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ABSTRACT

Searching databases for distant homologues using
alignments insteadof individualsequences increases
the power of detection. However, most methods
assume that protein evolution proceeds in a regular
fashion, with the inferred tree of sequences provid-
ing a good estimation of the evolutionary process.
We investigated the combined HMMER search
results from random alignment subsets (with three
sequences each) drawn from the parent alignment
(Rand-shuffle algorithm), using the SCOP structural
classification to determine true similarities. At false-
positive rates of 5%, the Rand-shuffle algorithm
improved HMMER’s sensitivity, with a 37.5% greater
sensitivity compared with HMMER alone, when
easily identified similarities (identifiable by BLAST)
were excluded from consideration. An extension of
the Rand-shuffle algorithm (Ali-shuffle) weighted
towards more informative sequence subsets. This
approach improved the performance over HMMER
alone and PSI-BLAST, particularly at higher false-
positive rates. The improvements in performance
of these sequence sub-sampling methods may reflect
lower sensitivity to alignment error and irregular
evolutionary patterns. The Ali-shuffle and Rand-
shuffle sequence homology search programs are
available by request from the authors.

INTRODUCTION

Protein homology has long been used as a means for identi-
fying similarity in protein function or structure, based on the
observation that most sequences with extensive similarity
usually share an evolutionary ancestor. Sequence homology
searches of novel sequences against known protein databases
are a key element of sequence and genome annotation. While
strong similarities may be readily identified by searching a

single sequence against a database [e.g. BLAST searching (1)],
weak similarities may be difficult to distinguish from back-
ground noise. In this case, the power to detect similarity is
increased by searching an alignment against the database,
where weighting amino acid probabilities at each residue
position (2) provides a more sensitive comparison. One
approach is to implement a profile hidden Markov model
(HMM) (3). Each profile HMM of a protein alignment incor-
porates information from all proteins present in the alignment.
Alignments containing accurately aligned diverse proteins are
the most efficient for identifying distantly related proteins (4).

In such alignment-based searching, it is advantageous to
weight the component sequences to favour more strongly
those sequences that are more distantly related to other
sequences in the sequence set (5–8). In HMMER, the
sequences are weighted by default using the Gerstein–
Sonnhammer–Chothia (GSC) method of weighting (9),
additional methods are also available (10).

An alternative remote searching algorithm, PSI-BLAST (1),
initiates the search process with a single sequence, and iter-
atively adds similar sequences found in the database to a
scoring matrix of the aligned residues. PSI-BLAST’s sequence
weighting scheme (1) is a modified version of the one pro-
posed by Henikoff and Henikoff 1994 (5). Essentially, PSI-
BLAST takes the mean number of different residue types
observed in columns of the multiple alignment in order to
determine the weight assigned to each sequence within the
alignment in generating the position-specific score matrix
(PSSM) (1). Gap characters are treated as a 21st distinct char-
acter and any columns consisting of identical residues are
ignored in calculating weights. The PSSM construction at
each iteration has to make a decision from a number of dif-
ferent path possibilities. These decisions are controlled by the
requirements for automation, speed and general simplicity (1).
These decisions can cause a directionality of the PSI-BLAST
algorithm that may increase noise in the results, e.g. if a
non-family member with a domain in common with the
protein family is identified and incorporated into the PSSM,
it may mislead successive iterations to potentially overlook
alternative routes to genuine distant homologues.
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Both the weighting schemes above assume that some
kind of average of all the distantly related proteins is desirable.
This would indeed be true if evolution proceeded in a regular
fashion, since such an average would then be the best guess
of what a distantly related protein might be like. However,
proteins do not evolve according to a completely uniform
process of independent amino acid change along all branches
of an evolutionary tree (11–13). Single functionally important
amino acids, short motifs, longer domains or residues clustered
within the structure may be preserved or lost as units (14–16).
Some critical regions of proteins may be shared between more
distantly related proteins, but not shared between more closely
related proteins, showing an independence from phylogeny.

It has been shown that families have different outliers, so
multiple profiles are needed to model these outliers (17) and
also that distant homologues are better detected when using
profiles that incorporate diverse sequences (4). We developed
two search methods, Rand-shuffle and Ali-shuffle that attempt
to directly address these points and are less sensitive to evolu-
tionary assumptions by performing multiple searches of
sequence trios. We compare these methods with other non-
structural methods [PSI-BLAST and Rand-shuffle (control)]
for searching sequence datasets that may have no further added
value, such as profiles, alignments or protein family structures.
Specifically, we sought to develop an alternative approach
with increased power, relying on automated detection of
subsets of sequences to free the method from the limiting
assumptions of regular evolution.

MATERIALS AND METHODS

Algorithms

We set out to determine whether sub-sampling of sequences
for alignment profile searches, and combination of the sub-
sample search results, was superior to a single search using
the entire alignment. For these investigations, we chose the
HMMER (10) implementation of HMM searching. Ali-shuffle
and Rand-shuffle could be set up to use other profile methods.

The Rand-shuffle (Random shuffle) implementation of the
sub-sampling process (described below) selects a randomly
chosen set of sequence subset alignments. This approach is
likely to get around some errors in the full profile, since some
subsets will omit incorrectly aligned sequences. Second, it
may consider certain sequence subsets that may be closer
than the all-sequence profile to distantly related sequences.
However, the Rand-shuffle approach does not consider what
particular trios might be optimal, i.e. Rand-shuffle does not
perform any particular weighting towards certain subsets of
trios. Therefore, in addition to Rand-shuffle we examined a
second implementation of the sub-sampling approach called
Ali-shuffle (Alignment shuffle), which is a heuristic method
that additionally weights towards the more informative
sequence subsets.

Subsets of three sequences (trios) were selected from
the alignment in order to keep computational complexity to
a minimum. Searching all possible combinations would be
currently computationally too complex, even for subsets of
size three.

The ‘Rand-shuffle’ algorithm. In the Rand-shuffle algorithm, a
random selection of sequence trios were searched. The number

selected was chosen to be the same as the number of com-
binations defined using the Ali-shuffle algorithm (discussed
below) for each protein family, making the two algorithms
directly comparable in terms of computational complexity.
A sequence was allowed to occur in more than one trio; how-
ever, no two searched sequence trios contained the same com-
bination of sequences. HMMER was used to perform the
searches.

The ‘Ali-shuffle’ algorithm. Rather than implementing a stand-
ard weighting from the literature, we chose a weighting that
would potentially enrich for sequence trios that share minor
frequency residues, regardless of whether those sequences
were overall more or less similar. Columns that are completely
conserved were ignored in the choice of sequence trios, since
they are represented in the overall profile. In addition, regions
that were very un-conserved were also ignored, as being less
likely to be of functional importance. The algorithm examined
minor amino acids in columns of intermediate conservation.
Columns classified as intermediately conserved were used to
define sequence trios. For a given set of minor residues at such
a column, sequence trios were defined that tended to contain
biochemically similar amino acids. At first glance, this may
appear counterintuitive, since most sequence weighting algo-
rithms endeavour to combine distantly related sequences,
rather than similar ones. However, the chosen algorithm has
two likely effects. First, it enriches for sampling combinations
of minor sequences while ignoring the majority effect, which
is well represented by the original whole alignment HMMER
search. Second, it admits the possibility that sequences pre-
serving a conserved region that is scattered across a few evolu-
tionary branches may be considered within a trio that shares
this region. The process is repeated until all columns of the
alignment have been examined producing a list of sequence
trios to be searched. The net effect of this algorithm is that any
sequence that has a minor amino acid at an intermediately
conserved column is guaranteed to be included within a
sequence trio search. Its likely partners in such a trio are
sequences that share, at a moderately conserved column, sim-
ilarities in the properties of the minor amino acids at that
column. The precise details are given in the Supplementary
Material. This algorithm has the effect of greatly reducing
the total number of potential trios searched: with the PFAM
dataset used, there was a typical 100-fold reduction from
the potential complete set of trios for alignments containing
>30 sequences.

For both Rand-shuffle and Ali-Shuffle methods, each non-
redundant combination selected was used to build a HMM
profile with the HMMER package (10). The profile was calib-
rated and used in a search, by HMMER, against a given data-
base. In addition to the selected trios, the full alignment search
was also searched. The results of the separate alignment profile
searches of all sequence subsets and the complete alignment’s
profile search are merged and ranked in order of score.

In practice, Ali-shuffle linearly expands the computational
complexity of the search algorithm used (in this case HMMER)
in relation to the length of the alignment, and more loosely in
relation to the number of sequences in the alignment.

Other search methods. All PSI-BLAST and BLAST searches
were conducted by using each sequence in the alignment
separately and combining the search results. PSI-BLAST
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searches were conducted to convergence, since it performs
better at high rates of false positives when run until conver-
gence. HMMER searches were performed using the whole
alignment. We used the default parameter settings of the
HMMER program in all assessments of both the straightfor-
ward HMMER search and the modifications to the search
strategy using sub-samples of sequence sets. ‘hmmcalibrate’
was used for all profiles. PSI-BLAST and BLAST searches
used the default parameter settings.

Benchmark dataset—688 protein families

Our objective is to develop a better algorithm for the detection
of distantly related protein sequences based on alignments of
primary sequences. In order to evaluate the performance of the
different homologue detection methods, we used the SCOP
classifications of Murzin et al. (18,19) to create a benchmark
dataset. SCOP has been used before as a benchmark dataset
in both method comparison studies (4,8,20,21) and in new
method assessment studies (22,23). SCOP is a manually cur-
ated, hierarchical database, where each protein domain of
known tertiary structure is classified into a family that in
turn belongs to a superfamily. Each superfamily belongs to
a fold that in turn belongs to a class. Proteins belonging to a
family have a clear evolutionary relationship. Proteins in the
same superfamily are of probable common evolutionary ori-
gin, and those in the same fold have major structural similarity.
The SCOP classification’s reliance on structural similarity to
define superfamily relationships makes it an effective bench-
mark validation dataset for comparisons among algorithms
that compare primary sequence identity. The protein align-
ments for comparing these algorithms were obtained from
the PFAM database (24). A subset of protein families common
to both databases made up our benchmark dataset (see below).

The ‘Full’ alignments of PFAM version 6.6 protein domain
families (24) were downloaded from http://www.sanger.ac.uk/
Software/Pfam/. The file astral-scopdom-seqres-gd-sel-gs-
bib-100-1.57.fa from the SCOP protein database (18,19)
version 1.57 was downloaded from http://astral.stanford.
edu/scopseq-1.57/. Sequences from each PFAM family were
searched against the SCOP database using BLAST (1). PFAM
families that consistently hit a single family in the SCOP
database and no other superfamily members outside of that
family with an E-value less than a cut-off threshold (<10�4)
were denoted as having superfamily members that were
‘difficult’ to detect. The query PFAM families from the
‘difficult’ to detect dataset consist of 688 PFAM families
that have an acceptable computational intensity (i.e. limited
to 50 sequences where alignments are longer than 500 amino
acids). This subset of 688 PFAM families along with their
BLAST identified SCOP assignments (identical to the SCOP
protein database version 1.65 PFAM-SCOP assignments)
constituted our benchmarking dataset.

Comparison and assessment

SCOP is a hierarchical database. Both the superfamily and
family levels of the hierarchy contain a degree of sequence
similarity, and therefore both levels were applicable to this
study. The true positive hits were defined as hits to the super-
family. Results could be categorized into three categories: true
positives (tp), false-positives (fp) and false-negatives (fn).

A true positive was defined as a search from PFAM that hit
the correct superfamily. All other hits were defined as false
positives. A false negative is a superfamily member that has
not been hit. At a given search similarity threshold, we cal-
culated the sensitivity [tp/(tp + fn)], and the proportion of
false positives in all hits or ‘false-positive rate’ [fp/(fp + tp)]
(25). Specificity was also investigated, but we present only
the false-positive rate, since it has a simpler interpretation in
assessing the biological significance of a database match.

A standard Receiver Operating Characteristic (ROC) curve
(25) that consists of a diagram with the sensitivity plotted on
the x-axis and the false-positive rate a, on the y-axis, was
plotted. ROC curves and variations on them have been used
in other studies in the past (20,26–30). In our analysis, the
ROC curve was constructed by finding the sensitivity and the
false-positive rate when varying E-value (1,10) threshold cut-
offs in the results. Error bars for the ROC curves were calcu-
lated by the bootstrap method (31): the super-families in the
dataset were sampled randomly, with replacement, 1000 times
and 2.5% tails of the distribution were used to produce the
95% confidence intervals shown in the plots. The bootstraps
were calculated to determine whether the results were sensit-
ive to the particular families used in the assessment, and to
determine significance of differences among methods. This
was not carried out in previous method comparison studies.

Application—cytokine family search

To test the application of Ali-shuffle, the PFAM alignment of
interleukin 8-like cytokines was searched against the complete
human genome translated into all six possible reading frames.
The resulting search results were combined, and a list of non-
redundant hits made. Where there were two or more hits to the
same location on the genome we took the hit with the lowest
E-value (best hit). Hits to chromosome 4 were segregated
into the following categories: known cytokines as annotated
by Ensembl (32), other sequences, and finally, potential novel
matches, defined as other sequences with a score >20.

RESULTS

The ROC curve permits the comparison of alternative search
methods at a range of sensitivity and false-positive rate points
(20,25–30). It plots sensitivity (x-axis) against the false-
positive rate ( y-axis), using a whole range of arbitrary cut-
off points of sequence similarity. Thus, as the threshold
(E-value) for considering a hit of interest is raised, there is
both an increasing sensitivity and an increasing number of
false positives. Figure 1 compares the search methods. PSI-
BLAST is only comparable at higher false-positive rates, since
the method always returns some false positives. At very low
rates of false-positives (<1%) HMMER, Ali-shuffle and
Rand-Shuffle are comparable with a sensitivity of �7%.

The Rand-shuffle algorithm enhances HMMER’s perform-
ance when a greater degree of false positives is considered.
Thus, a simple algorithm combining sequences at random
gives an immediate benefit over the existing method, at
moderate false-positive rates of 5%. Use of the Ali-shuffle
algorithm, to select which trio alignment subsets to use, results
in a further improvement in performance, at false-positive
rates >5%. PSI-BLAST is only directly comparable at the
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higher false-positive rates. As noted before, in Lindahal
and Elofsson’s method comparison study, PSI-BLAST out-
performs a HMM implementation [in their comparison
ssHMM (26)] at higher specificities (20). Figure 1a indicates
that where PSI-BLAST results are comparable (false-positive
rate of >35%) it always outperforms HMMER. At these high
false-positive rates, Rand-Shuffle marginally outperforms
PSI-BLAST, while Ali-Shuffle demonstrates a substantial
improvement.

In a typical search for novel sequences, investigators
will start using BLAST, then proceed to a more complex
method, such as PSI-BLAST or HMMER, and only then con-
sider a more complex search, such as Ali-shuffle. The results in
Figure 1 do not clearly distinguish how much better the Rand-
shuffle and Ali-shuffle algorithms are at detecting sequences
not detectable by BLAST. Therefore, we investigated the

performance of the search methods among the true positives
that are not detectable by BLAST. BLAST-detected hits
(detected at E-value <10�4) were removed from considera-
tion, and results presented for the remaining sequences
(Table 1). At low false-positive rates (5%), both Rand-
Shuffle and Ali-Shuffle demonstrate a marked improvement
in HMMER’s sensitivity (37.5 and 62.5%, respectively).
Allowing increasing numbers of false positives, the pattern
of performance fluctuates somewhat, with the advantage
of Rand-shuffle tending overall to decline, while that of
Ali-shuffle stays more stable (Table 1).

Investigation of the results from the different methods indic-
ated that there were a proportion of families where Ali-shuffle
considerably improved HMMER’s sensitivity and a smaller
number of families where HMMER outperformed Ali-shuffle.
The properties of these families were investigated to determine

Figure 1. (a) Sensitivity (y-axis) against the false-positive rate (x-axis) for the search results of 688 protein families. Ali-shuffle (ali), HMMER (hmm), Rand-shuffle
(ran) and PSI-BLAST (psi) are compared. A total of 95% confidence intervals are also included in the plot. (b) Detail.
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whether alignments of a certain type may benefit particularly
from a specific search algorithm. A comparison of phylo-
genetic distances and pairwise distances between all possible
sequences in a given family was performed, to test whether
those families with a greater sequence diversity and phylo-
genetic spread perform better with Ali-shuffle. The alignment
length, the number of sequences in the alignment, the average
tree distance and the average pairwise distance were also
looked at.

The results of the different methods were investigated at the
appropriate search cut-off that generated a false-positive pro-
portion of 50%. Alignment length was weakly but significantly
positively correlated with A�H (where A�H = Ali-shuffle
sensitivity minus HMMER sensitivity, for families showing
different sensitivities for the two methods; r = 0.280, P =
0.014). This implies that Ali-shuffle tends to work better with
longer sequences compared with HMMER, while HMMER
tends to work better with shorter sequence alignments.

The correlation between tree distances and pairwise dis-
tances for these families was not found to be significant
(r = �0.125, P = 0.281), suggesting that greater sequence
diversity and phylogenetic spread is not a predictor of Ali-
shuffle’s success. No significant correlation was found for the
other attributes tested for the different family sets (number
of sequences: r = �0.036, P = 0.76; average tree distance:
r = 0.013, P = 0.914; average pairwise distance: r = 0.0418,
P = 0.72).

An interleukin 8-like cytokine alignment was searched
against the translated human genomic DNA with Ali-
shuffle. As expected, there was a concentration of known
hits within a region of chromosome 4. The seven apparent
novel cytokine sequences identified by Ali-shuffle on chromo-
some 4 clustered strongly at the two sub-regions containing
the known cytokine genes.

DISCUSSION

A validation of the Ali-shuffle and Rand-shuffle methods using
the SCOP protein classification database demonstrated that
consideration of such similarities does indeed increase the
power to detect distantly related homologues. Rand-shuffle
simply selects trios at random, and at 5% false-positive

rates it gives a 37.5% increase in HMMER’s sensitivity, in
searches for related sequences not detectable by BLAST. Its
success may result from by-passing alignment errors in the
entire alignment, and secondly from allowing chance com-
binations of sequence to be favoured that would otherwise
be obscured. Ali-shuffle further improves HMMER’s perform-
ance, by enriching for trios that share properties at interme-
diately conserved columns not shared by the alignment as
a whole. Since these sequence trios need not necessarily be
closely related over all residue positions, this method provides
a more general consideration of subsequence similarities,
independent of the phylogeny of the aligned proteins. This
contrasts with previously developed methods (4,6,8,9,33)
that weight towards more distantly related proteins within
the alignment-based on the overall sequence similarity. Thus,
these search methods complement existing search approaches.

Rand-shuffle and Ali-shuffle both improve HMMER’s
performance at high false-positive rates (>5%, see Table 1),
although Ali-shuffle out performs Rand-shuffle. We suggest
that the Rand-shuffle algorithm improves HMMER’s perform-
ance because individual trios of sequences are less contamin-
ated by alignment errors seen elsewhere in the full alignment
(4) in addition to selected subsets detecting distantly related
proteins because their profile is a closer match than the full
alignment profile. Alignment error may arise through sequen-
cing (e.g. frameshifting) errors, presence of splice variants or
simply the difficulty in reconstructing the true evolutionary
relationships of sequences. We have not formally assessed the
impact of alignment error on these methods, since it is difficult
to quantify the extent and the nature of errors in real datasets,
and simulation models may not reflect the true distribution of
such errors. The further improvement in performance by the
Ali-shuffle algorithm suggests that the pattern of evolution is
an important factor. We postulate that Ali-shuffle’s independ-
ence from phylogeny enables the detection of both non-
phylogenetically linked and phylogenetically linked motifs
shared by distantly related homologues that may be missed
by a straightforward HMMER search. The extent that Ali-
shuffle improves performance suggests that departures from
regularity in evolution may be quite marked, particularly when
comparing very distantly related proteins. This is not entirely
surprising, since most of the original studies that identified a
typically regular pattern of protein evolution (34) relied on
studies of relatively conserved proteins.

Ali-shuffle improves HMMER’s performance at higher per-
mitted false-positive rates in our benchmark tests. Particularly
striking is the sensitivity increase observed when the BLAST
identified hits are removed from the results (see Table 1). This
reflects the typical use of database searching by a biologist
who will carry out a BLAST search and then subsequently
investigate the slower, more powerful, search techniques.

While some researchers would not wish to consider high
levels of false positives, other researchers increasingly use
correlation with other evidence sources, such as expression
patterns and gene structure to help refine candidate homo-
logues. Clustering of the seven cytokine-like sequences iden-
tified by Ali-shuffle at the two sub-regions containing the
known cytokine genes indicate that they may represent either
functional genes or pseudogenes arising through local duplica-
tion of DNA. This illustrates the utility of Ali-shuffle in detect-
ing novel related sequences. It indicates how information from

Table 1. Effect of excluding BLAST-detected hits on the relative percentage

increase in sensitivity of Ali-shuffle and Rand-shuffle compared with

HMMER alone

% False
positives

Ali-shuffle Rand-shuffle
Including
blast

Excluding
blasta

Including
blast

Excluding
blasta

5 7.79 62.50 5.19 37.50
10 7.41 50.00 2.47 33.33
15 8.43 57.89 6.02 42.11
20 8.14 60.00 5.23 50.00
25 10.34 63.64 5.75 45.45
30 8.89 83.33 4.44 50.00
35 9.89 64.29 5.49 35.71
40 10.87 51.61 6.52 25.81
45 12.77 57.58 6.38 21.21
50 13.54 61.11 5.21 16.67

aExcluding from consideration BLAST hits detectable with E-value of 10�4.

3776 Nucleic Acids Research, 2005, Vol. 33, No. 12



searches with lax parameters allowing a high false-positive
rate may be effectively combined with additional sources of
information, justifying the continued development of search
methods with greatest power at higher false-positive rates.

Sequences of proteins where Ali-shuffle and Rand-shuffle
improved HMMER were generally longer. These results indic-
ate that alignment length is of some importance in the success
of Ali-shuffle, as is the selection of the subsets searched.
Increase of alignment length means that there are a larger
number of columns, and within the current implementation
of the algorithm this usually results in a larger number of
trio searches being carried out; we postulate that it is this
that leads to the added success of Ali-shuffle. While there
is a computational burden associated with using Ali-shuffle,
increasing availability of high-performance computing will
help overcome this, at least for searches focused within single
genomes.

While previous work has established the principle that con-
sidering subsets of alignments permits the identification of
distantly related proteins that might otherwise not be detected
(17), our algorithm takes a more directed approach in terms
of the combination of these subsets without using structural
information while limiting the number of searches performed.
Clearly, there are many other possible variations of this prin-
ciple that may also be possible. Subsets could be established
representing sub-trees within an alignment, which would then
have greater power to detect rapidly evolving proteins belong-
ing to that particular clade of sequences. We investigated
whether altering the number of sequences included in the
sub-sampling (from 3 to 7 sequences) altered the performance,
and found it to be quite similar (data not shown). However, the
more generic approach of Ali-shuffle incorporates a wider
variety of possible evolutionary scenarios and does not depend
on the assumption of regular evolution at all regions in the
protein.

The algorithm presented here provides a reasonable com-
promise between computational intensity, increased sensi-
tivity, controlling the signal-to-noise ratio and practical
implementation. Further improvements to the computational
intensity of the algorithm may well be possible, cutting down
on the number of sub-alignments searched according to a
variety of alternative criteria. This method differs from
profile–profile algorithms (35), which require that the target
database of sequences is well-aligned, reducing the search
space but also excluding the discovery of certain potential
true positives. Two-track HMMs (36,37) require structural
data, which again limits possible comparisons to sequences
of known structure. A direct comparison of the utility of these
three methods is not practical, since each is optimal for the
searching of different databases. In the presence of structural
data, two-track HMMs may well be a superior approach. We
explored whether the sub-sampling approach we applied was
also applicable to the improvement of profile–profile methods,
using the PRC implementation of profile–profile searches
(M. Madera, unpublished data) (http://supfam.mrc-lmb.cam.
ac.uk/PRC). However, we did not find a significant improve-
ment in PRC’s performance by applying the Ali-shuffle
sub-sampling to the construction of search profiles (data not
shown). Partly due to the computational intensity of the Ali-
shuffle algorithm, we do not suggest that it be used for routine
genome annotation, as has been proposed for PSI-BLAST (22)

and HMMs (17), but rather by researchers with a specific
protein family of interest to search for distantly related pro-
teins in datasets that do not have alignments or structural data
available. The combination of the output of Ali-shuffle with
other information sources, such as chromosomal location, pro-
vides a powerful way to quickly provide corroborative
information regarding true homology.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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