entire note. Similarly, the

phrase “negative document-level mention” means at least one nega-

tive mention. UMNCor contained a total of 259 document-level

mentions (shown in Table 1).

Mayo reference corpus

This corpus, developed by Mayo Clinic, consists of 148 fully deiden-

tified notes for COVID-19 positive patients (hereby referred to as

“MayoCor”). Each note was labeled for symptoms based on the

CDC and Mayo lexicons.14,15 The annotation guidelines were devel-

oped in collaboration with the Coronavirus Infectious Disease On-

tology (CIDO) team.16 MayoCor contained a total of 260

document-level mentions (shown in Table 1).

Symptom selection criteria
Only acute CDC symptoms were included in the study. Any

document-level mention with negligible number of instances com-

pared to the mention with the highest number of instances will not

contribute much to microaverage performance measures. Hence,

document-level mentions with less than five instances were excluded

for the calculation of microaverage performance measures. Using

the above-mentioned criteria and Table 1, document-level mentions

included for calculation of microaverage performance measures for

both corpora are mentioned in Supplementary Appendix C. These

mentions selected for UMNCor and MayoCor for microaverage per-

formance measures calculations are hereby referred to as “UMNCor

features” and “MayoCor features,” respectively.

For macroaverage measures of precision, recall, and f1-score,

positive and negative document-level mentions of all acute CDC

symptoms have been used for calculation. Since macroaverage meas-

ures assign equal weight to every class it is worthwhile to examine

how annotation systems compare when treating every acute CDC

symptom equally irrespective of sample size.

Lexicon of COVID-19 symptoms
Lexicon of 171 terms based on the CDC’s guidelines was iteratively

created by three board-certified clinicians (NI, ML, and MP), using

equivalent medical terminology, abbreviations, synonyms, allied

symptoms, alternate spellings, misspellings, etc. Terms in this lexi-

con (see Supplementary Appendix B.1) hereafter referred to as

“Derived COVID-19 Symptoms” were used by the COVID-19 gaz-

etteer and to derive the Universal Medical Language System

(UMLS)17 lexicon used by other annotation systems.

Query expansion of derived COVID-19 symptoms
We utilized word2vec model18 trained on clinical text by Pakhomov

et al.19 to expand the derived COVID-19 symptoms list (see Supple-

mentary Appendix B.2). The model was trained on a corpus of notes

(4 169 696 714 tokens) from M Health Fairview between 2010 to

2014, inclusive. The model created embeddings with up to four-

word sequences by using the word2phrase tool.18 The 2018 version

of MetaMap was used to map lexicon terms to the UMLS. The final

set of terms mapped to UMLS concepts was further reviewed by

three board-certified clinicians (NI, ML, and MP) to ensure semantic

expansions were clustered appropriately on the acute CDC symp-

toms. This final set of terms and concepts (see Supplementary Ap-

pendix B.4) was made available as a UMLS lexicon for use by

annotation systems (refer to subsection “UIMA-based annotation

pipeline”).

Table 1. Count of document-level mentions for acute CDC symp-

toms for the corpora

Features No. of mentions

UMNCor MayoCor

cdc_aches_n 3 3

cdc_aches_p 18 3

cdc_cough_n 11 6

cdc_cough_p 28 22

cdc_diarrhea_n 12 14

cdc_diarrhea_p 11 18

cdc_dyspnea_n 10 15

cdc_dyspnea_p 28 34

cdc_fatigue_n 2 1

cdc_fatigue_p 15 14

cdc_fever_n 9 24

cdc_fever_p 30 18

cdc_headaches_n 5 8

cdc_headaches_p 8 15

cdc_nausea_vomiting_n 19 20

cdc_nausea_vomiting_p 13 27

cdc_rhinitis_congestion_n 7 1

cdc_rhinitis_congestion_p 8 2

cdc_sore_throat_n 6 4

cdc_sore_throat_p 9 3

cdc_taste_smell_loss_n 2 3

cdc_taste_smell_loss_p 5 5

sum 259 260

Note: suffix “_p” following an acute CDC symptom represents positive

document-level mention for the acute CDC symptom and while suffix “_n”

represents negative document-level mention
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UIMA-based annotation pipeline
Notes were annotated for Concept Unique Identifiers (CUIs) from

the Disorders semantic group using the NLP Artifact Discovery and

Preparation Toolkit for Kubernetes (NLP-ADAPT-kube).20 NLP-

ADAPT-kube contains the following Unstructured Information

Management Architecture (UIMA)21 compatible annotation systems

as Docker images: (1) BioMedICUS v2.2.022; (2) cTAKES v4.0.123;

(3) MetaMap 2018 Linux version24; (4) CLAMP v1.6.4.25 Features

relevant to the acute CDC symptoms were constructed using

extracted UMLS concepts present in the derived UMLS lexicon de-

scribed in subsection “Query expansion of derived COVID-19

symptoms.”

MedTagger
MedTagger v1.0.926 is a rule-based gazetteer developed by the

Mayo Clinic. We used two versions of MedTagger: (1) COVID-19

gazetteer lexicon adopted to MedTagger’s ruleset format (hereby re-

ferred to as “MedTagger Custom”) and (2) Mayo Clinic’s COVID-

19 lexicon27 adopted to MedTagger’s ruleset format.

COVID-19 gazetteer
The COVID-19 gazetteer used the lexicon described in subsection

“Lexicon of COVID-19 symptoms” to narrow searches for concepts

belonging to sentence-level mentions of acute CDC symptoms. The

COVID-19 gazetteer uses spaCy’s Matcher28 and EntityRuler29 clas-

ses to add lexicon terms to the spaCy en_core_web_sm30 model.

The Matcher instance reads in notes and returns the span of text

containing symptom mentions. Returned spans are further processed

by the spaCy pipeline to search for custom entities added using Enti-

tyRuler. This extra step is necessary because we observed spaCy

missed certain phrases in the lexicon; thus, the Matcher instance

detected terms the EntityRuler instance had missed. Span length was

predetermined through initial tuning on a held-out set of 1700 ran-

domly selected notes. Output was then lemmatized to convert text

to its base form (eg, the base form of “wheezing” is “wheeze”). The

NegEx component of spaCy (negspaCy31) was added at the end of

the spaCy pipeline for negation detection. More details about the

COVID-19 gazetteer are present in the GitHub repository.32 The

COVID-19 gazetteer used multiple server cores by distributing

nearly equal numbers of notes to each core.

RESULTS

Overall microaverage performance measures of annotation systems

are shown for both corpora in Table 2. As mentioned in subsection

“Symptom selection criteria,” UMNCor uses only UMNCor fea-

tures and MayoCor uses only MayoCor features for calculating

microaverage performance measures.

Table 3 shows the macroaverage measures for precision, recall,

and f1-score for positive and negative document-level mentions for

all the acute CDC symptoms (as mentioned in subsection “Symptom

selection criteria”).

Figure 1 shows total CPU and RAM utilization for the annota-

tion systems over their runtime on 9000 clinical notes. Total utiliza-

tion values for CPU and RAM (referred to as cores*sec and

RAM*sec in Figure 1, respectively) were calculated as a running

summation of the CPU (in cores) and RAM (in gigabytes (GB)) uti-

lized by an annotation system over its runtime. The ideal system

would minimize resources while executing in the least amount of

time. MedTagger Custom was omitted from any runtime analysis

because it uses the same underlying implementation as MedTagger.

Figure 2 shows the runtimes of the annotation systems when run

on 9000 clinical notes.

To demonstrate the efficiency of the COVID-19 gazetteer we an-

alyzed its runtime by keeping the number of notes constant while in-

creasing the number of cores for 3000, 6000, 9000, and 12 000

clinical notes (see Figure 3).

DISCUSSION

The purpose of this study was to develop a rule-based gazetteer for

COVID-19 and compare it to five annotation systems. This study

makes the following contributions: (1) first in-depth analysis involv-

ing rule-based gazetteer for COVID-19 symptom identification; (2)

compares performance (weighted microaverage and macroaverage

measures for precision, recall, and f1-score) of the COVID-19 gazet-

teer to other annotation systems; (3) highlights the potential of the

COVID-19 gazetteer as a low resource solution by comparing its

processor and memory utilization to other annotation systems; (d)

compares runtime of the COVID-19 gazetteer to other annotation

systems, demonstrating its efficacy for high-throughput real-time an-

notation of notes for identifying a patient’s presenting symptoms33

(eg, identifying symptoms of COVID-19 PUIs in a time-sensitive

manner).

Performance of systems
Results in Tables 2 and 3 and Supplementary Appendices D and E

demonstrate the COVID-19 gazetteer has similar weighted microa-

Table 2. Overall microaverage performance measures of the anno-

tation systems for both corpora (confidence intervals are present

in Supplementary Appendix D.1-2)

UMNCor MayoCor

System Precision Recall f1-score Precision Recall f1-score

BioMedICUS 0.78 0.75 0.75 0.89 0.89 0.89

CLAMP 0.84 0.85 0.85 0.91 0.92 0.91

cTAKES 0.83 0.80 0.81 0.91 0.90 0.91

MetaMap 0.85 0.84 0.85 0.90 0.91 0.90

COVID-19 Gazetteer 0.89 0.86 0.87 0.91 0.91 0.91

MedTagger Custom 0.82 0.82 0.82 0.92 0.92 0.92

MedTagger 0.88 0.85 0.85 0.91 0.91 0.91

Table 3. Macroaverage performance measures of the annotation

systems for both corpora calculated using positive and negative

document-level mentions for all the acute CDC symptoms (confi-

dence intervals are present in Supplementary Appendix E.1-2)

UMNCor MayoCor

System Precision Recall f1-score Precision Recall f1-score

BioMedICUS 0.71 0.75 0.72 0.73 0.74 0.73

CLAMP 0.81 0.81 0.81 0.79 0.71 0.74

cTAKES 0.77 0.82 0.79 0.75 0.78 0.76

MetaMap 0.80 0.82 0.81 0.75 0.71 0.73

COVID-19 Gazetteer 0.82 0.88 0.84 0.77 0.79 0.78

MedTagger Custom 0.77 0.78 0.77 0.79 0.80 0.80

MedTagger 0.80 0.87 0.82 0.80 0.75 0.77
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C D

E

A B

Figure 1. Total CPU and RAM utilization over the period of execution of the annotation systems on 9000 notes. A, CPU utilization (in number of cores); B, Zoomed

in view of (A); C, RAM utilization; D, Zoomed in view of (C); E, Total utilization of CPU (represented as cores*s) and RAM (represented as RAM*s). Statistics for

CPU and RAM utilization were collected every 30 s and appended to a file using a bash script that queried the Kubernetes cluster.

A

Figure 2. Runtime of annotators for 9000 notes. The COVID-19 gazetteer had the least processing time.
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verage and macroaverage performance measures compared to other

annotation systems. Based on these results, we emphasize the impor-

tance of a carefully designed gazetteer for diseases with manageable

sets of defined symptoms translatable to lexical rules to aid CDS, in-

cluding surveillance for long-term care34 (eg, PASC progression in

COVID-19 survivors).

Resource utilization of annotation systems
Figure 1 demonstrates that BioMedICUS, COVID-19 gazetteer, and

MedTagger had the lowest CPU and RAM utilization making them

good candidates for compute devices with minimal processor and

memory resources compared to MetaMap and CLAMP (had highest

resource requirements). BioMedICUS utilizes a fast algorithm along

with in-memory maps for concept detection but comes with the

tradeoff of increased memory utilization. The COVID-19 gazetteer

uses en_core_sci_sm and en_core_web_sm spaCy models (about

13–15 MB) for detection of mentions. This is one possible reason

why the COVID-gazetteer had the lowest memory requirement. The

COVID-19 gazetteer used all available cores to minimize runtime

and was among the lowest in terms of overall CPU utilization al-

though the average CPU utilized at any given instant of time was

high. MedTagger had low CPU utilization because it processes docu-

ments through data streams and loads the compiled ruleset to mem-

ory for lower memory utilization. It should be noted annotation

systems with minimal resource requirements (eg, BioMedICUS,

COVID-19 gazetteer, and MedTagger) have the potential to incur a

significantly lower monetary costs when run on cloud-based plat-

forms. In addition, annotation systems with minimal resource

requirements are ideal for deployment at healthcare sites lacking ro-

bust infrastructure.

Scaling of annotation systems for real-time processing

of notes
Results in Figure 2 show the COVID-19 gazetteer consistently out-

performed other annotation systems in runtime. The COVID-19

gazetteer took 34 min to process 9000 notes—about 3� faster than

MedTagger (second fastest annotation system) and 123� faster than

MetaMap (slowest annotation system). Hence, the COVID-19 gaz-

etteer is the best candidate for high-throughput real-time processing

of notes for clinical surveillance (eg, identifying symptoms of

COVID-19 PUIs). Figure 3 shows the effect of scaling the COVID-

19 gazetteer through increase of CPU cores on a given set of notes,

where runtime decreases linearly with increasing cores. The

COVID-19 gazetteer operating on multiple compute nodes has far

greater potential to significantly decrease the runtime to process

notes compared to standard annotation systems.

It is possible to scale “off-the-shelf” annotation systems for real-

time processing through both pipeline customization35 and across

multiple compute nodes. Demner-Fushman et al. introduced Meta-

Map Lite36 and found it to be at least 5� faster than MetaMap and

cTAKES on various corpora37–40 with higher precision, recall, and

f1-score. Stephens et al. used MetaMap Lite for processing speed

and ease of use and compared it to MetaMap and cTAKES on a cor-

pus containing 7278 EHR notes.13 In the workshop on ‘Large Scale

Ensembled NLP Systems’ with Docker and Kubernetes41 Finzel

et al. scaled MetaMap by running 80 Kubernetes pods on 8 compute

nodes to get a processing speed of about 15 documents per second.

The study conducted by Miller et al. to extract patients’ phenotypes

from 10 000 EHR notes had a processing speed of about 2.45 notes

per second when run on Amazon Web Services (AWS) containing 2

CPUs and 8 GB of RAM.2 This was equivalent to processing 1 mil-

lion notes per day when run on 10 AWS Elastic Computing (EC2)

nodes. The presentation on ‘Fault-Tolerant, Distributed, and Scal-

able Natural Language Processing with cTAKES’42 discusses scaling

cTAKES using distributed Apache Spark43 on 245 worker machines,

each with 64 CPUs and 240 GBs of RAM. The developed pipeline

was able to process 84 387 661 notes in 89 min compared to about

396 days for cTAKES. Despite such high processing capacity, these

systems incur incredibly high resource utilization.

Lexicon creation and maintenance for annotation

systems
The COVID-19 gazetteer lexicon process (described in subsection

“Lexicon of COVID-19 symptoms”) required clinical expertise.

This process could be automated using transformer models like Bidi-

rectional Encoder Representations from Transformers (BERT).44

Preliminary experiments conducted in our lab indicate that using

only 40 terms representing acute CDC symptoms to fine-tune a

A

Figure 3. Runtime of the COVID-19 gazetteer with increasing number of CPU cores on a given set of notes. It is observed that runtime reduced as number of cores

increased for constant set of notes processed.
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BERT model for Named Entity Recognition (NER) yielded 360

terms belonging to the acute CDC symptoms from 10 000 ED notes

for COVID-19 positive patients (refer Supplementary Appendix F

for details on BERT setup for NER). BERT symptom extraction pro-

cess took about 6 h compared to several weeks required by subject

matter experts to create the COVID-19 gazetteer lexicon. In addi-

tion, the lexicon of 360 terms extracted using BERT had similar

symptom identification performance on UMNCor with respect to

microaverage performance measures compared to the 171 terms of

the COVID-19 gazetteer lexicon created using clinical expertise. As

there are variations in lexical constructs while documenting symp-

toms among medical scribes as well as over time, it is necessary to

maintain the COVID-19 gazetteer lexicon by periodically checking

for new lexical constructs of acute CDC symptoms present in notes

that were not present in the existing the COVID-19 gazetteer lexi-

con. This could be done by either using the COVID-19 gazetteer lex-

icon creation process outlined in subsection “Lexicon of COVID-19

symptoms” or by using transformer models like BERT. The

COVID-19 gazetteer lexicon could also be easily extended to

COVID-19 symptoms not present in the list of acute CDC symp-

toms.33 This process would also work for any disease with a well-

defined symptomatology, including PASC.

On the other hand, UMLS lexicon creation for UIMA-based an-

notation systems required the steps mentioned in subsection “Query

expansion of derived COVID-19 symptoms” in addition to the

COVID-19 gazetteer lexicon creation process. Maintenance of the

UMLS lexicon also requires periodically searching for new lexical

constructs of acute CDC symptoms present in clinical notes and

mapping them to UMLS concepts using rules used to create the

UMLS lexicon. Mapping of new lexical constructs to UMLS con-

cepts cannot be automated. This requires costly subject matter inter-

vention and is time-consuming.

To summarize, the UMLS lexicon creation process took two

steps compared to a single step required for creating COVID-19 gaz-

etteer lexicon. In addition, the second step of UMLS lexicon creation

required extensive clinical expertise. Hence, the COVID-19 gazet-

teer lexicon was simpler to create and maintain compared to the

UMLS lexicon.

Complementing UMLS with gazetteer lexicon
Results in Tables 2 and 3 and Supplementary Appendices D and E

confirm the COVID-19 gazetteer performs similar to any annotation

system reliant on the UMLS Metathesaurus. The COVID-19 gazet-

teer lexicon consisted of 120 UMLS terms out of 171 terms. For

these 120 UMLS terms, we observed a weighted microaverage f1-

score of 0.85 across all the mentions present in UMNCor features,

which is 2% less than the observed overall microaverage f1-score of

0.87 for the COVID-19 gazetteer (shown in Table 2). With the use

of the remaining 51 non-UMLS terms, the COVID-19 gazetteer im-

proved the matching of relevant terms not detected by the 120

UMLS terms. Thus, the COVID-19 gazetteer lexicon complements

the UMLS lexicon making it an ideal candidate for being a part of

an ensemble of different UIMA-based annotation systems reliant on

a UMLS lexicon. Use of a non-UMLS rule-based gazetteer comple-

mented by UMLS terms could be tailored to any disease with a

clearly defined symptomatology.

Limitations and future work
Corpora used consisted of a limited number of document-level men-

tions—259 for UMNCor and 260 for MayoCor. Due to the small

corpora size, the annotation systems had mostly wide and overlap-

ping confidence intervals for weighted microaverage and macroaver-

age performance measures of precision, recall, and f1-score. Thus,

the small corpora size failed to highlight the differences between the

annotation systems. However, in their study of UMLS-extracted

symptoms for predictive modeling of influenza,13 Stephens et al.

used only 20 randomly selected notes (with only 200 labeled symp-

toms) to assess their extraction process, suggesting the corpora of

notes used in this study is adequate for testing. To address the issue

of generalizability and assess significant differences between annota-

tion systems for the task of symptom identification, we are in the

process of creating a larger reference corpus of notes manually anno-

tated by multiple raters.

To understand some of the limitations of the COVID-19 gazet-

teer for future improvements, we manually audited the output of the

gazetteer against a few notes from UMNCor. We observed the span

of text containing the mention of an acute CDC symptom analyzed

by the COVID-19 gazetteer was sometimes too short to contain the

negation for the mention. For example, the COVID-19 gazetteer

detected a positive mention instead of a negative mention for “sore

throat” in the following sentence:

“The patient denies fever, myalgias, nausea, vomiting, abdominal

pain, chest pain, dysuria, hematuria, numbness and tingling, leg

pain, difficulty walking, headache, visual disturbance, sore

throat, rhinorrhea, and any other symptoms at this time.”

This was because the span of the text containing the mention for

“sore throat” did not include the word “denies” which negates the

mention for “sore throat”. This is an implementation issue which

could be avoided by using sentence boundary detection,45 and is

something we are currently testing for the COVID-19 gazetteer.

This issue led to mislabeling negative document-level mention of

“sore throat” (cdc_sore_throat_n) as a positive document-level men-

tion of “sore throat” (cdc_sore_throat_p).

Future work on the COVID-19 gazetteer includes expanding the

experiments for COVID-19 gazetteer lexicon generation automation

by increasing the pool of ED notes for COVID-19 patients. Lastly,

the COVID-19 gazetteer is being ported across multiple compute

nodes to improve runtime.

CONCLUSIONS

Compared to other annotation systems, the COVID-19 gazetteer

demonstrates greater potential as a high-throughput annotation sys-

tem for real-time processing of notes, therefore, providing an oppor-

tunity for clinicians to make more accurate time-sensitive decisions

around patient care (eg, identifying symptoms of COVID-19 PUIs).

With a continuously maintained and properly devised set of lexical

rules, the COVID-19 gazetteer has the potential to perform similar

to standard annotation systems for the task of symptom identifica-

tion. Contrary to standard annotation systems the COVID-19 gazet-

teer has a considerably lower resource footprint and hence, could be

deployed at medical sites lacking robust healthcare infrastructure.

Thus, the COVID-19 gazetteer could be used as a fast, resource-effi-

cient, and reliable tool for high-throughput real-time clinical deci-

sion support for COVID-19 or any other disease with well-defined

symptomatology. It can be easily deployed in a large scale across a

wide variety of healthcare settings for continuous surveillance of

COVID-19 symptoms for prognostic purposes. In addition, it holds

promise as a useful resource to study long-term sequelae of the dis-

ease in survivors (eg, PASC progression in COVID-19 survivors).
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