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Abstract: Brain tumor is one of the most aggressive diseases nowadays, resulting in a very short
life span if it is diagnosed at an advanced stage. The treatment planning phase is thus essential
for enhancing the quality of life for patients. The use of Magnetic Resonance Imaging (MRI) in the
diagnosis of brain tumors is extremely widespread, but the manual interpretation of large amounts
of images requires considerable effort and is prone to human errors. Hence, an automated method
is necessary to identify the most common brain tumors. Convolutional Neural Network (CNN)
architectures are successful in image classification due to their high layer count, which enables them
to conceive the features effectively on their own. The tuning of CNN hyperparameters is critical
in every dataset since it has a significant impact on the efficiency of the training model. Given the
high dimensionality and complexity of the data, manual hyperparameter tuning would take an
inordinate amount of time, with the possibility of failing to identify the optimal hyperparameters.
In this paper, we proposed a Bayesian Optimization-based efficient hyperparameter optimization
technique for CNN. This method was evaluated by classifying 3064 T-1-weighted CE-MRI images into
three types of brain tumors (Glioma, Meningioma, and Pituitary). Based on Transfer Learning, the
performance of five well-recognized deep pre-trained models is compared with that of the optimized
CNN. After using Bayesian Optimization, our CNN was able to attain 98.70% validation accuracy
at best without data augmentation or cropping lesion techniques, while VGG16, VGG19, ResNet50,
InceptionV3, and DenseNet201 achieved 97.08%, 96.43%, 89.29%, 92.86%, and 94.81% validation
accuracy, respectively. Moreover, the proposed model outperforms state-of-the-art methods on the
CE-MRI dataset, demonstrating the feasibility of automating hyperparameter optimization.

Keywords: MRI diagnosis; brain tumor classification; CNN; Bayesian Optimization

1. Introduction

In medical science, brain tumor is one of the most feared diseases. In 2016, it was
the most typical cause of cancer-related death among children (ages 0–14) in the United
States [1]. A brain tumor can be defined as an abnormal growth in brain cells. The most
frequent forms of brain tumors include Meningioma, Glioma, and Pituitary (shown in
Figure 1). The malignancy levels of these tumors differ from one another. Glioma is the
most prominent malignant brain tumor that occurs in the tissues of the glia and the spinal
cord. While Meningioma is a benign tumor (slow-growing tumor) that forms on the area
that protects the brain and spinal cord (the membrane) [2–5]. Pituitary forms in the pituitary
gland region. It is also a benign tumor, but unlike Meningioma, it may lead to other medical
damage [4,5].
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Figure 1. The most common forms of brain tumor (the tumors are localized inside a green circle).

Brain MRI image is specifically used to detect tumor and tumor progress. The MRI
image offers detailed information on brain structure more than CT or ultrasound image.
Radiologists identify brain tumors during the analysis of various MRI slices. Early detection
of tumors helps in disease treatment and increases the chances of survival for many
patients [6]. However, the radiologists are often faced with vast amounts of MRI data
and multiple complex tumors. This leads to a high risk of error and a long treatment
process, especially when small slices are affected. As a result, brain tumor diagnosis and
discrimination between various brain tumor types are complex tasks.

CNN is the most recent and widely used Deep Learning method within medical image
analysis. In general, CNNs are typically designed to deal with raw images and used to
minimize data pre-processing steps [7–9]. CNN’s design is based on the brain’s structure.
The nodes in CNN operate in the same way as neurons in the brain do in processing and
transmitting messages throughout the body: they accept inputs, analyze them, and then
deliver the results as an output. The image is provided into the algorithm as input. The
input layer takes image pixels as information in the array form. It is possible for CNN
to have many hidden layers, each of which executes feature extraction from an input
image by performing computations. Examples of these layers include convolution, pooling,
and dense layers. An input image’s features are initially extracted using convolution. In
order to minimize the size of feature maps, pooling is utilized. Object classification and
identification are performed by the dense layer. CNNs, similar to artificial neural networks,
are based on biological concepts. Their design is motivated by the brain’s visual cortex,
which is composed of alternating layers of complex and simple cells. Representation of a
simple CNN architecture is depicted in Figure 2. Using CNN, the traditional handcrafted
features are no longer necessary since it automatically learns the features that are important
for making correct predictions on its own. Nevertheless, there is a limitation in exploring
hyperparameter space. As evidenced by the previous models, they failed to attain an
accuracy comparable to near-perfect, which is unpalatable in a clinical setting. The proposal
of this paper is then to use Bayesian Optimization, which is a reasoning-based method, to
select the optimal hyperparameters in the shortest amount of time possible.

Figure 2. Simple CNN architecture. Dense: Fully connected layer.

This paper makes the following major contributions:
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• A robust CNN architecture is presented for automated classification of the most
common brain tumor types;

• The optimal hyperparameters are automatically selected by adopting Bayesian Optimization;
• Extensive performance evaluation is reported by comparing the optimized model

against pre-trained VGG16, VGG19, ResNet50, InceptionV3, and DenseNet201 models;
• The optimized model has achieved higher accuracy in brain MRI images compared to

other state-of-the-art methods.

The remaining sections of the paper are described as follows: Section 2. Discusses
the related works. Section 3. Presents the proposed methodology in detail. Section 4.
Demonstrates the experimental results and the comparison of existing methods. Lastly,
Section 5. Concludes the study.

2. Related Works

Numerous works have already been completed on the classification of brain MRI
images by CNN for its superior accuracy. Cheng et al. [10] developed a method to im-
prove brain tumor classification performance by augmenting tumor region of interest
(ROI) through image dilation followed by splitting into subregions. For features extraction,
they used Gray Level Co-occurrence Matrix (GLCM), intensity histogram, and Bag of
Words] (BOW). This method had 91.28% classification accuracy. Paul et al. [11] in their
work proposed a CNN model that has two convolutional layers, two max-pooling layers
followed by two fully connected layers. As the used dataset contained three different
planes (axial, coronal, and sagittal), they selected only axial images to prevent confu-
sion in the model. They achieved an accuracy of 91.43% on their experimental analysis.
Muhammad Sajjad et al. [12] introduced a system that classifies multi-grade brain tumors.
The system includes three phases, which are: the segmentation of the tumor region through
a CNN model, the augmentation of the segmented data to increase the number of im-
ages, and fine-tuning the pre-trained VGG19 for multi-grade brain tumor classification.
This method obtained 96.56% classification accuracy. Ahmet Çinar et al. [13] used the
pre-trained ResNet50 model as a base. Then, they removed its last five layers and added
10 new ones in its place. The updated ResNet50 model demonstrated robust results by
gaining 97.2% classification accuracy. Sunanda Das et al. [14] presented a system that
includes two key steps. The first is preprocessing the images using Gaussian filter along
with Histogram equalization, and the second is to classify the preprocessed images using
the CNN model. This system attained an accuracy of 94.39%, a precision of 93.33%, and a
recall of 93%. Abiwinada et al. [15] trained a simple CNN architecture to classify the three
most prevalent brain tumor types, i.e., Meningioma, Glioma, and Pituitary without prior
region-based pre-processing steps. They identified an optimal CNN model containing two
convolutional layers, activation function (ReLU), max-pooling, and one fully connected
layer. Their classification model reached 98.51% training accuracy and 84.18% validation
accuracy. Khwaldeh, saed et al. [16] proposed a framework to classify brain MRI scans
into healthy and unhealthy, along with a grading system to categorize the unhealthy brain
MRI scans into low and high grades, through the modification of the Alex-Net CNN
model. This framework gave an accuracy of 91%. Hossam H Sultan et al. [17] introduced
multi-classification of brain tumor images by deep neural network based on two available
datasets. An accuracy of 96.13% is obtained for the classification of the tumors into Menin-
gioma, Glioma, and Pituitary. While an accuracy of 98.70% is achieved for the classification
of the three grades of Glioma (Grade II, Grade III, and Grade IV).

Bringing Deep Learning into the medical healthcare field is hampered by the lack of
labeled data. As the recent growth of Deep Learning implementations in other fields has
proven, the larger the data, the better accuracy the results will be. Deep Learning is used
for data segmentation and augmentation in the above literature. The majority of literature
discusses the effectiveness of using Transfer Learning to perform classification. VGG19 and
ResNet50 are the deep pre-trained models that are often used in the mentioned literature
which are pre-trained on a huge dataset (i.e., ImageNet). If the dataset is small, we apply
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fine-tuning to minimize parameters. The downside of Transfer Learning is the possibility
of negative transfer. The initial and target problems must be similar for the first training
round to be important. Otherwise, Transfer Learning will be ineffective [18]. One other
drawback of Transfer Learning is that the size of the input image is fixed. The images must
be adjusted according to the pre-trained model’s input size. It is also worth noting that
according to the mentioned research works, Bayesian Optimization technique has not yet
been applied to automate the selection of optimal hyperparameters in the domain of brain
tumor classification. Therefore, this paper aims to explore the implementation of Bayesian
Optimization-based CNN on classifying different brain tumor types, thereby improving
the performance and proving the efficiency of training an optimal CNN model from scratch
over Transfer Learning.

3. Materials and Methods

Figure 3 summarizes the proposed approach, which is further explored in the subsec-
tions that follow.

Figure 3. The proposed approach.

3.1. Dataset and Preprocessing

The necessary data for this method are collected from the Figshare brain tumor dataset.
This dataset was obtained from General Hospital and Nan fang Hospital, Tianjin Medical
University, China and proposed online by Cheng, Jun, et al. [19]. It is available on the
Figshare website (https://figshare.com/articles/dataset/brain_tumor_dataset/1512427)
(accessed on 2 January 2022) for anyone to download in MATLAB “. mat” format. It
contains a sum of 3064 T-1 weighted contrast-enhanced MRI images of three different
varieties of brain tumor (Meningioma, Glioma, and Pituitary). The number of images in
each class is listed in Table 1. The MRI scans were provided in three planes: axial (994),
coronal (1045), and sagittal (1025), as displayed in Figure 4. In order to maintain variety
in the images, the dataset is randomly divided into two parts. In total, 90% of the dataset
was reserved for training and 10% for the validation data. Data normalization is used
after converting the image to an array of pixels in order to rescale the image’s pixels to the
range of 0–1. All MRI images were originally provided in 512 × 512 size. These images
represent the input layer of the base CNN architecture. Inspired by [15], we resized them
to 64 × 64 pixels. This reduction is performed to speed up the training process and reduce
the memory requirement. Note that this resizing operation retains all of the information
included in each MRI image, implying that no cropping or segmentation is undertaken here.

https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
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Table 1. The dataset used for the proposed approach.

Tumor Class Number of Images

Meningioma 708
Glioma 1426

Pituitary 930
Total 3064

Figure 4. Representation of the three different planes of the MRI images.

3.2. The Base CNN Network Architecture

The use of CNNs in machine vision is quite successful [20]. From the conceptual
perspective, CNN is similar to a multilayer perceptron (MLP). In MLP, each neuron has its
activation function, which connects the weighted inputs to each neuron’s output. When
there is more than one hidden layer, the MLP becomes a deep MLP. A CNN is similar to
an MLP, but it has an exceptional structure. This exceptional structure in the architecture
allows it to be translation and rotation invariant at the same time [21]. The overall structure
of the CNN architecture contains an input layer, convolutional layers, pooling layers, one
or more fully connected layers, a classification layer, and finally, an output layer [22,23].
The convolutional layer is the main component of CNN. It performs what is known as
a “convolution operation” which is a process that involves applying a filter to an input
that produces an activation. By using convolutional layers, characteristics in the image
can be extracted, including edges, textures, and objects. The feature maps are created as
a result of updating the filter weights during the training process [24]. The pooling layer
is used to reduces the dimension of the last layer and comes in two types: max-pooling
and average-pooling. It can be regarded as a feature extractor when the convolution and
pooling layers are combined [25]. The classification phase is carried out using the fully
connected layers [26].

In this paper, a base CNN architecture is first created, before hyperparameters op-
timization can be performed. This proposed architecture contains an input, five main
blocks (five convolutional and five max-pooling layers), and a classification block (two
fully connected and one dropout layer). This topology was found to be the best fit for this
classification task through experiment. Starting from the input layer which holds the MRI
images from the preceding pre-processing stage passing through the first main block, this
block has a convolutional layer that applies 32 2-D convolutional filters of size 3 × 3 to
all the images with zero-padding, so the input image becomes fully covered by the filter.
Then, a max-pooling layer of 2 × 2 size is used to gain robustness on feature extraction
with a stride of two pixels. The other four main blocks differ from the first block only in
the number of filters of the convolutional layer. The second, third, fourth, and fifth main
blocks use 64, 64, 128, and 256 2-D convolutional filters, respectively. The classification
block has two fully connected layers and a dropout layer. Dropout prevents overfitting by
ignoring random neurons during training [27]. The last fully connected layer outputs the
values for three tumor classes (1. Meningioma, 2. Glioma, and 3. Pituitary tumor) using
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the Softmax activation function [28]. Equation (1) describes the mathematical formula of
Softmax activation.

σ(z)i =
ezi

∑K
j=1 ezj

(1)

For i = 1, 2 . . . , K and z = (z1, z2 . . . , zK) ∈ RK. Each class’ probability score is
calculated by this function. Note that this stage did not specify.

• The activation function for the convolutional layers and the first fully connected layer;
• The dropout rate;
• The number of nodes in the first fully connected layer.

They are among the hyperparameters that will be chosen later for optimization. The
architecture of the base model is presented in Figure 5. This proposed architecture is a
slightly modified version of the VGG16 concept [29], with the number of convolutional
layers lowered from 13 to 5 and the number of dense layers reduced from four to two.
In addition, we added a dropout layer between the dense layers and kept the number
of max-pooling layers the same as the VGG16. In other words, we lowered VGG16’s
complexity.

Figure 5. The architecture of the base model (five convolutional layers, five max-pooling layers, two
fully connected layers and one dropout layer).

3.3. Hyperparameters Optimization

The objective of this study is to optimize the base model hyperparameters for classi-
fying various types of brain tumors using MRI images. There are two main categories of
model parameters in Machine Learning: Parameters, which are learned from data and they
cannot be manually altered by the user such as the weights of neural network. Hyperpa-
rameters, whose values cannot be learned from data and they can be set before the training
operation by the user such as the number of dense nodes or dropout value in the model.

Hyperparameters optimization aims to maximize the performance of a given Ma-
chine Learning algorithm by selecting the most suitable hyperparameters [30]. Based on
Equation (2), where f denotes the performance, x is said to be some hyperparameter setting,
and the optimum choice is xopt.

xopt = argmax
x∈X

f (x) (2)

Various methods are available to achieve this. The most common one is Grid Search [31],
which is a process for searching exhaustively through a subset of a hyperparameter space
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for a targeted algorithm. As more hyperparameters are added, the number of parameters-
combinations will also increase exponentially. As a result, the process will be extremely
time-consuming. Another way to find useful hyperparameters is Random Search [31].
Unlike Grid Search, Random Search experiments with various combinations of parameters
entirely at random. This produces high variance when computing. These two methods are
unable to learn anything during the tuning process from the evaluated hyperparameter sets.

In this study, a clever technique for obtaining optimal hyperparameters is used, which
is known as Bayesian Optimization [32]. Among the reasons for selecting Bayesian Opti-
mization are that previous studies have proven its superiority to Grid Search [33] and that
unlike Grid Search, Bayesian Optimization is capable of efficiently finding optimal hyperpa-
rameters with fewer iterations [34]. Bayesian Optimization employs a surrogate model that
is fitted to the real model’s observations. In our case, an observation is a complete training
of the base CNN model with hyperparameters chosen specifically for that observation.
A set of hyperparameters is selected for each iteration, and an observation is then made.
The validation accuracy is used for the evaluation of the observation. The hyperparameter
set is selected using an acquisition function that balances the choice between exploring
the entire search space and exploiting well-performing areas of the search space. The
acquisition function Expected Improvement [35] is used in this study to carry out Bayesian
Optimization experiment. Figure 6 shows the flow of Bayesian Optimization.

Figure 6. The flow of Bayesian Optimization.

Bayesian Optimization is implemented using the Scikit-optimize 0.8.1 (also known as
Skopt) [36] Python package. Skopt allows various parameters to affect the optimization
performance. We can pass a function for optimization, specify the number of optimization
iterations, and display the graph of the optimization process. Furthermore, we can provide
a listing of hyperparameters along with their search dimensions. In addition, we can
increase the number and bounds of hyperparameters.

The hyperparameters selected to be optimized are: the activation function, the batch
size, the dropout rate, the number of dense nodes, and the gradient descent optimizing
function. These hyperparameters are among the most important for the accuracy and
the success of this multi-classification task. The valid search ranges for each of these
hyperparameters are specified. The activation functions specified are “ReLU, ELU, Sigmoid,
SELU, and Tanh”, the batch size is between 1 and 128, the dropout rate has a lower bound
of 0.1 and an upper bound of 0.5, the low and high of the number of dense nodes is 32
to 1024 and the optimizers specified are Adam (adaptive moment estimation), Nadam
(Adam with Nesterov momentum), AdaMax (an Adam variant that uses the infinity norm),
RMSProp (root means square propagation), and SGD (stochastic gradient descent). The
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hyperparameters considered in the Bayesian Optimization experiment are given in Table 2
along with the search dimension for each hyperparameter.

Table 2. Hyperparameters setting.

Hyperparameter Range to Probe

Activation function ReLU—ELU—Sigmoid—SELU—Tanh
Batch size 1 to 128

Dropout rate 0.1 to 0.5
Number of dense nodes 32 to 1024

Gradient descent optimizer Adam—Nadam—AdaMax—RMSProp—SGD

3.4. Transfer Learning

In Deep Learning, sometimes we use a pre-trained network instead of training a model
from scratch. A pre-trained network is a saved model which has been previously modeled
on a dataset such as ImageNet [37]. ImageNet comprises 1000 categories of ordinary objects
such as cats, books, and houses. In spite of the differences from images in the medical
domain, these images share the characteristic of being natural with lights, contrasts, and
colors. These shared characteristics are the ones that should be preserved while fine-tuning
to the Figshare brain tumor dataset.

In this experiment, pre-trained VGG16, VGG19, ResNet50, InceptionV3, and DenseNet201
models are fine-tuned according to the target data to prevent overfitting. A comparison
is then made between the performance of each model and that of the optimized model.
In all five pre-trained models, ReLU, dense, and dropout layers are used. The Softmax
function is selected as a classification layer. The input images for VGG16, VGG19, and
InceptionV3 are 224 × 224 pixels, 224 × 224 pixels, and 150 × 150 pixels, respectively.
The other two CNNs had inputs of 200 × 200 pixels. The pre-trained models’ input sizes
varied depending on the network’s size requirements, and this was taken into account
while setting the input sizes. For instance, InceptionV3’s input shape must be between
299 × 299 pixels and 75 × 75 pixels. Each of these pre-trained models is trained using a
batch size of 32. Adam [38] is chosen for optimization with a learning rate of 5 × 10−5. The
dropout rate is selected as 0.5 to regularize the deep models. The parameter values used
for each pre-trained model are provided in Table 3. The subsections that follow describe
each pre-trained model in greater detail.

Table 3. Parameters and values of the five pre-trained CNNs used in this study.

Models Input Size Optimizer Learning Rate Batch Size

VGG16 224 × 224

Adam 5 × 10−5 32

VGG19 224 × 224

ResNet50 200 × 200

InceptionV3 150 × 150

DenseNet201 200 × 200

3.4.1. VGG16 and VGG19

VGG16 is a CNN model introduced by Andrew Zisserman and Karen Simonyan in
2014. This model achieves 92.7% test accuracy in the ImageNet dataset, which contains
14 million images. The network is comprised of 16 layers in total including multiple layers
of kernels, resulting in a deeper neural network. This makes it capable of understanding
and recognizing more complex patterns and features. In VGG16, we have convolutional
layers, average-pooling layers, and dense layers. An RGB image of 224 × 224 pixels is used
as an input for the first convolution layer. The neural network has an initial width of 64 and
its width doubles after every pooling layer. The first two dense layers have 256 channels
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each, while two channels are present in the third layer. ReLU is used on the two first
fully connected layers, and Softmax is used on the final layer. After each 256-channel fully
connected layer, dropout was applied. The network’s learning rate is 0.0001. The cost
function has been the categorical cross entropy with Adam optimization [29]. The structure
of VGG16 is demonstrated in Figure 7.

Figure 7. The structure of VGG16.

In VGG19—a variant of VGG16—there are 19 layers convolutional neural network
including 16 convolution layers, five max-pooling layers, three fully connected layers, and
a Softmax layer. The basic architecture of this model is the same as that of VGG16. VGG19
only differs in that it uses two fully connected layers of 256 each and two channels, and
also the reduction of the learning rate to 0.00001 [39]. The structure of VGG19 is illustrated
in Figure 8.

Figure 8. The structure of VGG19.

3.4.2. ResNet50

ResNet50 is a CNN model from ResNet (Residual Networks) family containing twenty-
six million parameters. This 50-layer model was introduced by Microsoft in 2015, and it
comprises the identity and conv blocks [40]. The 3 × 3 filters are used in the network’s
convolutional layers and direct down sampling is achieved by the convolutional layers
having a stride of two. The final layer within the network is a fully connected layer with
256 dense nodes and a ReLU activation function. The structure of ResNet50 is presented in
Figure 9.

3.4.3. InceptionV3

The inception model (GoogleNet) was presented by Google in 2014 [41]. InceptionV3
is a part of the Inception family, which includes 42 layers with 24 million parameters. It
introduced changes to the Inception module in order to increase ImageNet classification
accuracy. As a result of the additional factorization, the number of parameters was reduced
without a reduction in network efficiency. The network was among the first to apply batch
normalization to the layers. The structure of InceptionV3 is displayed in Figure 10.

3.4.4. DenseNet201

DenseNet201 architecture is one of the DenseNet group of architectures designed
to perform image classification [42]. It was the winning model in the 2015 ImageNet
challenge. Layers in DenseNet can access directly the original input image and the Loss
function’s gradients. Due to this, the computation cost is significantly reduced, which
makes DenseNet an excellent choice for image classification tasks [43]. Pre-trained weights
from the ImageNet database were loaded into the network. The structure of DenseNet201
is depicted in Figure 11.
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Figure 9. The structure of ResNet50 model.

Figure 10. The structure of InceptionV3 model.

3.5. Evaluation Metrics

The performance of the proposed approach is analyzed using accuracy, precision, re-
call, f1-score, loss, and confusion matrix [44–48]. Accuracy refers to the degree of closeness
between an estimated value and its original value in the classification process. Mathemati-
cally it is represented as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP, TN, FP, and FN indicate the number of classified cases of true positives, true
negatives, false positives, and false negatives, respectively.
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Figure 11. The structure of DenseNet201 model.

Precision is defined as the positive predictive rate (PPR) and it is represented as:

Precision =
TP

TP + FP
(4)

Recall, also called sensitivity, describes how well the classifier classifies the correct
tumor types and it is represented as:

Recall =
TP

TP + FN
(5)

F1-score represents how well the classification has performed in terms of recall and
precision and it is represented as:

F1− score = 2× Precision× Recall
Precision + Recall

(6)

Loss is defined as the cost of inaccurate predictions in classification task. The Categori-
cal Crossentropy Loss Function is employed for loss calculation. It computes the difference
between target values and predicted values. It can be represented using the following
mathematical formula:

Loss = − 1
n

n

∑
j=1

K

∑
k=1

Zj
k log(Ẑj

k)(1− Zj
k) log(1− Ẑj

k) (7)

where k denotes class, K represents the total number of classes, j is sample number, Ẑk
demonstrates the predicted value, Zk denotes the ground truth value, and n is the sample
number in a batch.

The confusion matrix displays how confused the classification model is for each class
by describing the relationship between the predicted results and the expected values. There
is growing evidence that the confusion matrix is useful for model validation due to its
robust categorization [48].

4. Results

This section describes the experimental results that demonstrate the effectiveness of
the proposed method.
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4.1. Experiment Setup

Training and execution of all models were performed using Google Colaboratory [49]
(also known as Colab) (https://colab.research.google.com) (accessed on 13 January 2022).
This cloud service is based on Jupyter Notebooks and it provides a virtual GPU powered
by NVIDIA Tesla K80 with 12 GB RAM. The Keras [50] library was adopted along with
TensorFlow [51] to build the Deep Learning architectures.

4.2. Results of Bayesian Optimization Experiment

In this experiment, A total of 40 iterations have been completed, which can be ex-
panded to 80–100 for more improvement. For each iteration, the maximum number of
epochs was 30. In total, the 40 iterations were carried out in 1 h, 34 min, and 28 s. The Keras
callback class was used in each iteration to stop training when the validation accuracy
reaches or surpasses 98%, this helps to reduce overfitting.

Figure 12 shows the convergence trace at different iterations during the optimization
process including the optimal point. It took only a few hyperparameters trials to find
significant improvements. After 18 iterations, we can see the minimum in the function
value has already converged and the accuracy score does not improve after that.

Figure 12. The progress of the hyperparameter optimization.

The histograms of different values selected for various epochs are indicated in Figure 13.
As shown in Figure 13a, the ReLU activation function has been selected nearly 15 times,
while Tanh was in second place with 12 sample counts. In Figure 13b, the lowest value for
the batch size dimension was chosen more than 23 times. It can be seen in the histogram
shown in Figure 13c, 0.25 range of dropout have the highest selection count up to 17 times.
The histogram in Figure 13d shows that a majority of the time, the number of dense nodes
is less than 50. Figure 13e represents the choice of the gradient descent optimizer, as can be
seen, Adamax was the optimizer selected almost 20 times.

Bayesian Optimization constructs a surrogate model of search dimension and starts
searching within that instead of the real dimension. Thus, accelerating the search process.
A 2D-landscape plot of two optimized hyperparameters (batch size and dropout rate) is
displayed in Figure 14. According to the plot, blue is the worst region and yellow is the
best. The sampling location of the optimizer is indicated by black dots whereas the red-star
on the left presents the best hyperparameter value discovered. As we can see, different
areas have been investigated, especially those where dropout rates are between 0.2 to 0.3.
The optimal values for dropout and batch size were 0.25 and 1, respectively, and this is
what the red star pointed to.

https://colab.research.google.com
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Figure 13. Count of the hyperparameters selected. (a) activation function; (b) batch size; (c) dropout;
(d) dense nodes; (e) the gradient descent optimizer.

Figure 14. The 2D-landscape plot of dropout and batch size.

There were various models that exceeded 98% validation accuracy. Thus, one of them
had to be chosen. The top five most accurate models are displayed in Table 4. It is observed
that the highest accuracy obtained is 98.70%. The two top models (trial number 17 and
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38) both achieved the same accuracy. However, the first one took less training time and
fewer epochs to surpasses 98% accuracy. Hence, it was deemed to be the optimal model.
Further, it is evident that the optimizer and the activation function affect how long it takes
to reach the target accuracy. When Tanh activation was applied with SGD optimization, the
full training time was three times shorter than for Nadam with ReLU. A summary of the
optimal model is provided in Table 5.

Table 4. The top five most accurate models.

Trial Number Activation Batch Size Dropout Dense Nodes Optimizer Accuracy Best Epoch Time (s)

17 Tanh 1 0.25 32 SGD 98.70 11/30 114
38 ReLU 1 0.24 32 Nadam 98.70 21/30 350
16 Tanh 1 0.25 32 SGD 98.37 16/30 170
12 ReLU 23 0.28 156 Adamax 98.37 18/30 14
15 Tanh 1 0.25 32 SGD 98.05 19/30 204

Table 5. Summary of the optimized model.

Layer Type Kernel Attribute Number of Filters Feature Map Size

Image Input Layer 64 × 64 × 1

Main
Block 1

Convolutional Layer 3 × 3 × 1, stride 1, padding = same 32 64 × 64 × 32

Tanh Layer 64 × 64 × 32

Max-Pooling Layer 2 × 2, stride 2, no padding 64 × 64 × 32

Main
Block 2

Convolutional Layer 3 × 3 × 32, stride 1, padding = same 64 32 × 32 × 64

Tanh Layer 32 × 32 × 64

Max-Pooling Layer 2 × 2, stride 2, no padding 16 × 16 × 64

Main
Block 3

Convolutional Layer 3 × 3 × 64, stride 1, padding = same 64 16 × 16 × 64

Tanh Layer 16 × 16 × 64

Max-Pooling Layer 2 × 2, stride 2, no padding 8 × 8 × 64

Main
Block 4

Convolutional Layer 3 × 3 × 64, stride 1, padding = same 128 8 × 8 × 128

Tanh Layer 8 × 8 × 128

Max-Pooling Layer 2 × 2, stride 2, no padding 4 × 4 × 128

Main
Block 5

Convolutional Layer 3 × 3 × 128, stride 1, padding = same 256 4 × 4 × 256

Tanh Layer 4 × 4 × 256

Max-Pooling Layer 2 × 2, stride 2, no padding 2 × 2 × 256

Classification
Block

Fully Connected Layer 32

Tanh Layer

Dropout

Fully Connected Layer 3

Softmax

Having found a decent set of hyperparameters by hand tuning is helpful in starting
the search. However, to prove the usefulness of hyperparameter optimization, the values
for the first iteration were chosen at random (Selu activation functions, a batch size of
four, a dropout rate of 30%, 32 nodes for the dense layer, and Adam as optimizer). Table 6
compares the performance of the base model before optimization and after optimization.
Before optimization, the validation accuracy is 91.88% and the training time is 117 s,
whereas after optimization, the validation accuracy is improved, which is 98.70% and the
training time is decreased to 99 s. An enhanced performance was evident in the scratched
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model after Bayesian Optimization. The term “scratched model” refers to a model that
is built from scratch on a dataset, unlike Transfer Learning, where a model created for
one task is repurposed for another. The scratched model in our case refers to the Base
CNN model.

Table 6. Comparison between the performance of the scratched model before and after optimization.

Metric Before Optimization After Optimization

Validation accuracy 91.88% 98.70%

Training time (s) 117 99

Table 7 demonstrates the effect of training-validation data size on the performance of
the optimized model. A total of five split styles (90–10%, 80–20%, 70–30%, 60–40%, and
50–50%) are used for training-validation data because data size is an important factor that
can impact CNN performance. It is noticed that the best accuracy is achieved when 90%
of the data samples are used in training. Additionally, we can see a slight reduction in
classification performance even with 50% of the training data.

Table 7. The effect of reducing the training data on the performance of the optimized model.

Training Data Validation Data Accuracy Loss Precision Recall F1-Score

90% 10% 98.70 0.069 98.33 98.66 98.66
80% 20% 97.24 0.107 97 97 97
70% 30% 97.07 0.095 97 97 97
60% 40% 95.28 0.162 95 95 95
50% 50% 93.17 0.202 93 92 92.66

4.3. Comparison with Five Deep Pre-Trained CNNs

In this experiment, five deep pre-trained CNNs were trained on the same CE-MRI
dataset using the Transfer Learning approach. The dataset of 3064 images was split in
the same way as in the previous step (90% of images were used for training and 10% for
validation). The training was conducted for 11 epochs in order to maintain an equitable
comparison. The model-checkpoint Keras callback is executed at the end of each epoch
to save whenever the validation accuracy improved. Each class (Glioma, Meningioma,
Pituitary) was evaluated using the following metrics: precision, recall, f1-score, accuracy,
and loss of the model.

A comparison of the optimized model with five pre-trained models can be found in
Table 8. It can be noted that the optimized model, VGG16, and VGG19 achieved the best
classification accuracy of 98.70%, 97.08%, and 96.43%, respectively. DenseNet201 achieved
a moderate accuracy of 93.51%. The accuracy of the other models did not exceed 93%,
with ResNet50 having the lowest result with 89.29%. Regarding the optimized model, a
precision of 97% is observed for the Meningioma class whereas the five pre-trained models
did not surpass 92%. Furthermore, the aforementioned model would accurately identify
“Glioma and Pituitary” 99% of the time. With an average of 98.33% precision, 98.66% recall,
and 98.66% f1-score, the optimized model comes out the best among the other models.

Figure 15 presents the classification accuracy of the optimized model along with the
two best pre-trained models (VGG16 and VGG19). The x-axis represents the number of
training epochs, while the y-axis reflects the accuracy. The optimized model demonstrates
a smooth training process during which the accuracy gradually increases until the end.
Moreover, it is noticeable that the training and validation accuracy adhere to one another
in most cases indicating that the optimized model does not overfit. On the other hand,
the training and validation of VGG16 and VGG19 deviate much from one another most of
the time, which indicates overfitting. Particularly in VGG16, the validation accuracy fell
dramatically between eight to nine epochs.
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Table 8. Comparative results based on precision, recall, F1-score, accuracy, and loss.

Models Labels Precision Recall F1-Score Accuracy Loss

VGG16

Glioma 0.99 0.96 0.97

0.9708 0.1042
Meningioma 0.91 0.97 0.94

Pituitary 1.00 0.99 0.99

Average 0.966 0.973 0.966

VGG19

Glioma 0.99 0.97 0.98

0.9643 0.1240
Meningioma 0.92 0.93 0.92

Pituitary 0.96 0.99 0.97

Average 0.956 0.963 0.956

ResNet50

Glioma 0.87 0.77 0.81

0.8929 0.2698
Meningioma 0.59 0.57 0.58

Pituitary 0.82 0.98 0.89

Average 0.886 0.89 0.89

InceptionV3

Glioma 0.94 0.97 0.95

0.9286 0.2830
Meningioma 0.92 0.82 0.87

Pituitary 0.92 0.96 0.94

Average 0.926 0.916 0.92

DenseNet201

Glioma 0.97 0.97 0.97

0.9481 0.2081
Meningioma 0.92 0.85 0.88

Pituitary 0.93 1.00 0.96

Average 0.94 0.94 0.936

The optimized
CNN

Glioma 0.99 0.99 0.99

0.9870 0.0692
Meningioma 0.97 0.98 0.98

Pituitary 0.99 0.99 0.99

Average 0.983 0.986 0.986

Figure 15. Accuracy plots (training and validation). (a) VGG16. (b) VGG19. (c) The optimized model.

The confusion matrices shown in Figure 16 define how many images in the validation
set were correctly classified according to the optimized model, VGG16 and VGG19. The
rows of the matrix represent the expected values (ground truth) while each column cor-
responds to the predicted results (system output). It can be observed that the number of
miss-classified images with the optimized model was significantly lower as compared to
VGG16 and VGG19. Besides that, the two pre-trained models are sometimes confused with
Meningioma since this class had a lower number of images than Glioma and Pituitary.
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Figure 16. Confusion matrices of the optimized model, VGG16, and VGG19. (a) VGG16. (b) VGG19.
(c) The optimized model.

When the processing time was regarded as a benchmark criterion, VGG19 exhibits
the longest execution time followed by DenseNet201 and ResNet50. It makes sense since
these models have the greatest number of parameters. The optimized model presented the
lowest execution time (99 s). It converged 1.3, 2, 1.6, 1.5, and 1.7 times faster than VGG16,
VGG19, ResNet50, InceptionV3, and DenseNet201, respectively, and is thus proven to be
the most efficient model for this brain tumor multi-classification task. Figure 17 illustrates
the execution time of each CNN (in seconds).

Figure 17. Execution time of all CNNs on GPU.

4.4. Comparison with State-of-the-Art Methods

In order to provide a proper evaluation of performance, the optimized model was
compared to previous studies that used the same CE-MRI dataset. The classification results
of the five compared methods were taken from the corresponding original papers, as
stated in Section 2. Table 9 displays the comparison results in terms of accuracy metric. The
comparison shows that the optimized model is the more accurate in classifying brain tumors
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in MRI images. The deep neural network of Hossam H Sultan et al. [17] also performs
well with an accuracy of 96.13%. In summary, we established that the employment of the
Bayesian Optimization method yields impressive results even for a small training dataset.

Table 9. Accuracy comparison among the optimized CNN model and state-of-the-art methods.

Method Accuracy

Cheng et al. [10] 91.28
Paul et al. [11] 90.26

N. Abiwinanda et al. [15] 84.18
Swati Z.N. K. et al. [14] 94.82

Hossam H Sultan et al. [17] 96.13
The optimized CNN 98.70

4.5. Evaluation on Unseen Data

In order to evaluate the capacity of our optimized model to accurately classify MRI
scans into glioma, meningioma, and pituitary on completely unseen data. We used another
publicly available dataset from the Github website [52]. It contained 2870 brain MRI images
(826 glioma tumors, 822 meningioma tumors, 395 no tumor, and 827 pituitary tumors).
This dataset has already been divided into train and test sets. Our study used only the test
set of MRI images. Moreover, we omitted the “no tumor” images because they weren’t
considered in this study.

Our optimized model attained a Precision of 97.63%, a Recall of 97.59%, an F1-score
of 97.01%, and an accuracy of 97.52%. Clearly, these values are “very good” in terms of
medical diagnosis, and can be further improved if more data are available. Our model’s
performance on unseen data is still better than the performance of recent studies listed
earlier in Table 4. In terms of accuracy, we exceeded the second-best technique (Hossam
H Sultan et al. [17]) by 1.39%. Figure 18 depicted samples of predicted labels against true
labels on this unseen data. Note that labels 1, 2, and 3 represent Glioma, Meningioma, and
Pituitary tumors, respectively. It is observed that our model can predict the real labels
in the majority of cases, reflecting the accuracy reached. Only one image from these six
samples was mistakenly recognized; this is due to the low quality of the MRI scan in that
case; as can be seen, the tumor is not clearly evident. There is also a white wide stripe
surrounds the brain, which confused our model.

Figure 18. Samples of predicted labels against true labels on unseen data.
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This model has yet to be confirmed in real-world clinical practice, implying that we
are still in the theoretical research phase. In the future, we plan to speak with radiologists
to see how such a model can fit in a real-world clinical scenario.

5. Conclusions

Brain tumor classification is among the most crucial aspects of the medical field.
Building an efficient CNN is not an easy task. For this reason, it has become essential
to use optimization methods to set CNN hyperparameters. This paper proposed a new
approach that classifies among three common brain tumor classes (Glioma, Meningioma,
and Pituitary). The optimal hyperparameters values of the model are selected using
Bayesian Optimization technique. On the other hand, five pre-trained CNNs were finetuned
and trained on the same dataset. Research findings indicated that the optimized model
gave the best classification performance with 98.70% accuracy followed by VGG16 with
97.08% accuracy whereas ResNet50 attained the lowest results with 89.29% accuracy. It
is concluded that automating hyperparameter optimization is effective in increasing the
performance of a scratched CNN model. Training and validation are conducted using
MRI scans in axial, coronal, and sagittal planes. The model presented in this paper can be
extended to classify other diseases effectively.

Future research can address some of the limitations of this paper. An extensive analysis
requires a lot more patient data, particularly for the meningioma class, which had the lowest
number of images of all three classes studied. Moreover, further research should focus on
tuning more hyperparameters such as the number of convolutional layers, the number of
filters on each convolutional layer, the kernel size, and the number of fully connected layers.
Besides, further improving the proposed model can be achieved by increasing the search
dimensions for the hyperparameters. Finally, by adding normal brain CE-MRI images to
the dataset, more differentiation can be provided for tumor classification.
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