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Abstract
Digital radiographic imaging is increasing in veterinary practice. The use of radiation

demands responsibility to maintain high image quality. Low doses are necessary because

workers are requested to restrain the animal. Optimizing digital systems is necessary to

avoid unnecessary exposure, causing the phenomenon known as dose creep. Homoge-

neous phantoms are widely used to optimize image quality and dose. We developed an

automatic computational methodology to classify and quantify tissues (i.e., lung tissue, adi-

pose tissue, muscle tissue, and bone) in canine chest computed tomography exams. The

thickness of each tissue was converted to simulator materials (i.e., Lucite, aluminum, and

air). Dogs were separated into groups of 20 animals each according to weight. Mean

weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and 50.0 ± 12.0 kg, for the small,

medium, large, and giant groups, respectively. The one-way analysis of variance revealed

significant differences in all simulator material thicknesses (p < 0.05) quantified between

groups. As a result, four phantoms were constructed for dorsoventral and lateral views. In

conclusion, the present methodology allows the development of phantoms of the canine

chest and possibly other body regions and/or animals. The proposed phantom is a practical

tool that may be employed in future work to optimize veterinary X-ray procedures.

Introduction
The use of radiation in veterinary medicine demands responsibility to maintain rigid radiation
safety standards and practice. Workers are often requested to restrain animals during the pro-
cedure to avoid movement artifacts and maintain image quality [1, 2]. Therefore, the exposure
of workers have to be minimized considering the radiation protection principles because of
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their presence in the examination room throughout the procedure [3–5]. In such situations,
scattered radiation represents the main source of radiation that is received by operators [1].

With the increasing use of digital radiographic imaging in medical and veterinary practice, a
phenomenon known as dose creep has been reported [6, 7]. Dose creep is the gradual increase
exposure factors and dose over time for a given radiographic anatomical projection. The phe-
nomenon occurs due to the ability of the wider dynamic range of the system and computer
processing of the acquired image to correct inappropriate exposure parameters [7–9].There-
fore, optimize digital systems to maximize image quality and minimize personnel exposure is
important [3].

Optimization procedures have been widely exploited for humans in the literature [1, 10–14]
Homogeneous phantoms are the simplest tool that is used for optimization purposes [15, 16].
Homogeneous phantoms are extensively employed to assess objective metrics associated with
image quality, such as the signal difference-to-noise ratio (SdNR) [12, 14]. A higher SdNR pro-
vides superior image quality compared with a lower SdNR [12, 14].

These phantoms are constructed of tissue-equivalent materials with tridimensional structures
to simulate the absorption and scattering of X-ray beams in the body. Homogeneous phantoms
are generally constructed of polymethyl methacrylate (Lucite) and aluminum through the classi-
fication and quantification of tissues from computed tomography (CT) exams [15].

However, the development of homogeneous phantoms for veterinary patients has remained
unexplored. Therefore, the aim of this work was develop homogeneous canine thorax phan-
toms for the dorsoventral and lateral views for different sizes of dogs. These phantoms may be
applied for optimization processes and to improve image quality, reduce personnel exposure
minimizing the occurrence of dose creep.

Materials and Methods

Database
The present study was developed with approval from the Ethics Committee on the Use of Ani-
mals of the authors’ institutions and national review panels under protocol no. 90/2014. The
database consisted of 356 retrospective chest CT exams of dogs, which were veterinary patients
from the Diagnostic Imaging Section of the Veterinary Hospital, University of Veterinary Med-
icine and Animal Science (HV/FMVZ-Unesp Botucatu), between January 2007 and May 2015.
Veterinary patients with significant thoracic disease, including primary pulmonary masses,
pneumothorax, or pleural effusion, were excluded. Veterinary patients with superimposed
nodules or a high number of pulmonary nodules to be counted reliably were also excluded.
Therefore, 276 patients were excluded as described, leaving 80 for following analyses.

The veterinary patients were separated into groups of 20 dogs each according to weight: small
(S) group (� 9.0 kg), medium (M) group (9.0–23.0 kg), large (L) group (23.1–40.0 kg), and giant
(G) group (> 40.1 kg).[17] Mean weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and
50.0 ± 12.0 kg, for the S, M, L, and G groups, respectively.

Data acquisition
The CT scans were acquired using a Shimadzu SCT-78000 Helical scanner (Shimadzu, Kyoto,
Japan) with the following parameters: 0.59 × 0.59 mm to 0.80 × 0.80 mm pixel size, 512 × 512
pixel matrix, 5.0 mm interval between slices, 3.0–7.0 mm slice width, and 120 kV tube voltage.

Automatic computational algorithm
We used an established methodology [10, 15, 18] to develop an automatic computational algo-
rithm that is able to classify and quantify biological tissues of the canine chest based on
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retrospective CT exams. The slices from CT exam were used to obtain the amount of each bio-
logical tissue present in the studied region, which was converted in simulator materials to con-
struct the homogeneous phantoms. For each canine group, we developed two types of
phantoms (dorsoventral chest phantom and lateral chest phantom) to simulate two common
projections that are used in clinical practice. The construction of the phantoms is described
below.

Histogram of CT exams. Each CT slide was automatically aligned to correct possible dog
positioning errors. Based on differences in the attenuation of each tissue in the CT slice (Fig
1A), represented by CT number (Hounsfield Units [HU]), the algorithm classified each voxel
as belonging to a given tissue. This classification was based on the histogram of CT number.
Fig 1B illustrates the histogram of image shown in Fig 1A that presents four well-separated
characteristic peaks of different tissues: lung tissue, adipose tissue, muscle tissue, and bone.

Classification and quantification of chest tissues by Gaussian curves. To automatically
classify each voxel from the histogram, the algorithm used Gaussian distribution curves as the
base. These curves represent the degree of accuracy of a voxel that belongs to a given tissue
(adipose tissue, muscle tissue, lung tissue, and bone) according to CT number. An experienced
veterinary radiologist manually measured the mean and standard deviation of the CT number
for each tissue. The measured values were used to create Gaussian distribution curves. Fig 2
shows the histogram of Fig 1B divided by the curves that were created: -600 HU indicates lung
tissue, -100 HU indicates adipose tissue, 100 HU indicates muscle tissue, and> 300 HU indi-
cates bone. Trabecular and cortical bones presented significant differences in X-ray attenuation
and thus were divided into two Gaussian curves with peaks at 300 HU and 400 HU, respec-
tively. Therefore, each voxel that belonged to a histogram was classified as a specific tissue
according to the Gaussian distribution curve.

To estimate the amount of tissue (i) in the exam, the number of voxels (Nv) that belonged to
specific tissues (i) was used. Nv(i) was calculated by multiplying the examination histogram by
the corresponding Gaussian distribution curve. Nv(i) was used to obtain the mean tissue thick-
ness according to the following equation:

TðiÞ ¼ NvðiÞAp

S D
; ð1Þ

Fig 1. (i) Slice from canine chest CT exam. (ii) CT number distribution histogram.

doi:10.1371/journal.pone.0154193.g001
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where T(i) is the mean thickness of tissue (mm), i is the tissue type (lung, adipose, muscle, or
bone), Ap is the pixel area (mm2), S is the number of slices, and D is the mean diameter of the
chest CT exam (mm).

The multiplication of Nv with Ap results in the total tissue (i) area (mm2). The mean tissue
area (mm2) for each slice results from the total tissue area divided by S. To obtain the thickness
of tissue (T(i)) in the X-ray beam direction, the mean area is divided by the mean perpendicu-
lar diameter, i.e. to develop a dorsoventral type phantom, the perpendicular diameter used in
the equation was the mean lateral diameter. Likewise, to develop a lateral type phantom, the
dorsoventral diameter was employed.

Finally, the mean thicknesses of the biological tissues were converted into the corresponding
thicknesses of the simulator material plates. Lungs were simulated by air. Soft tissue (muscle
tissue and adipose tissue) was simulated by Lucite. Bone (trabecular and cortical) was simu-
lated by aluminum. This process was based on literature [19] using quantification values [20]
for the composition of biological tissues.

Development of homogeneous canine chest phantoms
The dorsoventral and lateral homogeneous canine chest phantoms were constructed using the
achieved thicknesses of simulator material and are shown in Fig 3. The dorsoventral homoge-
neous canine chest phantom (Fig 3A) was constructed of aluminum and Lucite plates. The first
Lucite pair (on the top) sandwiched an aluminum plate. The Lucite thickness was distributed
into four equal slabs. The second Lucite pair (on the bottom) contained a slightly wider alumi-
num slab inside. Between the upper and lower pairs of plates, spacers were inserted that repre-
sented lung tissue as an air gap. The architecture of the canine chest phantom is similar to an
equivalent patient phantom [16, 21] that is used for optimization purposes in human exams.

The architecture of the lateral homogeneous canine chest phantom was based on literature
[22]. As shown in Fig 3B, the phantom was separated into three parts. Each part had an alumi-
num plate sandwiched by two Lucite plates. The aluminum that was placed in the intermediate
pair accounted for the amount of bone from the vertebral column and extern. Air gaps were
inserted between the pairs.

The dimensions (length and width) of the phantoms were established as the mean dorso-
ventral and lateral-lateral canine size. The thicknesses and dimensions of the plates were sepa-
rately calculated for each canine group.

Fig 2. Histogram divided by Gaussian distribution curves to classify tissues as lung tissue, adipose
tissue, muscle tissue, and trabecular/cortical bone.

doi:10.1371/journal.pone.0154193.g002
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Statistical analysis
The thicknesses of each simulator material was compared between different dog groups to
assess whether the phantoms follow the same division of canine groups based on weight.

The statistical analysis of the Gaussian distribution data was performed using one-way
repeated-measures analysis of variance (ANOVA) followed by Student’s t-test for comparisons
between canine groups for each simulator material. Values of p< 0.05 were considered statisti-
cally significant. This statistical analysis was performed for both phantom types (dorsoventral
and lateral). The results are presented as mean and standard deviation.

Results
Tables 1 and 2 show the thicknesses for both phantoms (dorsoventral and lateral) according to
canine group. Each canine group was characterized by the average thickness of biological tissue
(Ti), thickness of the simulator material (TS), coefficient of variation (defined as the standard

Fig 3. Homogeneous canine chest phantom configuration for (i) dorsoventral and (ii) lateral views. The phantoms consisted of Lucite slabs that
simulated soft tissues (muscle tissue and adipose tissue) and aluminum foil between the Lucite slabs that simulated bone. An air gap was inserted to
simulate lung tissue.

doi:10.1371/journal.pone.0154193.g003

Table 1. Mean Thickness of Biological Tissue (Ti) in the Examination, Thickness of Simulator Material (TS), Coefficient of Variation, and Mean Dor-
soventral PhantomDimensions (length x width).

Group weight (kg) Tissue Ti (mm) Simulator Material TS (mm) Coefficient of Variation Mean Phantom Size (cm2)

Small (< 9) Lung 20.61 Air 20.61 0.30 15 × 15

Total Soft 50.26 Lucite 63.25 0.22

Total Bone 8.93 Aluminum 1.55 0.25

Medium (9–23) Lung 28.61 Air 28.61 0.21 20 × 20

Total Soft 77.36 Lucite 97.34 0.19

Total Bone 14.47 Aluminum 2.47 0.21

Large (23–40) Lung 34.14 Air 34.14 0.19 25 × 25

Total Soft 98.43 Lucite 123.86 0.11

Total Bone 17.19 Aluminum 2.99 0.21

Giant (> 40) Lung 36.52 Air 36.52 0.13 30 × 30

Total Soft 123.86 Lucite 155.86 0.14

Total Bone 20.05 Aluminum 3.49 0.10

doi:10.1371/journal.pone.0154193.t001
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Table 2. Mean Thickness of Biological Tissue (Ti) in the Examination, Thickness of Simulator Material (TS), Coefficient of Variation, and Mean Lat-
eral Phantom Dimensions (length x width).

Group weight (kg) Tissue Ti (mm) Simulator Material TS (mm) Coefficient of Variation Mean Phantom Size (cm2)

Small (< 9) Lung 24.23 Air 24.23 0.28 13 × 13

Total Soft 59.20 Lucite 74.49 0.24

Total Bone 10.66 Aluminum 1.86 0.30

Medium (9–23) Lung 30.42 Air 30.42 0.26 18 × 18

Total Soft 82.48 Lucite 103.78 0.24

Total Bone 14.63 Aluminum 2.54 0.24

Large (23–40) Lung 37.19 Air 37.19 0.21 22 × 22

Total Soft 109.66 Lucite 137.99 0.27

Total Bone 18.57 Aluminum 3.23 0.22

Giant (> 40) Lung 39.79 Air 39.79 0.22 35 × 25

Total Soft 134.54 Lucite 169.29 0.21

Total Bone 21.79 Aluminum 3.79 0.20

doi:10.1371/journal.pone.0154193.t002

Fig 4. Dorsoventral (i) Lucite, (ii) aluminum, and (iii) air thicknesses for different canine groups. S, small; M, medium; L, large; G, giant. Bar plot of
means for each level of the independent variable of a one-way analysis of variance (ANOVA). The data are expressed as mean ± standard deviation. Bars
sharing the same letter are not significantly different according to Student’s t-test. Differences were considered significant for p < 0.05.

doi:10.1371/journal.pone.0154193.g004
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deviation of the obtained examination thickness divided by the mean value), and mean dimen-
sions (length x width) of the phantom.

For both phantom types (dorsoventral and lateral), the one-way ANOVA revealed signifi-
cant differences in Lucite, aluminum, and air thicknesses between groups (p< 0.05). Student’s
t-test revealed significant differences between groups (p< 0.05) for all materials, with the
exception of aluminum and air between the L and G groups (Figs 4 and 5).

Discussion and Conclusion
Optimizing digital radiographic technique settings is important for animal imaging to maxi-
mize image quality while minimizing personnel radiation exposure [3] according to As Low As
Reasonably Achievable (ALARA) principles.

In the present study, a robust algorithm widely used in the literature [10, 15, 18] was
adapted for veterinary patients and implemented to classify and quantify the amount of tissue
in the canine chest. As a result of the quantification, dorsoventral and lateral homogeneous
canine phantoms were constructed according to canine group. Tables 1 and 2 show significant
coefficient of variation. Such variations within the same canine group may be attributable to

Fig 5. Lateral (i) Lucite, (ii) aluminum, and (iii) air thicknesses for different canine groups. S, small; M, medium; L, large; G, giant. Bar plot of means for
each level of the independent variable of a one-way analysis of variance (ANOVA). The data are expressed as mean ± standard deviation. Bars sharing the
same letter are not significantly different according to Student’s t-test. Differences were considered significant for p < 0.05.

doi:10.1371/journal.pone.0154193.g005
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differences in nutritional status, breed, and age. Furthermore, deviations in the mean air thick-
ness can result from changes in lung volume during inspiration and expiration.

The statistical analysis for both phantom views revealed significant differences between
canine groups for all simulator materials. Student’s t-test revealed significant differences for all
of the Lucite analyses. For aluminum and air, all of the differences were significant, with the
exception of the L and G groups. Such results may be attributable to the same factors that
caused significant coefficient of variation. Differences revealed by statistical analysis and varia-
tions in the dimensions of the phantoms (length and width) were the main reasons for con-
structing four different phantoms for each phantom view.

Many studies have been performed to optimize X-ray exams using homogeneous phantoms
for humans [10, 12, 14, 23]. However, optimization is still neglected in veterinary medicine.
Constructing a homogeneous canine phantom is important to adhere to ALARA principles
and minimize dose creep. These phantoms may be used to optimize image quality and dose
using such metrics as the signal difference-to-noise ratio, figure of merit [12, 14], modulation
transfer function, and effective detective quantum efficiency [10, 24].

In conclusion, we developed eight phantoms of the canine chest using established method-
ology. Although we used a canine chest model, this methodology may be implemented for
other anatomical structures and/or animals. Each of these phantoms were constructed of read-
ily available materials [10].

The homogeneous canine chest phantom that was developed herein is a practical tool that
may be employed in future work to optimize veterinary X-ray procedures and avoid the dose
creep phenomenon.
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