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Abstract: In genome-wide association studies, epistasis detection is of great significance for the
occurrence and diagnosis of complex human diseases, but it also faces challenges such as high
dimensionality and a small data sample size. In order to cope with these challenges, several swarm
intelligence methods have been introduced to identify epistasis in recent years. However, the existing
methods still have some limitations, such as high-consumption and premature convergence. In this
study, we proposed a multi-objective artificial bee colony (ABC) algorithm based on the scale-free
network (SFMOABC). The SFMOABC incorporates the scale-free network into the ABC algorithm to
guide the update and selection of solutions. In addition, the SFMOABC uses mutual information
and the K2-Score of the Bayesian network as objective functions, and the opposition-based learning
strategy is used to improve the search ability. Experiments were performed on both simulation
datasets and a real dataset of age-related macular degeneration (AMD). The results of the simulation
experiments showed that the SFMOABC has better detection power and efficiency than seven
other epistasis detection methods. In the real AMD data experiment, most of the single nucleotide
polymorphism combinations detected by the SFMOABC have been shown to be associated with
AMD disease. Therefore, SFMOABC is a promising method for epistasis detection.

Keywords: artificial bee colony; scale-free network; epistasis detection; single nucleotide polymorphism;
complex disease

1. Introduction

Genome-wide association studies (GWAS) play a significant role in determining
the genetic mechanisms of complex diseases [1,2]. With the advent of high-throughput
sequencing technology, large numbers of single nucleotide polymorphisms (SNPs) have
been identified. Through tremendous advances in gene localization, SNPs have been
accepted as commonly used markers of human genetic variation, and SNP interactions, or
epistasis, are important factors that affect disease incidence. In other words, the genetic
mechanisms of complex diseases can be better understood through these SNP data and SNP
interactions [3–6]. However, epistasis detection faces challenges such as high dimensionality
and a small data sample size [7–9].

To address these challenges, a series of SNP interaction detection methods have been
proposed. For example, Wan et al. [10] proposed the learning method SNPRuler based
on predictive rule inference to discover epistatic interactions associated with disease, and
they also proposed a classical method, BOOST, based on categorization to identify SNP
interactions [11]. However, these methods have several shortcomings, such as high time
complexity, low optimization efficiency, and fast convergence. To solve these problems,
a large number of epistasis detection methods have been proposed in the past ten years.
For example, Christian et al. [12] analyzed the runtime and detection power of these
methods, and Shang et al. [13] provided a comprehensive review of the methods based
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on the ant colony optimization (ACO) algorithm. Wang et al. [14] proposed a two-stage
ant colony optimization (ACO) algorithm, named AntEpiSeeker, for epistasis detection. In
AntEpiSeeker, ACO is used to obtain a predefined number of highly suspected SNP sets in
the first stage, and the final solution is obtained by an exhaustive search in the second stage.
Sun et al. [15] proposed the EACO method, based on the ACO algorithm, which introduces
heuristic information and uses two objective functions to detect epistatic interactions.
Zhang et al. [16] proposed a selective information particle swarm optimization algorithm
(SIPSO), which introduces the scale-free networks as its population structure and uses the
mutual information (MI) as the objective function to evaluate SNP interactions. Aflakparast
et al. [17] proposed a Cuckoo search epistasis (CSE) method, which uses Bayesian scoring
as the objective function and combines this with the CSE algorithm to detect epistasis.

The swarm intelligence algorithm has gradually become an effective means to solve
epistasis problems in recent years. Tuo [18] proposed a fast method, FDHE-IW, for de-
tecting high-order epistatic interactions based on an interaction weight. FDHE-IW uses
the symmetric uncertainty (SU) value as the objective function, selects the top k SNP com-
binations based on the SU value of each SNP, and then uses forward searching to select
higher-order SNP combinations. Tuo et al. [19] proposed a multi-population harmony
search (HS) algorithm dedicated to the detection of high-order SNP interactions (MP-HS-
DHSI). It consists of three stages. In the first stage, a multi-objective HS algorithm is used
to discover the candidate SNP combinations. In the second and third stages, the G-test
statistical method and multifactor dimensionality reduction (MDR) are used to verify the
authenticity of the candidate solutions. Chen et al. [20] proposed a multi-objective genetic
algorithm (EpiMOGA) for SNP interaction detection that uses the K2-Score and the Gini
index as the objective functions. Pashaei et al. [21] proposed a new hybrid approach that
combines the strengths of two existing metaheuristics: the binary dragonfly algorithm
and the binary black hole algorithm (BBHA). The swarm intelligence algorithm has been
shown to perform well in epistasis detection. The artificial bee colony algorithm (ABC) is
a new swarm intelligence algorithm that was inspired by the swarm foraging behavior of
bees [22].

ABC has been introduced in recent years for epistasis detection in GWAS. Chen et al. [23]
proposed an epistasis mining approach based on an ABC optimized Bayesian network
(BnBeeEpi). BnBeeEpi used two Bayesian network (BN) scoring functions and intro-
duced the decomposable BIC score to solve the problem of large-scale network learning.
Guan et al. [24] proposed a random grouping-based self-regulating artificial bee colony
algorithm for epistasis detection. RCABC uses a dynamic random grouping (DRG) strategy
to decompose all features in a dataset and then uses a self-regulating bee colony optimizer
to detect relevant interactive features in each subset. Li et al. [25] proposed an epistatic
interaction multi-objective ABC algorithm based on decomposition (EIMOABC/D), which
uses a rank probability model and a local search strategy to address the problems in GWAS.

Compared with other swarm intelligence algorithms, the ABC algorithm has fewer
control parameters and a simpler structure [26]. However, the existing ABC-based epistasis
detection methods face the following challenges: ABC suffers from a slow convergence
problem, such methods easily fall into the local optimum during the iterative process, and
the single-objective strategy cannot effectively evaluate the epistatic model. Therefore, the
research motivations of this study were as follows: to improve the convergence problem of
the ABC, to introduce a random strategy to avoid ABC falling into the local optimum, and
to select the appropriate objective functions to effectively evaluate the epistasis model.

Based on the above discussion and findings, this study proposed a multi-objective
ABC algorithm based on the scale-free network (SFMOABC) for epistasis detection. We
carried out experiments on 12 small-scale and 12 large-scale simulation models and a real
age-related macular disease (AMD) dataset. The results show that SFMOABC is more
effective for epistasis detection than the other methods used for the comparison. The
contributions of the SFMOABC are summarized as follows: (1) a mechanism that adopts
the scale-free network to guide the search of the ABC. The scale-free network has the
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characteristics of power law distribution and a low degree-degree correlation coefficient.
The characteristics of the scale-free network can help each employed bee to learn more
effective information from its neighbors, which improves the detection power; (2) the
multi-objective strategy in which the MI and K2-score are used to characterize various
epistasis models and improve the detection power; and (3) the opposition-based learning
strategy. ABC can easily to fall into the local optimum as the iteration progresses, and
the opposition-based learning strategy improves the detection power by improving the
randomness of the algorithm.

2. Methods
2.1. Scale-Free Network

The concept of scale-free networks was introduced in a paper published by Albert-
Laszlo Barabasi and Reka Albert [27]. The scale-free network is a complex network model
where node degree distribution is approximately a power law distribution. The power law
distribution of the node degree is intuitively shown as follows: most “ordinary” nodes
have few connections, whereas a few “hot” nodes have many connections. Such a network
is called a scale-free network, and “hot” nodes in the network are called hub nodes. This
phenomenon can be described as the following formula [27]:

P(k) ∼ k−γ (1)

where p(k) is the probability that any node owns degree k in the network. γ is a parameter
describing the network structure, and its value range is usually 2 to 3.

The scale-free network is often compared with the random network, which is a network
made up of nodes that are randomly connected. The degree of each node in the random
network is similar, and there is no hub node. The Comparison diagram of the scale-free
network and the random network is shown in Figure 1.
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Figure 1. Comparison diagram of the scale-free network and the random network: (a) visualization
of the scale-free network; (b) the degree distribution curve of nodes in the scale-free network; (c) visu-
alization of the random network; (d) the degree distribution curve of nodes in the random network.

Additionally, Barabasi and Reka Albert proposed the classical BA model for construct-
ing the scale-free network. The specific structure of the BA model is as follows:
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(1) Growth: Start with a small fully connected network G0 which has m0 nodes, and
gradually add new nodes one at a time.

(2) Connection: Assume that the original network already has m nodes (s1, s2, · · · , sm).
When a new node sm+1 is added, it connects n links to the original m nodes, where
n < m0.

(3) Priority connection: The connection strategy gives priority to the nodes with a higher
degree. For an original node si(1 ≤ i ≤ m), the probability Pi that the new node is
connected to it can be described as

Pi =
di

∑m
j=1 dj

(2)

where di is the degree of node si in the original network, and dj is the degree of node sj in
the original network

2.2. Artificial Bee Colony Algorithm

The ABC algorithm is a new global optimization algorithm based on swarm intelli-
gence, which is usually used to solve numerical optimization problems [26,28,29]. It is
inspired by the honey gathering behavior of bees. To find the optimal solution to a problem,
bees carry out different activities according to their respective divisions of labor and share
information with each other. The ABC algorithm consists of three bee types: employed
bees, onlooker bees, and scout bees. Among them, the number of employed bees is equal
to the number of onlooker bees. The employed bees are responsible for exploring new food
sources and sharing information about food sources with the onlooker bees. According
to the shared information, onlooker bees make choices about the food sources. Scout bees
discard the food sources according to certain rules and then look for new ones.

Suppose the solution to the optimization problem has D dimensions, the number of
food sources is N, and the number of employed bees is consistent with the number of
food sources. The standard ABC algorithm regards the process of solving optimization
problems as searching the D-dimensional solutions in the search space. Each food source
represents a possible solution to the problem, and the amount of nectar in the food source
corresponds to the fitness value of the corresponding solution. The food source is expressed
as xi = (xi1, xi2, · · · , xiD), where i = 1, 2, · · · , N. During the initialization stage, the food
source xi can be generated according to the following formula:

xij = xmin
j + rand(0, 1)

(
xmax

j − xmin
j

)
(3)

where i = {1, 2, · · · , N}, j = {1, 2, · · · , D}, xmax
j and xmin

j are the upper and lower bound-
aries of j dimension, and rand(0, 1) represents a random number uniformly distributed
between 0 and 1.

After the initialization stage, the employed bees search for the new food sources by
changing their current positions, which can be described as

vij = xij + rand(−1, 1)
(

xij − xkj

)
(4)

where k is a random value that satisfies the condition k ∈ {1, 2, · · · , SN} (k 6= i), and
rand(−1, 1) represents a random number uniformly distributed between −1 and 1. The
new food source vi is evaluated, and a greedy strategy is conducted to compare the new
food source and the original food source. If the new food source is better than the old one,
the employed bees will remember the location of the new food source. Otherwise, the
employed bees will keep the original food source.

When all employed bees have completed the search process, the onlooker bees collect
information from the employed bees and select food sources according to the probability
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value Pi associated with food source vi. The probability value can be calculated using the
following equation:

Pi =
f iti

N
∑

i=1
f iti

(5)

where f iti is the fitness value of food source vi. The onlooker bees use a roulette strategy to
select the food sources found by the employed bees. This means that the higher the fitness
value of the food source is, the more likely it is to be selected. Taking the optimization
problem of minimization function as an example, the fitness function of the food source is
defined as

f iti =

{ 1
1+ fi

fi ≥ 0

1 + abs( fi) otherwise
(6)

where fi is the cost value of solution vi. If a solution is not selected, the onlooker bee will
discard it and generate a new solution through (4).

In the scout stage, the ABC checks the parameter limit to decide whether to discard the
food source. When the employed bee fails to find a better food source after limit iterations,
it discards this food source. Then, the employed bee turns into the scout bee and randomly
generates a new solution to replace the original solution according to Formula (3).

2.3. Multi-Objective Artificial Bee Colony Algorithm Based on the Scale-Free Network
2.3.1. Objective Function

To improve the detection power of the algorithm, two objective functions, mutual
information (MI) and Bayesian network (BN) scoring, are used in the SFMOABC.

The first objective function is MI, which is a measure based on information entropy
that is used to evaluate the uncertainty between variables [30,31]: the higher the MI value,
the stronger the correlation between the SNP combination and the phenotype.

The MI between the SNP combination and the phenotype can be described as

MI(S; Y) = H(S) + H(Y)− H(S; Y) (7)

where S is the SNP combination, Y is the phenotype, H(S) is the entropy of S, H(Y) is the
entropy of Y, and H(S; Y) represents the joint entropy of S and Y.

The second objective function is the K2-Score based on the BN, which is used to
evaluate the dependence of variables [32,33]. The lower the value of the K2-Score, the
greater the correlation between the SNP combination and the phenotype. The BN model is
a probabilistic graph model that can be expressed by a directed acyclic graph G = (V, E).
In the directed acyclic graph, the node set V is composed of random variables, and E is
a set of edges. The BN model represents causality by connecting the edges between nodes
and the conditional dependence between two connected variables. The K2-Score based on
the BN is described as

K2 =
I

∏
i=1

[
(J − 1)!

(ni + J − 1)!

J

∏
j=1

nij!

]
(8)

where I is the number of combinations of SNP nodes with different values, J is the number
of states of phenotypic nodes, ni is the number of cases for the i−th combination, and nij
represents the number of cases for the j−th phenotype at the i−th disease node.

To simplify the calculation, Formula (9) is usually converted into logarithmic form,
which can be rewritten as

K2log =
I

∑
i=1

[
n+1

∑
k

log(k)−
J

∑
j=1

n

∑
s=1

log(s)

]
(9)



Genes 2022, 13, 871 6 of 19

In the SFMOABC, the two objective functions are integrated to evaluate the correlation
between the SNP combination and the phenotype using multiple aspects in a novel format,
which can be defined as [34]

f it =
MI
K2

(10)

It can be seen that the larger the f it value is, the stronger the correlation between the
SNP combination and the phenotype will be.

2.3.2. Initialization Based on the Scale-Free Network

In the initialization stage, the SFMOABC generates an initial population with N
solutions (food sources), and each food source represents an SNP combination. Then,
the SFMOABC calculates the fitness value of each food source in the population through
Formula (10) and sorts these candidate solutions in descending order according to their
fitness values. Meanwhile, the BA algorithm is used to construct a scale-free network, and
the total number of nodes in the network is consistent with the number of food sources in
the initial population.

During network construction, each node needs to be numbered. For example, the
total number of nodes in the network is N, and the number of hub nodes is m0. First, the
hub nodes are numbered in a range from 1 to m0, and the order is random. Then, the
remaining N −m0 nodes are numbered sequentially from m0 + 1 according to the order
that they joined the network. After all nodes have been numbered, a complete scale-free
network is constructed. Each solution in the population corresponds to a node in the
scale-free network. The first m0 solutions in descending order according to their fitness
values correspond to the hub nodes of the network, and these solutions are called elite
solutions (elite food sources). The remaining solutions correspond to the nodes numbered
from m0 + 1 to N, which are called normal solutions (normal food sources).

2.3.3. Solution Updating Based on the Scale-Free Network

The SFMOABC relies on both the scale-free network and the opposition-based learning
strategy to update solutions representing SNP combinations. Both the employed bee and
onlooker bee stages of the SFMOABC involve solution updating. The scale-free network
is a network model with a power law distribution and a low degree-degree correlation
coefficient. Based on these characteristics, low-quality solutions are more likely to move
closer to high-quality solutions. Therefore, when the solution is updated, the SFMOABC
will find the solution corresponding to its neighbor with the largest degree in the network
and then move closer to it. However, the quality of the hub nodes is high. When any
two hub nodes are close to each other during the updating process, the SFMOABC can
easily fall into the local optimum. Therefore, in order to increase the exploration ability and
prevent premature convergence, a solution is randomly selected from the solution space
when the hub code is updated.

In the initialization stage, the solutions are sorted in descending order according to
their fitness values. They are then divided into two categories: elite solutions and normal
solutions. These two types of solution participate in each iteration of the SFMOABC with
different methods of updating. In the employed bee stage, the normal food sources are
updated as shown in Formula (11):

vij = xij + rand(0, 1)
(
xnei,j − xij

)
(11)

where vij represents the solution obtained after updating. xnei,j is the neighbor node with
the largest degree among its neighbors in the scale-free network. The elite food sources are
updated using

vij = xij + rand(−1, 1)
(

xij − xkj

)
+ rand(0, 1)

(
xnei,j − xij

)
(12)
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where xkj is a randomly selected SNP from the solution space, and k 6= i. At the end of
the employed bee stage, the onlooker bees select the food sources according to the fitness
values. For the unselected solution, the onlooker bee repeats the operation of the employed
bee stage to generate a new solution. The above process updates the food sources based on
the scale-free network, and the search ability of the SFMOABC is improved effectively after
updating. However, the ability to explore the unknown solution space needs to be further
improved. Therefore, after getting an SNP combination vi by scale-free network updating,
the opposition-based learning strategy is used to get another SNP combination ui, which
can be described as [35]

uij = ub + lb− vij (13)

where ub is the upper bound of the solution space, and lb is the lower bound of the solution
space. The fitness values of vi and ui are calculated respectively, and the updated solution
with a large fitness value is retained according to the greedy strategy. Then, the updated
solution is compared with the initial solution xi through the greedy strategy again, and the
solution with a large fitness value is retained as the final result of this iterative updating.
The SFMOABC framework is shown in Figure 2.
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2.3.4. Time Complexity Analysis

The time complexity of the SFMOABC algorithm mainly depends on the construction
of the scale-free network and the iteration of the ABC algorithm. The SFMOABC firstly
needs to build a scale-free network in the initialization stage, and the total number of nodes
in the network is consistent with the number of employed bees. The search process of the
algorithm is guided by the scale-free network, and the structure of the scale-free network
remains unchanged throughout the optimization process. In each iteration, the SFMOABC
ranks the employed bees according to the quality of the food sources.

Here, we analyze the time complexity of the SFMOABC. T is the maximum number
of iterations, and N is the number of employed bees. In the initialization stage, the
time complexity of generating the initial population and calculating the fitness value is
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O(2N), and the time complexity of constructing the network is O(N2). Therefore, the
time complexity of the initialization stage is O(2N + N2). In the employed bee stage, the
time cost of the SFMOABC sorting the employed bees according to their fitness values is
O(T× N log2 N), and the time complexity of the employed bees updating the food sources
is O(N×T). Thus, the time complexity of the employed bee stage is O((N + N log2 N)×T).
In the onlooker bee stage, the SFMOABC first needs to calculate the probability of each
food source being selected, and the time complexity is O(N × T). Then, the onlooker
bees repeat the steps of the employed bee stage. Therefore, the time complexity of the
onlooker bee stage is O((2N + N log2 N)× T). The time complexity of the scout bee stage
is O(N× T). According to the above analysis, the overall time complexity of the SFMOABC
is O((4N + 2N log2 N)× T + 2N + N2).

2.3.5. Overall Framework

In order to solve the epistasis detection problem in GWAS, a multi-objective ABC
algorithm based on the scale-free network is proposed. This includes three main parts: two
objective functions, initialization based on the scale-free network, and solution updating
based on the scale-free network. The SFMOABC combines the scale-free network and the
opposition-based learning strategy into the ABC algorithm, which effectively increases
the searching ability of the algorithm. At the same time, two complementary objective
functions are used to make the results more accurate and reliable.

Algorithm 1 gives the pseudo-code of the SFMOABC. At the beginning of the algo-
rithm, a population with N food sources is randomly generated, and each food source
represents an SNP combination. Then, two objective functions are used to evaluate the
quality of the SNP combinations, and the solutions are sorted in descending order accord-
ing to their fitness values. After the initial population has been generated, the SFMOABC
generates a scale-free network where the number of nodes is equal to the number of food
sources. In the network, the m0 hub nodes are numbered randomly, and the remaining
N − m0 nodes are numbered sequentially from m0 + 1 according to the order that they
joined the network. There is one-to-one correspondence between the solutions in the popu-
lation and the nodes in the network. Since nodes in the network are divided into hub nodes
and other nodes, the solutions in the population are also divided into two parts: elite food
sources and normal food sources. Then, in the employed bee stage, the scale-free network
and the opposition-based learning strategy are used to update the food sources, and the
greedy strategy is used to select high-quality solutions. After the employed bee stage,
the SFMOABC calculates the probabilities of the solutions based on their fitness values,
where the bigger the fitness value, the greater the probability that onlooker bees will be
chosen. When a food source is not selected, the onlooker bee will repeat the operation of the
employed bee to generate a new solution and then keep a better one by the greedy strategy.
In the scout bee stage, if a food source does not meet the condition of being replaced, the
trail number is increased by 1. Otherwise, the trail number is reset to 0. Lastly, the model
determines whether food sources should be abandoned by checking the limit parameter. If
a food source cannot be improved further after a predetermined number of iterations, the
food source will be abandoned, and a new food source will be generated randomly. Finally,
SFMOABC iterates until the stopping condition is satisfied.

3. Experiments
3.1. Evaluation Measures

To avoid the one-sidedness of using a single evaluation indicator, two evaluation
indicators, Power and F-measure [17], were used to evaluate the performance of the epistasis
detection methods. Power is a measure of the ability to detect pathogenic models in all
datasets; it can be expressed as

Power =
#T
#S

(14)
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where #T is the number of datasets in which disease-related SNP combinations are success-
fully detected, and #S is the total number of simulated datasets generated with the same
disease model (100 data matrices per disease model). The F-measure is a weighted average
of the recall rate and accuracy rate, which can be defined as

Algorithm 1: SFMOABC

Input: the number of the food sources N; the dimension of problems D; a count parameter
representing the number of times the current solution has not been improved trail; the maximum
number of not be improved limit; the number of hub nodes in the scale-free network m0; the
number of edges when the node joins the network m.
Output: the optimal solution x.
01. Initialize N food sources to form a population X = {x1, x2, · · · , xN};
02. Calculate the fitness value of each solution F(x) = { f (x1), f (x2), · · · , f (xN)};
03. Build a scale-free network with N node, and number each node in the network.
04. While the stopping criteria is not satisfied do
05. for i = 1→ N do
06. if i <= m0 then
07. vi = xi;
08. Find the neighbor nei with the largest degree of xi;
09. vi,d = xi,d + rand(−1, 1)

(
xi,d − xk,d

)
+ rand(0, 1)

(
xnei,d − xi,d

)
10. k ∈ {1, 2, · · · , N}, k 6= i; d ∈ {1, 2, · · · , D};
11. Calculate the fitness value of the vi.
12. v′i,d = ub + lb− vi,d;
13. Calculate the fitness value of v′i ;
14. if f (vi) > f

(
v′i
)

then
15. ui ← vi ; f (ui)← f (vi) ;
16. else
17. ui ← v′i ; f (ui)← f

(
v′i
)

;
18. end
19. if f (ui) > f (xi) then
20. xi ← ui ; f (xi)← f (ui) ; trail(i)← 0
21. else
22. trail(i)← trail(i) + 1 ;
23. end
24. else
25. vi = xi;
26. Find the neighbor nei with the largest degree of xi;
27. vi,d = xi,d + rand(0, 1)

(
xnei,d − xi,d

)
;

28. Repeat (Steps 10–23)
29. end
30. end
31. Calculate the probability P(i) of xi;
32. i = 1; t = 0;
33. while t < N do
34. if rand > P(i) then
35. repeat (Steps 06–30)
36. end
37. i← i + 1 ;
38. if i← N + 1 then
39. i← 1 ;
40. end
41. end
42. Find the individual h with the maximum trail value;
43. if trial(h) > limit then
44. Randomly generated a new food source to replace the h-th food source;
45. end
end
Return the optimal solution x with the largest fitness value.
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F−measure =
2

1/recall + 1/precision
(15)

High recall means that most of the truly associated SNP combinations are detected,
but false positives may be detected as well. In contrast, high precision means that truly
associated SNPs account for a large portion of the detected SNPs [36]. Recall can be
written as

recall =
#TP

#TP + #FN
(16)

Precision can be expressed as

precision =
#TP

#TP + #FP
(17)

True positives (TPs) are defined as the discovery of a k-order SNP combination that
is associated with disease status, false negatives (FNs) are defined as a nondiscovery of
a SNP combination that is associated with disease, and false positives (FPs) are defined as
a k-order SNP combination that is falsely associated with a disease status [17].

In this experiment, #TP is the number of datasets in which true disease-related SNP
combinations were detected, #FN is the number of datasets in which no disease-related
SNP combinations existed, and #FP is the number of datasets in which false disease-related
SNP combinations were detected.

3.2. Simulation Data

Twelve commonly used two-order SNP interaction pathogenic models were selected
to evaluate SNP combination detection identification methods, which were generated by
the simulation software EpiSIM [37]. Models 1–8 are disease models with a marginal
effect (DMEs), Models 9–12 are disease models without a marginal effect (DNMEs) [15,17].
For each model, 100 datasets were simulated, and each dataset contained 2000 cases and
2000 controls. In addition, there were 100 SNPs in small-scale datasets and 1000 SNPs in
large-scale datasets. For each dataset, only one SNP combination was associated with the
phenotype, whereas the others were not. The details of these models are shown in Table 1.

Table 1. Details of the epistatic models.

Model AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb

Model 1 0.087 0.087 0.087 0.087 0.146 0.190 0.087 0.190 0.247
Model 2 0.078 0.078 0.078 0.078 0.105 0.122 0.078 0.122 0.142
Model 3 0.009 0.009 0.009 0.013 0.006 0.006 0.013 0.006 0.006
Model 4 0.092 0.092 0.092 0.092 0.319 0.319 0.092 0.319 0.319
Model 5 0.084 0.084 0.084 0.084 0.210 0.210 0.084 0.210 0.210
Model 6 0.052 0.052 0.052 0.052 0.137 0.137 0.052 0.137 0.137
Model 7 0.072 0.164 0.164 0.164 0.072 0.072 0.164 0.072 0.072
Model 8 0.067 0.155 0.155 0.155 0.067 0.067 0.155 0.067 0.067
Model 9 0.486 0.960 0.538 0.947 0.004 0.811 0.640 0.606 0.909

Model 10 0.103 0.063 0.124 0.098 0.086 0.069 0.021 0.147 0.059
Model 11 0.000 0.000 0.000 0.000 0.050 0.000 0.100 0.000 0.000
Model 12 0.000 0.020 0.000 0.020 0.000 0.020 0.000 0.020 0.000

3.3. Parameter Settings

In order to prove its effectiveness, the SFMOABC was compared with AntEpiseeker [14],
IACO [34], EpiACO [3], MACOED [38], SIPSO [16], BnBeeEpi [23], RCABC [24], and two
single-objective ABC algorithms with MI and the K2-Score as objective functions (ABC_MI
and ABC_K2). AntEpiseeker is a two-stage ACO algorithm. IACO is an improved ACO
algorithm combining BN and MI. EpiACO is a single-objective ACO algorithm. MACOED
is a multi-objective ACO algorithm combining logistic regression and BN. SIPSO is a particle
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swarm optimization (PSO) algorithm based on the scale-free network. BnBeeEpi is an
improved ABC based on the Bayesian network. RCABC is a random-grouping-based
self-regulating ABC algorithm.

In the simulation experiment, the number of iterations was set to 50 for all eight
methods. The number of bees in the ABC algorithm, the number of ants in the ACO
algorithm, and the number of particles in the PSO algorithm were set to the same value,
which was 100 in the small-scale dataset and 1000 in the large-scale dataset. In the ABC
algorithm, the parameter limit was set to 10. In BnBeeEpi, honey.size was set to 5 and fast.α
was set to 0.001. In RCABC, M was set to 10 and the number of groupings was set to 15.
In the ACO algorithm, the initial pheromone τ0 was set to 1, and the parameters α and
β determining the weights of the pheromone and heuristic information were both set to
0.2. In the PSO algorithm, the acceleration factors c1 and c2 were both set to 2.05. In the
scale-free network, the number of hub nodes m0 was set to 3.

3.4. Experimental Results on Simulation Data

In the simulation experiment, the SFMOABC was compared with seven methods based
on the swarm intelligence algorithm and two single-objective ABC algorithms (ABC_MI
and ABC_K2) on 12 small-scale and 12 large-scale simulation models. The detection power
values of the small-scale (100 SNPs) and large-scale (1000 SNPs) datasets are shown in
Figures 3 and 4. It can be seen from the results that the MACOED and AntEpiSeeker
algorithms performed well with small-scale datasets, while their detection power values
greatly reduced with large-scale datasets. In addition, the detection power of the SFMOABC
based on the multi-objective method was much higher than that of the single-objective
method under different models and scales. The experimental results also show that our
method performed well and had good stability in different scale datasets, the situation that
appeared in some other methods where the detection power decreased sharply with the
expansion of the data scale was not observed.
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The F-measure results of the eight methods for different models and scales are shown
in Figures 5 and 6. Moreover, we compared the running times of these seven methods
based on the swarm intelligence algorithm and two single-objective ABC algorithms. We
ran these methods independently 30 times on each epistatic model and took the logarithmic
form of the average value of 30 independent experiments as the final result [39]. Figure 7
gives the running times of these eight methods.

Considering the detection power, F-measure, and running time comprehensively,
SIPSO took less time, but its detection power was worse than the other methods. MACOED
showed good detection power with small-scale datasets, but its performance was greatly re-
duced with large-scale datasets. This is because MACOED introduces the logistic regression
to evaluate SNP combinations. This makes it unstable with different parameter settings,
resulting in the search method being equivalent to a random search. The AntEpiSeeker
method focuses on the identification of SNP interactions with marginal effects and, hence,
shows the difference in the detection power among different sized datasets. The running
times of MACOED and AntEpiseeker are much longer in different sized datasets. This is
because the time complexity of these two methods is too high. BnBeeEpi showed good
detection power in the different scale datasets, but since it utilizes the BN network structure
to represent SNPs, it took a lot of time when the scale increased. RCABC required very little
running time on the different scale datasets, because it applies distributed computing to the
ABC algorithm, which greatly improves the running efficiency of the algorithm. The IACO
method took less time and showed a higher accuracy level in small-scale datasets, but its
detection power was low in large-scale datasets, especially in the model with no marginal
effect. The SFMOABC comprehensively considers the utilization and development of the
solution space. Therefore, compared with other methods, the SFMOABC has a shorter
running time in different sized datasets, and it obtains high and stable detection power and
F-Measure results. In other words, it can obtain more accurate results in less time, leading
to better epistasis detection.
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3.5. Experiment Results for Real AMD Data

To further verify the effectiveness of the SFMOABC, we conducted experiments on
the AMD data [40]. We used AMD data including 50 control samples and 96 case samples,
and each sample contained 103,611 genotypes of SNPs [32]. In the preprocessing stage, the
K-nearest neighbor method was used to estimate the missing data [41]. There have been
many studies on AMD disease, and the research results were used as a reference for our
proposed algorithm. In this experiment, some detected SNP combinations that were highly
correlated with AMD were output. According to fitness values, Table 2 lists the information
related to the top 15 SNP combinations that may be associated with AMD obtained by the
SFMOABC, including the names, genes, and chromosomes. The last two columns show the
fitness values and p-values corresponding to the SNP combination. It can be seen that there
is a negative correlation between the fitness value and the p-value.

Table 2. Top 15 Captured Epistatic Interactions Associated with AMD.

SNP1 SNP2
Fitness Value p-Value

Name Gene Chr Name Gene Chr

rs380390 CFH 1 rs1363688 N/A 5 39.16 1.5453 × 10−9

rs380390 CFH 1 rs2402053 N/A 7 37.72 1.4679 × 10−8

rs380390 CFH 1 rs1374431 LOC107985962 2 37.19 2.6240 × 10−8

rs1329428 CFH 1 rs9328536 MED27 9 36.81 3.0901 × 10−8

rs380390 CFH 1 rs2380684 N/A 2 36.00 3.9086 × 10−8

rs380390 CFH 1 rs3009336 N/A 1 34.59 5.3535 × 10−8

rs380390 CFH 1 rs555174 N/A 21 34.14 5.7995 × 10−8

rs380390 CFH 1 rs2794520 N/A 1 33.56 6.7417 × 10−8

rs380390 CFH 1 rs10508731 MPP7 10 33.56 7.2188 × 10−8

rs380390 CFH 1 rs1740752 N/A 10 33.50 1.0917 × 10−7

rs1329428 CFH 1 rs10489076 N/A 4 33.43 1.9228 × 10−7

rs1329428 CFH 1 rs3913094 N/A 12 33.16 4.2460 × 10−7

rs380390 CFH 1 rs724972 N/A 3 33.02 4.4484 × 10−7

rs1329428 CFH 1 rs724972 N/A 3 33.02 1.3223 × 10−6

rs1329428 CFH 1 rs2466215 PEBP4 8 32.35 1.7865 × 10−6

The results show that most of the detected combinations contain rs380390 and rs1329428,
two SNPs that are located on the CFH gene of chromosome 1. These SNPs have been widely
reported to be associated with AMD [5,19,42–46]. SNP rs1363688 is located on the non-
genetic coding region (N/A). It has also been shown to be associated with AMD [28,36,37].
SNP rs9328536 resides in the intron of the MED27 gene. Transcription of the gene is trig-
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gered by factors that recognize transcriptional enhancer sites in DNA. In addition, MED27
has been reported to be associated with melanoma [47], and thus mutations in the MED27
gene may be associated with AMD. SNPs rs2402053, rs2380684, rs10512174, rs3913094, and
rs724972 have been reported to be associated with AMD disease [43,48]. SNP rs10508731
resides in the MPP7 gene on chromosome 10. The protein encoded by this gene plays a role
in the establishment of epithelial cell polarity, and alternative splicing results in multiple
transcript variants. It has been reported that MPP7 can promote the migration and invasion
of breast cancer cells through EGFR/AKT signaling [49]. SNP rs2466215 resides in the
PEBP4 gene of chromosome 8. PEBP4 is a phosphatidylethanolamine (PE)-binding protein
with key biological functions, and it has been reported that silencing of this gene may lead
to complex diseases such as kidney disease and lung cancer [50]. These two SNPs are not
mentioned in AMD-related literature, and hence, they need to be further studied to confirm
whether they are truly associated with AMD.

Additionally, we used Cytoscape to build a visualized network of 2-order SNP com-
binations. The visualization results are shown in 8. The network contains 187 nodes and
182 edges. Each node in the network represents an SNP, and each edge connects two nodes,
indicating that there is an association between the SNPs represented by these two nodes.
As can be seen from 8, in addition to rs380390 and rs1329428, rs1740752 is also an important
SNP, and many SNPs are associated with it. SNP rs1740752 is located in the noncoding
region of human chromosome 10, as reported by Guo, et al. [43,44,48]. SNP rs2113379 is
a variant in the ADAM23 gene of chromosome 2. Members of this gene-encoded family are
involved in various biological processes in cell–cell and cell–matrix interactions, includ-
ing fertilization, muscle development, and neurogenesis [51]. It has been reported that
the occurrence of common human cancers, such as gastric cancer, may be related to the
inactivation of this gene [52]. In the Figure 8, the SNPs represented by the nodes marked
in orange are associated with both rs380390 and rs1329428. Their associations may be the
potential 3-order SNP combinations associated with AMD disease. Further work is needed
to investigate the functions of these SNPs to test whether there are indeed 3-order epistatic
interactions related to AMD disease.
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4. Discussion

In this paper, the SFMOABC was proposed to detect epistasis in GWAS. We used
two objective functions to make the results more accurate and more reliable. The key
factor in the algorithm is the addition of the scale-free network to the solution updating
process of the ABC algorithm. The scale-free network has the characteristics of a power-law
distribution and low degree-degree correlation coefficient, and thus, the scale-free network
can help the ABC algorithm to improve its search ability. In addition, the SFMOABC uses
two objective functions to make the results more accurate and more reliable and introduces
the opposition-based learning strategy to improve the randomness of the algorithm and
maintain the diversity of the population. In this way, the exploration and exploitation
abilities can be balanced, and the problems of converging too fast and falling into the
local optimum can be avoided effectively. We tested the SFMOABC on 12 small-scale
models and 12 large-scale models and compared it with SIPSO, IACO, epiACO, MACOED,
AntEpiseeker, BnBeeEpi, RCABC, ABC_MI, and ABC_K2. The experimental results show
that the SFMOABC is superior to the other methods. Finally, this method was applied to
the real AMD data, and most of the SNP combinations found were proven to be associated
with AMD disease in the corresponding literature. In general, the SFMOABC performs
well in the epistasis detection of complex diseases. However, there are still some limitations.
For example, only two-order epistasis can be detected at present. The problem needs to be
further solved in future work.

5. Conclusions
5.1. Advantages

SFMOABC firstly adopts the scale-free network to guide the search of the ABC. It
can help each employed bee to learn more effective information from its neighbors, which
improves the detection power. Then, the multi-objective strategy in which the MI and
K2-score are used to characterize various epistasis models and improve the detection power.
what’s more, ABC can easily to fall into the local optimum as the iteration progresses, and
the opposition-based learning strategy improves the detection power by improving the
randomness of the algorithm.

5.2. Limitations

SFMOABC can only identify 2-order epistasis, but the occurrence of complex diseases
is sometimes caused by the combined action of three or more SNPs. SFMOABC has not yet
been able to identify these higher-order SNP combinations, and can only infer higher-order
combinations from the results of 2-order combinations.

5.3. Future Work

In future research, we will focus on the detection of higher-order epistasis. The
increase of the order will cause the algorithm to spend a lot of running time, so developing
an effective method to detect high-order epistasis is something we need to consider in
the future.
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