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Abstract

Nucleolus organizer regions (NORs) are eukaryotic chromosomal loci where ribosomal RNA 

(rRNA) genes are clustered, typically in hundreds, to thousands, of copies. Transcription of these 

rRNA genes by RNA Polymerase I and processing of their transcripts results in the formation 

of the nucleolus, the sub-nuclear domain in which ribosomes are assembled. Approximately 90 

years ago, cytogenetic observations revealed that NORs inherited from the different parents of 

an interspecific hybrid sometimes differ in morphology at metaphase. Fifty years ago, those 

chromosomal differences were found to correlate with differences in rRNA gene transcription 

and the phenomenon became known as nucleolar dominance. Studies of the past 30 years 

have revealed that nucleolar dominance results from selective rRNA gene silencing, involving 

repressive chromatin modifications, and occurs in pure species as well as hybrids. Recent evidence 

also indicates that silencing depends on the NOR in which a rRNA gene is located, and not on the 

gene’s sequence. In this perspective, we discuss how our thinking about nucleolar dominance has 

shifted over time from the kilobase scale of individual genes to the megabase scale of NORs and 

chromosomes, and questions that remain unanswered in the search for a genetic and biochemical 

understanding of the off switch.

Keywords

rRNA gene; ribosomal RNA; nucleolus; nucleolus organizer region; transcriptional silencing; 
chromatin; histone modification; DNA methylation; Arabidopsis thaliana ; Arabidopsis suecica ; 
Brassica allopolyploids

The intertwined histories of NORs, nucleolar dominance and rRNA genes

In 1934, McClintock described in maize a chromosomal locus that she named the nucleolar 

organizer because of its causal association with the nucleolus, the most prominent feature 

of the nucleus (McClintock, 1934). She recognized that the locus included redundant 
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genetic information because when the locus was split in two by a chromosome break 

and the resulting chromosome fragments were joined to the two fragments of a different 

broken chromosome, two nucleoli now formed at the recombinant chromosome junctions 

(McClintock, 1934). Three decades later, ribosomal RNA genes were found to account 

for a major class of repetitive DNA in Drosophila and Xenopus and cluster together at 

NORs, as was also the case in maize (Ritossa and Spiegelman, 1965, Wallace and Birnstiel, 

1966, Phillips et al., 1971), providing a molecular explanation for the genetic redundancy 

deduced by McClintock. Important cytological observations of plant NORs were also 

made by McClintock’s contemporaries, Heitz and Navashin. Heitz noted that thin strands 

of chromatin, called secondary constrictions, were observed at metaphase at or near the 

NORs (Heitz, 1931) and Navashin noted that these secondary constrictions, which were 

characteristics of specific chromosomes, sometimes failed to form on the chromosome of 

one parent of an interspecific hybrid (Navashin, 1934). Today, we have molecular biological 

explanations for these pioneering cytological observations. Transcription of rRNA genes is 

the function of RNA polymerase I (Pol I) (Roeder and Rutter, 1969, Roeder and Rutter, 

1970), resulting in 35-48S pre-ribosomal RNA transcripts (the size varies with species) that 

are then processed into 18S, 5.8S and 25–28S rRNAs (Turowski and Tollervey, 2015). 

These rRNAs, together with a fourth rRNA synthesized by RNA polymerase III (5S 

rRNA), comprise the catalytic core of ribosomes, the protein synthesizing machines of 

cells. The transcription, processing and post-transcriptional modification of pre-rRNAs, and 

their assembly with ~80 ribosomal proteins, involves hundreds of proteins and small RNAs 

(Pederson, 2011, Grummt and Langst, 2013, Sharifi and Bierhoff, 2018, Saez-Vasquez and 

Delseny, 2019). Collectively, these activities account for formation of the nucleolus as an 

RNA and protein-rich entity with properties of a phase-separated biological condensate 

(Brangwynne et al., 2011, Feric et al., 2016, Hori et al., 2023)(see Figure 1a). The persistent 

binding of Pol I transcription factors to active rRNA genes inhibits their condensation 

at metaphase (McStay and Grummt, 2008, Prieto and McStay, 2008), accounting for 

the secondary constrictions described by Heitz (Figure 1b). The formation of secondary 

constrictions at NORs of only one parent of an interspecific hybrid, as described by 

Navashin, reflects the transcription of the rRNA genes inherited from only one parent, 

as demonstrated by Honjo and Reeder (Honjo and Reeder, 1973), who gave us the term 

“nucleolar dominance” (suggested review articles from different decades include (Reeder, 

1985, Pikaard, 1999, McStay, 2006, Borowska-Zuchowska et al., 2023)).

rRNA genes are subject to developmental and metabolic control

Ribosomal RNA genes are subject to both positive and negative regulation. Positive control 

mechanisms impact Pol I transcription initiation, elongation and termination, and have been 

studied most extensively in mammals, Xenopus and yeast (Moss et al., 2007, Goodfellow 

and Zomerdijk, 2013, Sharifi and Bierhoff, 2018). A generalization gleaned from decades 

of study is that growth signals that positively regulate rRNA synthesis do so through post-

translational modification, such as phosphorylation of Pol I and/or its general transcription 

factors (Moss et al., 2007, Hori et al., 2023). This allows the rate of Pol I initiation and 

rRNA synthesis to be tuned to the cellular demand for ribosomes by altering the RNA output 

from genes already engaged in transcription.

Pikaard et al. Page 2

Plant J. Author manuscript; available in PMC 2023 September 27.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Ribosomal RNA genes are also subject to negative control, which has been studied in 

diverse eukaryotes including plants, mammalian cell lines, budding yeast and Drosophila 

(Grummt and Pikaard, 2003, McStay and Grummt, 2008). Collectively, these studies have 

revealed that rRNA genes can be silenced by mechanisms involving the establishment and 

maintenance of repressive chromatin modifications. Early evidence came from cytogenetic 

studies of allopolyploid cereals in which treatment with a chemical inhibitor of DNA 

methylation disrupted progenitor-specific NOR inactivity, as measured by NOR silver 

staining (Viera et al., 1990a, Castilho et al., 1995, Neves et al., 1995, Silva et al., 

1995). However, it seemed clear that DNA methylation could not fully explain nucleolar 

dominance because Drosophila hybrids display nucleolar dominance (Durica and Krider, 

1977, Durica and Krider, 1978) but do not methylate their DNA. This inspired experiments 

in which we showed that nucleolar dominance in Brassica allotetraploids could be disrupted 

using either chemical inhibitors of histone deacetylation or chemical inhibitors of DNA 

methylation (Chen and Pikaard, 1997a). Moreover, we found that treatment with both 

inhibitors at the same time did not result in additive or synergistic effects, suggesting that 

DNA methylation and histone deacetylation are aspects of the same repression pathway. 

Evidence supporting this hypothesis came from an assay in which we performed chromatin 

immunoprecipitation (ChIP) using antibodies against Pol I, or specific histone modifications, 

and then tested the methylation status of the immunoprecipitated DNA using methylation-

sensitive DNA endonucleases followed by PCR amplification, an assay we named ChIP-

chop-PCR (Lawrence et al., 2004). These studies, conducted using the allotetraploid hybrid 

species Arabidopsis suecica, showed that DNA methylation and histone modification states 

in the vicinity of rRNA gene promoters change in concert with one another when genes 

are in the “on” or “off” states (Lawrence et al., 2004). Meanwhile, studies of cultured 

mouse cells identified a protein complex that recruits DNA methyltransferase and histone 

deacetylase activities to bring about the silencing of ~50% of the total rRNA gene pool 

(Santoro et al., 2002). Likewise, studies in yeast showed that the histone deacetylase Rpd3 is 

involved in rRNA gene silencing as cultures reach stationary phase (Sandmeier et al., 2002). 

Collectively, these studies showed that rRNA gene silencing in plants, mammals and yeast 

all involve similar repressive histone modifications. In plants and animals (but not yeast) 

these histone modifications are further coordinated with changes in DNA methylation. The 

studies also indicated that nucleolar dominance in genetic hybrids and selective rRNA gene 

silencing in non-hybrids are manifestations of the same mechanism(s), whose purpose is to 

limit the total number of rRNA genes that is active (Grummt and Pikaard, 2003, McStay, 

2006). Importantly, selective rRNA gene silencing is not permanent. Instead, studies in 

plants, Drosophila, and Xenopus have shown that nucleolar dominance is developmentally 

regulated (Castilho et al., 1995, Neves et al., 1995, Chen and Pikaard, 1997b, Pontes et al., 

2007) (Earley et al., 2010) (Greil and Ahmad, 2012) (Maciak et al., 2016, Warsinger-Pepe 

et al., 2020). It may be that species only need all (or most) of their rRNA genes at one or 

more specific periods of their life cycles, such as embryogenesis or other periods of rapid 

cell proliferation, but shut down the excess genes at other times of development.

Collectively, the known mechanisms of rRNA gene up-regulation and down-regulation 

suggest that control occurs on two major levels, with selective silencing used as a form 

of coarse control to limit the number of genes that is available for transcription, and 
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post-translational modification of transcription factors then fine-tuning the transcriptional 

output of these active genes.

How are rRNA genes chosen for selective silencing?

The hundreds of rRNA genes within the nucleus of most pure species (non-hybrids/

allopolyploids) are extremely similar in sequence, which is why NORs are among the 

most difficult genomic loci to assemble from DNA sequencing data. So how can rRNA 

genes be discriminated from one another to allow some to be “on” and others to be “off”? 

An initial hypothesis (Reeder, 1985), put forward based on transient expression studies of 

rRNA minigenes injected into Xenopus oocytes in ~1000-fold excess over the endogenous 

genes, suggested that the dominant set of rRNA genes have a higher number of repeats that 

function as enhancer elements within their intergenic spacers, thereby sequestering one or 

more limiting transcription factors. However, numerous subsequent observations and direct 

tests have failed to support this hypothesis. For instance, in three Brassica allotetraploids, 

representing different combinations of three progenitor diploid genomes, we showed that 

there is no correlation between intergenic spacer length or spacer repeat number and 

nucleolar dominance (Chen and Pikaard, 1997b). Moreover, nucleolar dominance occurs 

in marine copepods whose rRNA gene intergenic spacers lack repeated sequences (Flowers 

and Burton, 2006). The idea that dominant rRNA genes have a higher binding affinity for 

transcription factors is also incompatible with our demonstration that in Arabidopsis thaliana 
x A. arenosa hybrids bred to have 1:3, 2:2 or 3:1 genome doses from the two progenitors, 

the direction of nucleolar dominance could be reversed as the genome dosage changed 

(Chen et al., 1998). If one progenitor’s rRNA genes have a higher binding affinity for a 

limiting transcription factor, based on their sequence or enhancer content, these genes should 

always compete best for that factor and be transcribed, even if outnumbered. Likewise, using 

a Brassica in vitro Pol I transcription system we developed (Saez-Vasquez and Pikaard, 

1997) we tested whether dominant rRNA gene promoters would outcompete underdominant 

promoters as the DNA concentration was raised to very high levels in order to cause 

transcription factors to become limiting relative to the number of gene promoters in the 

reaction. However, we found no difference in the competitive strength of the promoters 

at any DNA concentration (Frieman et al., 1999). The demonstration that underdominant 

rRNA genes are expressed upon chemical or genetic interference with DNA methylation or 

histone modification is yet another indication that transcription factors are not limiting or 

sequestered by the dominant set of genes. Instead, the evidence suggests that silent genes are 

merely denied access to these transcription factors.

As discussed above, multiple lines of evidence suggest that something other than 

transcription factor concentrations, binding affinities, or binding site (e.g. enhancer) 

numbers account for nucleolar dominance. Thus, upon examining a new model species 

and finding that dominant and under-dominant rRNA genes differ in structure, it is prudent 

to refrain from concluding that these structural differences are causative with respect to 

nucleolar dominance. The genes that differ in structure are also genetically linked, for 

millions of basepairs, to adjacent chromosomal sequences, and it could be that these distant 

sequences are key to nucleolar dominance.
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Instead of dominant rRNA genes being selectively activated, for which there is scant 

evidence, there is ample evidence that underdominant genes are selectively silenced, 

with numerous chromatin modifying activities important for rRNA gene silencing having 

been identified in Arabidopsis thaliana or Arabidopsis suecica allotetraploids (Figure 1C). 

However, identification of these chromatin modifying activities in plants, many of which 

have homologs that play corresponding roles in nucleolar dominance in mammals (Grummt 

and Pikaard, 2003), has failed to explain how specific rRNA genes are singled out for 

silencing. The finding that noncoding RNAs play roles in rRNA gene silencing in mouse 

cells (Mayer et al., 2006, Santoro et al., 2010) and in nucleolar dominance in Arabidopsis 
suecica (Preuss et al., 2008) thus generated some excitement. In the case of A. suecica, 

the rRNA genes inherited from A. thaliana and A. arenosa differ sufficiently in sequence 

that their discrimination by species-specific noncoding RNAs is feasible. However, in pure 

species, such as A. thaliana, in which specific rRNA genes are also silenced, the promoter 

regions of the many hundreds of rRNA genes present in the genome are nearly identical 

in sequence. Moreover, single-nucleotide polymorphisms and indels that vary among the 

rRNA gene pool (Sims et al., 2021), and might thus be targets for specific noncoding RNA 

interactions, are distributed throughout the rRNA gene repeats and do not cluster within 

known or suspected regulatory elements. Thus, we remain at a loss to understand how 

regulatory small RNAs might discriminate among rRNA genes in A. thaliana.

Our longstanding assumption that rRNA gene regulation occurs one gene at a time came 

to an end in our lab in 2016 when genetic evidence pointed to regulation on a larger 

scale (Chandrasekhara et al., 2016). Diploid Arabidopsis thaliana has two NORs that are 

located at the tops of chromosomes 2 (NOR2) and 4 (NOR4), with rRNA gene sequences 

fused directly to telomere repeats (Copenhaver et al., 1995, Copenhaver and Pikaard, 

1996a, Mohannath et al., 2016). In the commonly studied A. thaliana accessions Col-0 

and Ler, each NOR was estimated to have approximately 375 rRNA genes and span ~4 

Mbp based on physical mapping studies using Contour-clamped Homogeneous Electric 

Field (CHEF) electrophoresis (Copenhaver and Pikaard, 1996b). As in other eukaryotes, 

the rRNA genes within an accession are nearly identical in sequence complexity. However, 

we identified a small set of single nucleotide polymorphisms or indels that differ between 

gene types that are developmentally silenced or are constitutively expressed in Col-0 

(Chandrasekhara et al., 2016). Fortunately, natural variation for these molecular markers 

exists among different accessions of A. thaliana, and this allowed us to devise a genetic 

mapping strategy in which we simply monitored the segregation of the polymorphic rRNA 

gene markers relative to other chromosomal markers among the progeny of inter-accession 

hybrids. These genetic experiments revealed that the markers associated with active Col-0 

rRNA gene subtypes mapped to NOR4 whereas the silenced rRNA gene subtypes mapped 

to NOR2 (Chandrasekhara et al., 2016)(see Figure 1d). This suggested that rRNA gene 

on/off fate might be determined by the NOR or chromosome in which the genes are located, 

consistent with many decades of cytological observations of NOR behavior, and not by 

individual rRNA gene sequences. Experimental support for this hypothesis came from our 

identification of a plant line in which a substantial portion of NOR4 was replaced by 

sequences of NOR2. In this line, we found that the relocated rRNA genes of NOR2, which 

were normally silent in leaves, were now active (Mohannath et al., 2016). Collectively, 

Pikaard et al. Page 5

Plant J. Author manuscript; available in PMC 2023 September 27.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



these studies provided genetic evidence that the “choice mechanism” that determines which 

rRNA genes are silenced or active operates on a sub-chromosomal, megabase scale, possibly 

encompassing entire NORs. This hypothesis is compatible with a previous finding that 

rRNA transgenes inserted at genome positions outside the NORs escape silencing in hybrids 

in which the endogenous rRNA genes of the same sequence, located within the NORs, 

are subjected to nucleolar dominance and are silenced (Lewis et al., 2007). Likewise, 

NOR structural changes reflected by diminished rRNA gene numbers and altered subtype 

compositions occur in fas mutants (a subunit of CHROMATIN ASSEMBLY FACTOR 1) 

and disrupt the silencing of rRNA gene subtypes that normally map to NOR2 (Pontvianne et 

al., 2013, Pavlistova et al., 2016), as do CRISPR-mediated deletions that dramatically reduce 

rRNA gene copy numbers and alter NOR organization (Lopez et al., 2021).

Interestingly, NOR2 is not always silenced and NOR4 is not always active in A. thaliana. In 

some accessions, rRNA genes that map to NOR2 are active and genes mapping to NOR4 are 

inactive; in other accessions, rRNA genes of both NORs are active (Rabanal et al., 2017). 

Cytogenetic studies in other species have also provided evidence that NOR activity can vary 

based on chromosomal and genomic context. For instance, in the cereal crop Triticale, which 

is the hybrid of wheat and rye, the wheat NORs are dominant and the rye NOR is suppressed 

(Thomas and Kaltsikes, 1983) (Lacadena et al., 1984) (Viera et al., 1990a, Viera et al., 

1990b) (Silva et al., 1995) (Neves et al., 1997a, Neves et al., 1997b) (Amado et al., 1997). 

However, in a line in which a chromosome translocation event fused the NOR-bearing rye 

chromosome arm to a wheat chromosome, the rye NOR was shown to be active (Viera et al., 

1990b). Studies of barley chromosome translocation lines also showed that rearrangements 

that move NORs to new chromosomal locations, or that delete sequences adjacent to NORs, 

can alter the on or off states of its NORs (Nicoloff et al., 1979, Schubert and Kunzel, 

1990). Likewise, studies of nucleolar dominance in Drosophila, both in interspecific hybrids 

and pure species, have provided evidence that sequences flanking the NORs play a role in 

selective rRNA gene silencing (Durica and Krider, 1978, Warsinger-Pepe et al., 2020). In the 

case of Arabidopsis thaliana, strain Col-0, the NOR bearing the rRNA gene subtypes that 

are silenced, NOR2, is flanked on its centromere-proximal side by an approximately 70 kb 

region composed of transposable elements and transposon-derived sequences. By contrast, 

NOR4 is flanked by protein coding genes, with the first gene located only ~3 kb from 

the NOR. Whether the transposon-rich flanking region plays a role in the developmental 

silencing of NOR2 remains unknown and awaits direct testing, potentially by deleting the 

region through CRISPR-mediated chromosome engineering, mutagenesis and break repair, 

or genetic recombination. Complete end-to-end sequences of Arabidopsis NOR2 and NOR4 
are also needed, to determine if clues to their differential activity might be hidden within 

the NORs. However, recent sequencing of bacterial artificial chromosome constructs bearing 

multiple rRNA gene subtypes that genetically map to NOR2 have not revealed sequences 

other than rRNA gene repeats (Sims et al., 2021).

The search for the off switch and its circuitry

Cytogenetic, genetic and molecular evidence implicate NORs as the likely units of large-

scale rRNA gene regulation, with additional levels of regulation determining how many 

genes within an active NOR are transcribed, and at what levels. But what distinguishes 
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one NOR from another? Are there sequences comprising a locus control element of some 

sort within, or adjacent to, NORs subjected to silencing but missing from NORs that are 

not silenced? If so, what is its composition and how does it work? Do these putative locus 

control element sequences become rearranged in fas mutants, thereby resulting in alternative 

rRNA gene subtype expression patterns (Pavlistova et al., 2016)? And what accounts for the 

fact that in a pure species such as Arabidopsis thaliana, where one NOR can be active and 

the other silenced, or both NORs can be co-dominant (depending on the accession), these 

dominance relationships become irrelevant when the genomes of A. thaliana and A. arenosa 
are combined to form the allotetraploid hybrid, A. suecica and both A. thaliana-derived 

NORs are silenced? What are the signals that initiate the silencing process depending on 

genomic context? Though answers to these questions are not yet in hand, the allure of 

science lies in the satisfaction of knowing that our reach can exceed our grasp.
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Significance statement

Nucleolar dominance is one the earliest recognized epigenetic phenomena, describing 

the expression of some, but not all, of the rRNA genes clustered in the nucleolus 

organizer regions of eukaryotic genomes. In the past five decades our conception of 

nucleolar dominance has evolved from models of selective gene activation to models of 

selective gene silencing, and from mechanisms thought to act on individual rRNA genes 

to mechanisms that may act on a multi-megabase scale.
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Figure 1. Nucleoli, NORs and rRNA gene expression.
a. Nucleoli form within nuclei as a consequence of rRNA gene transcription and processing. 

Thus, active rRNA genes (green triangles) are located within the nucleolus whereas inactive 

rRNA genes are located outside the nucleolus, as confirmed by flow cytometry experiments 

(Pontvianne et al., 2013). The cartoon depicts a diploid nucleus, at interphase, that has 

nucleoli on two different chromosomes (as in Arabidopsis thaliana), with the NORs 

identified by DNA-FISH (fluorescence in situ hybridization) using an rRNA gene probe. 

Inactive genes co-localize within highly condensed foci, and this includes the excess genes 

of active NORs.

b. At metaphase, secondary constrictions are observed at NOR intervals where rRNA genes 

were transcriptionally active during the prior interphase.

c. Chromatin modifications that correlate with the on and off states of plant rRNA genes, 

and names of some of the Arabidopsis chromatin modifying enzymes (in parentheses) 

whose mutation or knockdown disrupts rRNA gene silencing (Lawrence and Pikaard, 

2004, Probst et al., 2004, Earley et al., 2006, Preuss et al., 2008, Pontvianne et al., 

2012, Mohannath et al., 2023). Note that DNA methyltransferase MET1 primarily catalyzes 

maintenance methylation in the CG context, but also affects CHG maintenance methylation 

to some extent. CMT2 primarily catalyzes maintenance methylation in the CHH context. 

DRM2 catalyzes de novo methylation in all contexts (CG, CHG and CHH).
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d. rRNA genes that map to NOR2 are selectively silenced whereas genes that map to 

NOR4 are expressed in the A. thaliana accession, Col-0. The molecular signals and targets 

that initiate silencing remain undefined but may involve sequences internal to, or flanking, 

NOR2 and possibly NOR4.
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