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MicroRNAs (miRNAs) are key post-transcriptional regula-
tors that inhibit gene expression by promoting mRNA
decay and/or suppressing translation. However, the rela-
tive contributions of these two mechanisms to gene re-
pression remain controversial. Early studies favor a trans-
lational repression-centric scenario, whereas recent
large-scale studies suggest a dominant role of mRNA
decay in miRNA regulation. Here we generated proteom-
ics data for nine colorectal cancer cell lines and inte-
grated them with matched miRNA and mRNA expression
data to infer and characterize miRNA-mediated regula-
tion. Consistent with previous reports, we found that 8mer
site, site positioning within 3�UTR, local AU-rich context,
and additional 3� pairing could all help boost miRNA-
mediated mRNA decay. However, these sequence fea-
tures were generally not correlated with increased trans-
lational repression, except for local AU-rich context. Thus
the contribution of translational repression might be un-
derestimated in recent studies in which the analyses were
based primarily on the response of genes with canonical
7–8 mer sites in 3�UTRs. Indeed, we found that transla-
tional repression was involved in more than half, and
played a major role in one-third of all predicted miRNA-
target interactions. It was even the predominant contrib-
utor to miR-138 mediated regulation, which was further
supported by the observation that differential expression
of miR-138 in two genetically matched cell lines corre-
sponded to altered protein but not mRNA abundance of
most target genes. In addition, our study also provided

interesting insights into colon cancer biology such as the
possible contributions of miR-138 and miR-141/miR-200c
in inducing specific phenotypes of SW480 and RKO cell
lines, respectively. Molecular & Cellular Proteomics 12:
10.1074/mcp.M112.025783, 1900–1911, 2013.

MicroRNAs (miRNAs) are small noncoding RNAs that pair to
the messenger RNAs (mRNAs) of protein-coding genes to re-
press their expression by promoting mRNA decay and/or inhib-
iting translation (1). In response to miRNA transfection or knock-
down, widespread changes in both mRNA and protein
abundance have been observed using DNA microarrays and
global proteome profiling by stable isotope labeling with amino
acids in cell culture, respectively (2–4). Nonetheless, the relative
contribution of these two mechanisms to gene repression re-
mains controversial (5). Early studies favor a translational re-
pression-centric scenario (6, 7), whereas recent large-scale
studies suggest a dominant role of mRNA decay in miRNA-
mediated regulation (2, 3, 8, 9). Because these studies only
focused on a small number of miRNAs, mostly through miRNA
transfection, a key unanswered question is whether these ob-
servations can be generalized to all miRNAs in their endoge-
nous context. Moreover, some studies reached the conclusion
based primarily on the response of genes with canonical
7–8mer sites in 3�UTRs (2, 8), and 7–8mer sites have already
been reported to enhance mRNA decay (10, 11). Therefore, the
conclusion might be biased to the subset of genes with 7–8mer
sites and the relative contribution of mRNA decay might be
overestimated. A related but more general question is whether
sequence features known to drive mRNA decay such as
7–8mer sites are applicable to translational repression.

In contrast to perturbing individual miRNAs, global profiling of
miRNA and mRNA expression in multiple systems (e.g. tissue
types or cell lines) provides a broader approach to investigate
the functional relationship between miRNAs and mRNAs. In-
verse correlation between miRNA and mRNA expression has
been widely used to infer targets susceptible to miRNA medi-
ated mRNA decay (12–16). The key advantage of this approach
is that all miRNAs are evaluated simultaneously in their natural
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biological context. Further integration of matched protein ex-
pression data can shed light on the scope of miRNA mediated
translational repression; however, proteomic data sets are not
readily available for such correlation-based studies.

Here we generated a protein expression data set for nine
colorectal cancer (CRC)1 cell lines and integrated this data set
with matched miRNA and mRNA expression data to perform
a comprehensive analysis of miRNA-mediated regulation. We
dissected the respective contributions of mRNA decay and
translational repression and evaluated four previously re-
ported sequence features for their effect on each type of
regulation. We also inferred and categorized miRNA-target
interactions, which revealed the relative importance and
scope of mRNA decay and translational repression in miRNA
regulation and suggested potential roles and downstream
effectors of miRNAs in human colon cancer.

MATERIALS AND METHODS

Cell Lines and Cell Culture—All cell lines were obtained from the
American Type Culture Collection (ATCC, Manassas, VA) and grown
and harvested within 6 months of date of purchase, or grown from
frozen stocks that had been made within 6 months of original pur-
chase. All cell lines were grown in 10% fetal bovine serum and
penicillin/streptomycin supplemented medium at 37 °C, 5% CO2.
DLD-1, HCT-15, COLO 205 and SW480 were grown in RPMI 1640
medium, HCT-116, HT-29 and RKO were grown in McCoy’s5A me-
dium, Caco-2 (20% fetal bovine serum) was grown in Minimum Es-
sential Medium and LoVo was grown in F-12 K medium. Cells were
passaged 2–3 times per week and harvested at �80% confluence.
Growth medium was aspirated; cells were washed once in 1 � PBS
and collected in 1 � PBS. Cells were centrifuged at 300 � g for 5 min
and supernatant was discarded. Cell pellets were stored at �80 °C
until cell lysis was performed. Three biological replicate cultures were
harvested �1 week apart from the identical cell culture. For SW480
and SW620 comparison, cells were grown in RPMI 1640 medium.
Three biological replicate cultures were harvested �1 week apart and
these replicates were processed separately and independently
through the complete analysis procedure.

Cell Lysis, Protein Digestion and Isoelectric Focusing of Peptides—
Lysis of cell pellets was performed at ambient temperature. Each
biological replicate (one cell pellet from one cell line) was processed
in parallel to minimize the effects of systematic errors. Pellets were
resuspended in 100 �l of 100 mM ammonium bicarbonate (AmBic)
and 100 �l trifluoroethanol was added followed by sonication (3 �
20 s). Samples were incubated at 60 °C and resonicated (3 � 20 s).
Protein concentration was estimated using a bicinchoninic acid assay
(Pierce, Rockford, IL). Proteins were reduced and alkylated with 40
mM tris(2-carboxyethyl)phosphine /100 mM dithiothreitol and 50 mM

iodoacetamide, respectively. Samples were diluted in 50 mM AmBic,
pH 8.0 and trypsinized overnight at 37 °C (1:50, w/w). Subsequently,
peptides were lyophilized overnight. Peptides were desalted and
separated by isoelectric focusing using immobiline IPG strips (24 cm,
pH 3.5–4.5) (GE Healthcare) as described (17).

Liquid Chromatography-tandem MS—Liquid chromatography-tan-
dem MS (LC-MS/MS) shotgun proteomic analyses were performed on
a LTQ XL mass spectrometer (9 cell line panel) or a LTQ velos mass

spectrometer (SW480/SW620 comparison) (Thermo Fisher Scientific)
equipped with an Eksigent NanoLC AS1 autosampler and Eksigent
NanoLC 1D Plus pump, Nanospray source, and Xcalibur 2.0 SR2 in-
strument control. Peptides were separated on a packed capillary tip
(Polymicro Technologies, 100 mm � 11 cm) with Jupiter C18 resin (5
mm, 300 Å, Phenomenex) using an in-line solid-phase extraction col-
umn (100 mm � 6 cm) packed with the same C18 resin using a frit
generated with liquid silicate Kasil 1. Mobile phase A consisted of 0.1%
formic acid and mobile phase B consisted of 0.1% formic acid in 90%
acetonitrile. A 90-min gradient was carried out with a 30-min washing
period (100% A) to allow for solid-phase extraction and removal of any
residual salts. Following the washing period, the gradient was increased
to 25% B by 35 min, followed by an increase to 90% B by 50 min and
held for 9 min before returning 95% A. MS-MS spectra of the peptides
are acquired using data-dependent scanning in which one full MS
spectrum (mass range 400–2000 m/z) is followed by five MS-MS spec-
tra. MS-MS spectra are recorded using dynamic exclusion of previously
analyzed precursors for 60 s with a repeat of 1 and a repeat duration of
1. MS/MS spectra were generated by collision-induced dissociation of
the peptide ions at normalized collision energy of 35% to generate a
series of b- and y-ions as major fragments.

LC-MS/MS Data Analysis and Peptide and Protein Identification—
MS/MS scans were transcoded to mzData or mzML file format by
Scansifter, an in-house-developed software, which reads MS/MS
stored as centroided peak lists from Thermo RAW files. If 90% of the
intensity of a tandem mass spectrum appeared at a lower m/z than
the precursor ion, a single precursor charge was assumed; otherwise,
the spectrum was processed under both double and triple precursor
charge assumptions. The resulting mzData or mzML files were searched
against the Human IPI database (v3.37 with 69,164 entries for the nine
CRC cell line set and v3.64 with 84,032 entries for SW480 and SW620
comparison) augmented with potential contaminant protein sequences
(keratins, trypsin, IgGs etc.) and with all sequences in both forward and
reverse orientation. Searches used the Myrimatch algorithm (version
1.2.11) (18). The database search was configured to consider both fully
tryptic and semitryptic peptide matches with a precursor mass/charge
(m/z) tolerance of 1.25 and a fragment m/z tolerance of 0.5. Carboxam-
idomethylation of cysteines was included as static modification and
oxidation of methionine as a dynamic modification in the searches.

The IDpicker algorithm (version 2.2.2) (19, 20) was used to assign
protein identifications to the set of peptides identified by Myrimatch.
For IDPicker analyses, all of the pepXML files generated by Myrimatch
for an experiment were combined. This combination of all data within
an experiment is essential for accurate estimation of peptide and
protein false discovery rate (FDR) and for spectral count-based com-
parisons of data sets (see below). IDPicker filtered the peptide iden-
tifications for each LC-MS/MS run (pepXML file) to include the largest
set for which a 5% peptide identification FDR could be maintained.
IDPicker allows the user to specify an FDR threshold and then adjusts
score threshold accordingly. Peptide filtering employed reversed se-
quence database match information to determine Myrimatch score
thresholds that yielded an estimated 5% peptide identification FDR
for the identifications of each charge state, as calculated by the
formula FDR � (2 � reverse)/(forward � reverse) (21). For these
studies, a 5% peptide FDR was employed.

IDPicker employs a bipartite graph analysis and efficient graph
algorithms to identify protein clusters with shared peptides and to
derive the minimal list of proteins (19, 20). A bipartite graph analysis
technique and parsimony rules were applied to generate a minimal list
of proteins that explained all of the peptides that passed our entry
criteria. Proteins were required to have at least two distinct peptide
sequences observed in the analyses. Indistinguishable proteins were
grouped. IDPicker estimates FDR at the peptide-to-spectrum match
level and the criteria of 5% peptide-to-spectrum match-level FDR and

1 The abbreviations used are: CRC, colorectal cancer; FDR, false
discovery rate; TR, translational repression; TR_o, TR with other
mechanisms; B_w, both weak; B_s, both strong; RD, mRNA decay.
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two peptides per protein are typically used for protein identification.
When the sample size in a data set is large, the resulting protein
identifications may contain a large number of decoys and thus a high
protein-level FDR. In this study, by further requiring a protein identi-
fication to be supported by at least 10 MS/MS spectra across the
data set, a protein level FDR of 5% was maintained. The IDPicker
output with complete peptide identification and protein inference
information is available in supplemental Data Set S1.

Protein Quantification—Spectral count, or the total number of
MS/MS spectra taken on peptides from a given protein in a given
LC/LC-MS/MS analysis, was used for protein quantification. Spectral
count is linearly correlated with the protein abundance over a large
dynamic range. This simple but practical quantification method has
found broad application in detecting differential or correlated protein
expression (22–26). Here, spectral counts for each protein were nor-
malized by the total spectral count to reduce the variance observed
between samples. For total spectral count normalization, the sample
with the highest number of total spectral count was chosen and the
remaining samples were normalized to it. The normalized data were
then log transformed to achieve a better approximation of normal
distribution. When multiple proteins are mapped to the same gene, the
protein with the largest interquartile range was selected to represent the
gene because of its relatively higher expression level and higher vari-
ance across the experimental conditions. Protein abundance for each
gene in each cell line is available in supplemental Data Set S2.

Integrated Proteomic and Transcriptomic Analysis—Matched
miRNA and mRNA expression data from the same nine CRC cell lines
were downloaded from the Gene Expression Omnibus (GEO,
GSE10833, and GSE10843). All cell lines used in these and proteom-
ics studies were obtained from the American Type Culture Collection
(ATCC) and maintained in the recommended growth media, allowing
a meaningful integration of these data sets. Replicate measurements
for protein, mRNA and miRNA expression were highly reproducible
(supplemental Figs. S1, S2, and S3). To facilitate data integration, we
averaged the abundance from replicates in each cell line for mRNA,
miRNA and protein expression data, respectively. For miRNAs, we
filtered out those with small expression variance (� � 1) across the
nine CRC cell lines and only the remaining 79 miRNAs were included

in the subsequent analyses. The proteomics data set covered 5467
genes and the mRNA expression data covered 19,648 genes. We only
included the 5144 genes with paired mRNA and protein expression
data for the integrative analysis. A significant positive correlation be-
tween mRNA and protein abundance was observed for each cell line
(supplemental Fig. S4, Pearson’s correlation coefficients of log-trans-
formed abundances fell in the range between 0.47 and 0.53, p � 2e-16).
These correlation coefficients were larger than or similar to previously
reported protein-mRNA correlations in human samples (27, 28).

We calculated three types of expression correlations between the 79
miRNAs and the 5144 genes, miRNA-mRNA correlation, miRNA-protein
correlation and miRNA-ratio (protein-to-mRNA ratio) correlation (Fig. 1).
miRNA-mRNA correlation has been widely used to predict targets sus-
ceptible to miRNA mediated mRNA decay (12–16). Protein-to-mRNA
ratio is mainly determined by translation efficiency and protein degra-
dation (28). Thus, miRNA-ratio correlation can be used to identify tar-
gets susceptible to miRNA mediated translational repression. (We also
tried an alternative approach, partial correlation between miRNA and
protein expression, which factors out the effect of variation in mRNA
abundance, and obtained similar results). Because the impact of miRNA
on protein output is a combined result of mRNA decay and translational
repression, miRNA-protein correlation can help identify not only targets
susceptible to a strong effect of either type of regulation, but also
targets affected by modest mRNA decay and translational repression
simultaneously. Integrative analysis of these three correlation types
allows an estimation of the relative contributions of mRNA decay and
translational repression to each miRNA-mediated repression. To test
the usefulness of these three correlation types for discovering functional
relationships between miRNAs and genes, for each type of correlation,
we evaluated the functional coherence of genes correlated with the
same miRNA and evolutionary conservation of the 6mer seed match
regions of genes correlated with their cognate miRNAs. Results from
these analyses demonstrated that a significant inverse correlation (Pear-
son correlation coefficient�-0.8, p � 0.005) of any of the three types
helped identify genes that are more likely to be functional miRNA targets
(supplemental Text S1, supplemental Figs. S5 and S6). We also per-
formed evaluation based on Spearman’s correlation and similar results
were obtained.

FIG. 1. Overview of the integrative
omics analysis. We calculated three
types of correlations between miRNA and
genes: miRNA-mRNA, miRNA-protein,
and miRNA-ratio. Using the strength of
miRNA-mRNA and miRNA-ratio correla-
tions, we estimated the effect of four fea-
tures on site efficacy in mRNA decay and
translational repression, respectively.
Meanwhile, we combined functional evi-
dence from the three types of significant
inverse correlations (miRNA-mRNA,
miRNA-protein, or miRNA-ratio) and bind-
ing evidence from sequence-based pre-
diction tools to identify miRNA-target in-
teractions. Finally we classified these
interactions into different categories
based on the type of supporting correla-
tion and inferred the major contributor
(mRNA decay or translational repression)
to miRNA-mediated regulation in each
category (S: significant; NS: nonsignifi-
cant; *: S or NS).
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Using the strength of miRNA-mRNA and miRNA-ratio correlations,
we evaluated the effect of four previously reported sequence features
on site efficacy in mRNA decay and translational repression, respec-
tively, including type of target site, site location, local AU-context and
additional 3� pairing (Fig. 1). Meanwhile, to infer miRNA-target inter-
actions, we identified miRNA-target pairs supported by both statisti-
cally significant correlation (Pearson’s correlation coefficient�-0.8,
p � 0.005) and sequence-based target prediction using TargetScan
(29, 30), miRanda (31), or MirTarget2 (32) (Fig. 1). Finally, we catego-
rized the identified interactions based on the type of supporting
correlations to infer the relative contributions of mRNA decay and
translational repression in miRNA-mediated regulation.

Sequence Features—Sequences were downloaded from Ensembl
database (Homo sapiens genes GrCh37.p3 data set). R scripts were
generated to retrieve 3�UTR, 5�UTR and ORF sequences for all 5144
genes using the biomaRt package (33, 34). When multiple transcripts
mapped to a single HGNC gene symbol, only the longest 3�UTR, 5�
UTR and ORF were included in the analysis.

We used the scheme described by Grimson et al. (10) for scoring
AU-content and additional 3� pairing. For AU-content, we considered
the composition of residues 30nt upstream and 30nt downstream of
a seed site, with weighting inversely proportional to the distance from
the seed site. For additional 3� paring, we credited one point for each
contiguous pair within the 4mer corresponding to nucleotides 13–16
and one-half point for contiguous pairing elsewhere (10). The position
of miRNA 4mer and its complement in the message were allowed to
be offset, but a one-half point penalty was assessed for each nucle-
otide of offset beyond 2nt.

RESULTS

Proteomics Data for Nine CRC Cell Lines—We performed
three replicate LC-MS/MS-based shotgun proteomic analy-
ses on nine CRC cell lines (Caco-2, COLO 205, DLD-1, HCT-
15, HCT-116, HT-29, LoVo, RKO, and SW480). The data set
consisted of a total of 6124 proteins with a protein FDR of 5%.
The number of unique peptides and the minimum number of
proteins that were required to explain the observed peptides

in each cell line are shown in Figs. 2A and 2B, respectively.
Although the numbers of peptides identified for each cell line
varied from 25,159 to 31,526, the numbers of proteins were very
consistent (from 5162 to 5698), suggesting that we were close
to the saturation of protein identification in the CRC cell lines
within the detection limit of our platform. The Pearson’s corre-
lation coefficients between spectral counts of biological repli-
cates fell in the range between 0.9 and 0.98, suggesting high
reproducibility and reliability of the protein expression measure-
ments (supplemental Fig. S1). An unsupervised clustering anal-
ysis based on the top 5% proteins (i.e. 306 proteins) with the
largest variation across all 27 experiments provided further ev-
idence for high reproducibility between replicates (Fig. 2C).
More importantly, the clustering result also revealed distinct
proteome profiles for individual cell lines. The tight clustering of
HCT-15 and DLD-1, two cell lines isolated from different sites of
the same patient, demonstrated that the label-free shotgun
proteomics analysis was both robust and sensitive.

Sequence Features Affecting Site Efficacy—Previous stud-
ies have uncovered a number of sequence features that boost
site efficacy, including the type of target site, site positioning
within the gene structure, local AU-rich context and additional
3� pairing. Because changes in mRNA expression after the
transfection of miRNA were used to assess site efficacy (10,
11), these identified features could be interpreted mainly to
govern mRNA decay. To our knowledge, there is no research
reporting the impact of sequence features on site efficacy in
translational repression. Here we used the strength of
miRNA-mRNA correlation and miRNA-ratio correlation to es-
timate how these sequence features affect site efficacy in
mRNA decay and translational repression, respectively. The
3�UTR length of genes, number of target sites, type of target

FIG. 2. Shotgun proteomics pro-
vided robust global profiles of cellu-
lar proteomes. A, Number of peptides
identified for each cell line. B, Number
of proteins identified for each cell line.
C, Unsupervised clustering indicated
high reproducibility of the profiles. The
heat map was created based on the top
5% of proteins with the highest varia-
tion across all 27 experiments. Each
row represents a protein and each col-
umn represents an experiment. Sam-
ples are color-coded on the top by cell
line and labeled at the bottom. The
color scale bar shows the relative pro-
tein expression level (0 is the average
expression level of a given protein in all
samples).
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sites, and scores for local AU-context and additional 3� pair-
ing for all miRNA-gene pairs were listed in supplemental Data
Set S3. Although our correlation-based analysis was not as
direct as previous studies using changes in mRNA abundance
after the perturbation of miRNA expression, our results on
sequence features boosting site efficacy in mRNA decay were
consistent with previous reports. In addition, we found that
most of these features cannot enhance site efficacy in trans-
lational repression except for local AU-rich context.

Type of Target Site—Messages down-regulated after intro-
ducing a miRNA are generally associated with four types of
sites: 6mer, 7mer-m8, 7mer-A1, and 8mer (10). For genes with
at least one 8mer site in their 3�UTRs, their mRNA abundance
was significantly more likely to be negatively correlated with
the expression of their cognate miRNAs, compared with
genes containing no matched site (p � 1.0e-05, one sided
KS-test, Fig. 3A). For genes with at least one 7mer-m8, 7mer-
A1, or 6mer site in their 3� UTRs, their mRNA abundance had

− − −

FIG. 3. Sequence features affecting the efficacy of mRNA decay and translational repression. A, Efficacy of different target site types.
Plotted are p values calculated by one-sided KS-test for comparing the cumulative distribution of miRNA-mRNA and miRNA-ratio correlation
between miRNAs and genes with different target site types with those between miRNAs and genes with no site. B, Efficacy of sites located in 3�UTR,
ORF or 5�UTR. Plotted are p values calculated by one-sided KS-test for comparing the cumulative distribution of miRNA-mRNA and miRNA-ratio
correlation between miRNAs and genes with 8mer sites located in different gene regions with those between miRNAs and genes with no site. C,
Efficacy of local AU-content. Plotted are p values calculated by one-sided KS-test for comparing the cumulative distribution of miRNA-mRNA,
miRNA-ratio, and miRNA-protein correlation between miRNAs and genes with a high AU-content site (top quartile) with those between
miRNAs and genes with a low AU-content site (bottom quartile). D, Efficacy of additional 3� pairing. Plotted are the cumulative distribution
of miRNA-mRNA and miRNA-ratio correlation between miRNAs and genes containing one 8mer site with good 3� pairing (red) and that
between miRNAs and genes with poor 3� pairing (green) (p � 0.00209 for miRNA-mRNA, p � 0.00036 for miRNA-ratio, one-sided K-S test).

Importance and Scope of Translational Repression in microRNA-mediated Regulation

1904 Molecular & Cellular Proteomics 12.7

http://www.mcponline.org/cgi/content/full/M112.025783/DC1
http://www.mcponline.org/cgi/content/full/M112.025783/DC1


a less pronounced, but still significant propensity to be more
negatively correlated with the expression of cognate miRNAs
compared with genes containing no site (p � 0.05, one-sided
KS-test, Fig. 3A). These results mirrored findings from previous
studies with selected miRNAs (10, 35) and confirmed that the
8mer site is most effective for driving mRNA decay.

However, this conclusion was not applicable to site efficacy in
translational repression. Specifically, for genes with one or more
8mer sites in their 3�UTRs, their protein-to-mRNA ratios were
not more negatively correlated with the expression of cognate
miRNAs compared with genes containing no site (p � 0.5,
one-sided KS-test, Fig. 3A). Thus, the 8mer site type was effec-
tive in boosting mRNA decay, but not translational repression.

Site Positioning Within the Gene Structure—Although the
majority of investigations into miRNA function have been on
sites located in 3�UTRs, 5�UTRs and open reading frames
(ORFs) of mammalian genes also contain miRNA target sites.
For genes with at least one 8mer site in their 3�UTRs, their
mRNA abundance was more negatively correlated with the
expression of cognate miRNAs compared with genes with no
site (p � 1.0e-05, one sided KS-test, Fig. 3B). However, such
correlation difference was marginally significant (p � 0.006,
one sided KS-test) or not significant (p � 0.5, one sided
KS-test) between genes with at least one 8mer site in their
ORFs and 5�UTRs and genes with no site, respectively (Fig. 3B).
These results agreed with previous miRNA transfection analy-
sis, site-conservation analysis, and site depletion analysis (4, 10,
30, 36). For miRNA-ratio correlation, however, marginal signifi-
cance was only observed for genes with at least one 8mer site
in their ORFs (p � 0.012, one sided KS-test, Fig. 3B). This result
further confirmed that 8mer sites located in 3�UTRs tend to drive
mRNA decay, but not translational repression.

Local AU Rich Context—Previous studies have found that
the nucleotides immediately flanking the functional sites are
highly enriched for AU-content relative to nonfunctional sites
(10). We used the scheme described by Grimson et al. (10) for
scoring AU-content. The analysis was limited to genes with
only one 8mer site. We ranked sites based on the local AU-
content score from the highest to the lowest and defined the
first quartile as high AU-content sites and the last quartile as
low AU-content sites. For genes with a high AU-content 8mer
site, their mRNA abundance was more negatively correlated
with the expression of cognate miRNAs compared with genes
with a low AU-content 8mer site (p � 0.047, one sided KS-
test, Fig. 3C). A similar result was observed for miRNA-ratio
correlation (p � 0.016, one sided KS-test, Fig. 3C). Therefore,
AU-rich content enhanced both mRNA decay and transla-
tional repression, which should produce a stronger effect on
protein level. As expected, genes with high AU-content sites
showed a significantly more negative miRNA-protein correla-
tion than genes with low AU-content sites (p � 0.0003, one
sided KS-test), and the difference was more significant than
those observed for miRNA-mRNA correlation and miRNA-
ratio correlation (Fig. 3C).

Additional 3� Pairing—Pairing to the 3� portion of the miRNA
is thought to enhance the efficacy of miRNA functional sites.
We determined the 3� pairing score as described by Grimson
et al. (10). For miRNA-mRNA correlation, genes containing
only one 8mer site with good 3� pairing (3� pairing score �4)
were more negatively correlated with their cognate miRNAs
than those with poor 3� pairing (3� pairing score �1) (p �

0.00209, one sided KS-test, Fig. 3D). Interestingly, an oppo-
site trend was detected for miRNA-ratio correlation (p �

0.00036, one sided KS-test, Fig. 3D), indicating that additional
3� pairing enhanced mRNA decay, but reduced translational
repression. For a given miRNA and a given type of target site
(8mer, 7mer-m8, 7mer-A1, and 6mer), miRNA-target relation-
ships inducing mRNA decay (miRNA-mRNA correlation�-0.8)
showed a significantly higher 3� pairing score than those
promoting translational repression (miRNA-ratio correlation�-
0.8) (p � 0.004, paired t test for 144 miRNA and target site
type combinations with paired data, supplemental Fig. S7),
suggesting that reduced 3� pairing may shift mRNA decay to
translational repression.

miRNA-target Interactions in CRC Cell Lines—To identify
miRNA-target interactions, we combined functional evidence
from the three types of significant inverse correlations
(miRNA-mRNA, miRNA-protein, or miRNA-ratio) and binding
evidence from sequence-based prediction tools including Tar-
getScan (29, 30), miRanda (31), or MirTarget2 (32). Predictions
made by TargetScan, miRanda, and MirTarget2 were retrieved
from the RmiR.Hs.miRNA package (version 1.0.6). In total, we
predicted 580 interactions, involving 60 miRNAs and 423 genes
(supplemental Table S1 and supplemental Data Set S4). We
further classified these interactions into six categories based on
the type of supporting correlation (Fig. 4A), allowing us to infer
the relative contributions of mRNA decay and translational re-
pression to the interactions in each category.

(1) RD (mRNA Decay) (31 interactions). Significant inverse
correlation was observed for miRNA-mRNA and miRNA-pro-
tein, but not for miRNA-ratio, suggesting protein changes
closely reflected mRNA changes induced by miRNAs without
additional translation efficiency changes (Fig. 4D). Thus, mRNA
decay played the predominant role in these interactions.

(2) RD_o (mRNA Decay with other mechanisms) (212 inter-
actions). Significant inverse correlation was observed for
miRNA-mRNA, but not for miRNA-protein or miRNA-ratio,
suggesting potential involvement of other regulatory mecha-
nisms that produced a positive effect on translation to com-
pensate for the miRNA-mediated mRNA decay (Fig. 4G). This
proposition was supported by a positive shift in the cumula-
tive distribution of miRNA-ratio correlation for these miRNA-
target interactions as compared with the background distri-
bution (miRNA-ratio correlation for all miRNA-gene pairs) (p �

1.0e-16, one sided KS-test, Fig. 4B). In contrast, the distribu-
tion of miRNA-ratio correlation for interactions in the RD cat-
egory was almost the same as the background distribution
(Fig. 4B). Thus, mRNA decay was the primary determinant for
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the interactions in the RD_o category, but other non-miRNA
mediated mechanisms appeared to provide a compensatory
positive effect on the translation of the target genes. (Fig. 4G).

(3) TR (Translational Repression) (29 interactions). Signifi-
cant inverse correlation was observed for miRNA-protein and
miRNA-ratio but not for miRNA-mRNA, suggesting protein
expression variation merely reflected miRNA directed trans-
lational efficiency changes without additional repression on

mRNA abundance (Fig. 4E). Thus, translational repression
played the predominant role in these interactions.

(4) TR_o (Translational Repression with other mechanisms)
(147 interactions). Significant inverse correlation was ob-
served for miRNA-ratio, but not for miRNA-protein or
miRNA-mRNA, suggesting that other transcriptional regula-
tory mechanisms provided a compensatory positive effect for
miRNA-mediated translational repression (Fig. 4H). This prop-

FIG. 4. Categorization of miRNA-target interactions. A, Defining miRNA-target interaction categories based on the significance level of
miRNA-mRNA, miRNA-protein and miRNA-ratio correlation. RD: mRNA Decay; RD_o: mRNA Decay with other mechanisms; TR: Translational
Repression; TR_o: Translational Repression with other mechanisms; B_s: Both strong; B_w: Both weak. B, Cumulative distributions
of miRNA-ratio correlation in categories RD, RD_o, B_w, and background (all miRNA-gene pairs), respectively. C, Cumulative distributions of
miRNA-mRNA correlation in categories TR, TR_o, B_w, and background, respectively. D–I, Typical correlation patterns of miRNA-mRNA,
miRNA-protein and miRNA-ratio in each category, RD (D), TR (E), B_s (F), RD_o (G), TR_o (H), and B_w (I). Plotted are the expression variation
curves across nine cell lines for miRNA (black), mRNA (red), protein (green) and protein-to-mRNA ratio (blue). Bold lines suggest expressions
significantly correlated with miRNA abundance. Three kinds of correlation coefficients were given in parenthesis.
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osition was supported by a positive shift in the cumulative
distribution of miRNA-mRNA correlation for these miRNA-
target interactions as compared with the background distri-
bution (miRNA-mRNA correlation for all miRNA-gene pairs)
(p � 1.0e-16, one sided KS-test, Fig. 4C). In contrast,
miRNA-mRNA correlation for interactions in the TR category
had almost the same distribution as the background (Fig. 4C).
Thus, translational repression was the primary determinant in
the TR_o category, but other transcriptional mechanisms nev-
ertheless compensated the translational inhibition mediated
by miRNA.

(5) B_s (Both strong) (5 interactions). Both mRNA decay and
translational repression contributed strongly to gene repression,
leading to significant inverse correlations for miRNA-mRNA,
miRNA-protein and miRNA-ratio (Fig. 4F).

(6) B_w (Both weak) (156 interactions). Significant inverse
correlation was observed for miRNA-protein, but not for
miRNA-mRNA or miRNA-ratio, suggesting that both mRNA
decay and translational repression had a weak contribution to
gene repression, but their combined effect led to a strong
impact on protein product (Fig. 4I). This proposition was sup-
ported by a negative shift of the cumulative distribution curves
of miRNA-mRNA and miRNA-ratio correlations for these
miRNA-target interactions as compared with the background
distributions (Figs. 4B and 4C, p � 1.0e-16, one sided KS-
test), indicating weak repression effect by miRNA through
both mRNA decay and translational repression.

There was no miRNA-target interaction belonging to the
category where significant inverse correlation was observed
for miRNA-mRNA and miRNA-ratio, but not miRNA-protein
because significant inverse miRNA-protein correlation should
be detected given significant inverse miRNA-mRNA and
miRNA-ratio correlations (Fig. 4A).

Although 248 out of the 580 interactions (43%) could be
identified based solely on transcriptomics data (RD, RD_o,
and B_s categories), 332 interactions (57%) benefited from
the integration of proteomics data (B_w, TR, and TR_o cate-
gories). Thus, the proteomics data were absolutely required
for a comprehensive assessment of miRNA mediated regula-
tion. Translational repression played a major role in 30% of
the interactions (176/580, TR and TR_o categories). Another
28% of the interactions (161/580, B_w and B_s categories)
involved concordant mRNA decay and translational repres-
sion (Fig. 4A). These results revealed that translational repres-
sion played an equally important role as mRNA decay in
miRNA-mediated regulation, which was in contrast to recent
large studies suggesting a dominant role of mRNA decay (2,
3, 8, 9). Because 7–8mer sites were found to favor mRNA
decay rather than translational repression, the relative contri-
bution of mRNA decay might be overestimated in recent
studies which reached the conclusion based primarily on the
response of genes with canonical 7–8 mer sites in 3�UTRs.

Furthermore, we found that translational repression was the
predominant contributor to miR-138 mediated regulation

(FDR�0.05, Fisher exact test). Among the 16 targets regu-
lated by miR-138, ten were mainly inhibited by translational
repression (TR or TR_o category) and the remaining six were
repressed by both weak mRNA decay and translational re-
pression (B_w category), whereas none of the targets were
mainly silenced by mRNA decay (RD or RD_o category), sug-
gesting a preference of miR-138 for triggering translational
repression (Fig. 5A and supplemental Table S1). Among the
nine cell lines, miR-138 was highly expressed in SW480, a
nonmetastatic cell line (Fig. 5B). We downloaded miRNA and
mRNA expression data for its genetically matched cell line,
SW620 from GEO (GSE10833 and GSE10843). SW480 and
SW620 were derived from primary tumors and distant metas-
tases from the same patient, respectively. An eightfold over-
expression of miR-138 was observed in SW480 compared
with SW620; however, none of the targets showed a greater
than 2-fold up-regulation in SW620 on mRNA expression
(Fig. 5C). In contrast, in a follow-up shotgun proteomics ex-
periment comparing SW480 and SW620 proteomes, all of the
targets showed higher protein abundance in SW620 except
for GLI3, which was not detected in SW620 by shotgun pro-
teomics. Nine out of the 15 targets (GTPBP1, WASF2,
ANKRD17, USO1, ANXA7, RELA, RAB3GAP1, MYO6, and
EXOC7) were up-regulated by more than twofold in SW620
and 6 targets (DNM2, ANKRD17, USO1, ANXA7, PCMT1, and
MYO6) showed statistically significant up-regulation (FDR �

0.05, Poisson regression model, Fig. 5C). These results fur-
ther demonstrated that translational repression was the pri-
mary determinant in miR-138 mediated regulation. Consistent
with this, a previous study found that the inhibitory effect of
miR-138 on APT1 expression is due mainly to impaired trans-
lation of APT1 mRNA (37).

In addition to revealing the important role of translational
repression at a global scale and in specific miRNA directed
gene inhibition, our integrative omics analysis also helped
identify biologically meaningful interactions and suggest po-
tential roles and downstream effectors of miRNAs in human
colon cancer. For example, among the 16 targets regulated by
miR-138, 14 are involved in cell migration or tumor metastasis
(Fig. 5A), suggesting a possible role of miR-138 in metastasis.
This was consistent with its significant differential expression
between the non-metastatic cell line SW480 and the metastatic
cell line SW620. In addition, previous knockdown experiments
in head and neck squamous cell carcinoma cell lines have
demonstrated its role in suppressing cell invasion (38, 39).

As another example, ten out of the 14 targets regulated by
miR-141 and 16 out of the 27 targets by miR-200c are in-
volved in cell adhesion, migration or epithelial-mesenchymal
transition (EMT) (Fig. 6A), which agrees with previously re-
ported roles for these two miRNA-200 family members (40–
43). Compared with other cell lines, these two miRNAs were
down-regulated in the RKO cell line (Fig. 6B), which has gained
a mesenchymal phenotype through EMT (44). Indeed, a strong
inverse correlation between miRNA-200 family and the EMT
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transcriptional program was recently reported in a study based
on a large human CRC cohort with 326 tumors (45).

DISCUSSION

We have performed a comprehensive investigation of
miRNA-mediated regulation through an integrative analysis of
the endogenous variation of miRNA, mRNA and protein expres-
sion in multiple cell lines. Translational repression was involved
in 58% (TR, TR_o, B_w, and B_s categories) and played a major
role in 30% (TR and TR_o categories) of all predicted miRNA-

target interactions. It is possible that translational repression
may rapidly lead to mRNA decay and result in nonobservable
effects on the protein-to-mRNA ratio. Therefore, we cannot rule
out a possible contribution of translational repression to inter-
actions in the RD and RD_o categories. Taken together, our
results provide a clearer understanding of the importance and
scope of translational repression in miRNA-mediated regulation
in colon cancer cell lines. It would be of high interest to inves-
tigate whether these observations could be extended outside of
cancer cell lines in future studies.

FIG. 5. miR-138 and its target genes. A, Interactions between miR-138 and its target genes. Edges and nodes are annotated in the boxes.
Edge color represents interaction category defined in this study; edge type represents level of supporting from sequence-based methods
including TargetScan, miRanda, and MirTarget2; node color represents functional annotation. B, Expression data of miR-138 in different cell
lines. Red and green represent relative high- and low-expression, respectively. C, Relative expression of miR-138 and its target genes in
SW620 versus SW480 as measured by log2 ratio (*FDR�0.05, Poisson regression model).
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A somewhat unexpected result is that sequence features
known to drive site efficacy in mRNA decay are generally not
applicable to translational repression. We found that 8mer site
type, site positioning within 3� UTR, high local AU-rich context
and good 3� pairing all helped increase site efficacy in mRNA
decay. This result echoes the finding by Grimson et al. (10), in
which changes in mRNA abundance after miRNA transfection
were used to evaluate site efficacy. To our knowledge, no
work has described sequence features affecting site efficacy
in translational repression. By dissecting the relative contri-

bution of mRNA decay and translational repression, we found
that among the above features, only high local AU-rich con-
text increased translational repression. High local AU-rich
context creates a more accessible UTR structure (35), which
may benefit both mRNA decay and translational repression
mechanisms. Although 8mer sites in 3�UTRs are most effec-
tive for promoting mRNA decay, they had little effect on
boosting translational repression. Our data also showed that
good 3� pairing boosted site efficacy in mRNA decay, but
reduced site efficiency in translational repression.

FIG. 6. miR-141, miR-200c and their target genes. A, Interactions between miR-141, miR-200c and their target genes. Edges and nodes
are annotated in the boxes. Edge color represents interaction category defined in this study; edge type represents level of supporting from
sequence-based methods including TargetScan, miRanda and MirTarget2; node color represents functional annotation. B, Expression data for
these two miRNAs in different cell lines. Red and green represent relative high- and low-expression, respectively.
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A key unanswered question regarding miRNAs is what de-
termines selectivity for mRNA decay versus translational re-
pression. Our data indicate that perfect matches to both the
seed and 3� portion of miRNA favor mRNA decay more than
translational repression, whereas structural subtleties of im-
perfect miRNA-mRNA duplexes may preferentially trigger
translational repression. In a small-scale study on small inter-
fering RNAs (siRNAs) using reporter constructs, Aleman et al.
found that a perfect match to positions 9–11 of the siRNA is
critical for siRNA-mediated cleavage of mRNAs, but is not
required for the repression of protein production (46). In a
recent large-scale study, Selbach et al. also found that mis-
matches in this region are deleterious to miRNA-mediated
mRNA decay, but they correlate with increased repression of
protein production by miRNAs (3). Our results also suggest
that, besides mRNA sequence, the preference for mRNA de-
cay or translational repression may be largely dictated by the
miRNA itself, as evidenced by strong translational repression
preference of miR-138. One explanation is that a specific
miRNA may preferentially assemble with a particular Argo-
naute protein (47), which may contribute to determine trigger-
ing a specific mechanism (48, 49).

The relative contribution of mRNA decay and translational
repression to miRNA-mediated regulation in mammalian cells
has been a topic of considerable debate. Early studies fa-
vored a translational repression-centric scenario (6, 7),
whereas some recent studies suggest an mRNA decay-cen-
tric scenario (2, 8). In a most recent study, Guo et al. (8) used
ribosome profiling to measure the overall effect of miRNAs on
protein production and compared that with simultaneously
measured effects on mRNA levels. They found that changes in
mRNA levels closely reflect the impact of miRNAs on protein
production and thus concluded that mRNA decay is the pre-
dominant driver of reduced protein output. It should be noted
that this conclusion was based on genes with at least one
canonical 7–8 mer site, for which intense regulation of mRNA
decay has been previously reported and was confirmed in our
study (Fig. 3A). In contrast, much weaker regulation of trans-
lational repression was observed for genes with either 8 mer
sites or 7 mer sites (Fig. 3A). One explanation is that 7–8mer
sites favor mRNA decay more than translational repression,
which leads to a predominant role of mRNA decay for genes
with at least one 7–8mer site. Consistently, we found that
miRNA-gene pairs detected by miRNA-mRNA correlation
were better supported by TargetScan than those detected by
miRNA-ratio correlation, possibly because TargetScan re-
quires an exact match to the seed sequence (29, 30). Previous
studies also found that many proteins with altered protein
expression after miRNA perturbation were not predicted as
targets by existing algorithms (3, 50). Thus, known sequence
features mainly mediate mRNA decay and our limited under-
standing of sequence features that mediate translational re-
pression might have led to an underestimation of the contri-
bution from translational repression. The miRNA-gene pairs

with significant inverse miRNA-ratio correlation detected in
our analysis provide good candidates for further computa-
tional analysis to identify translational repression-related se-
quence features. Moreover, miR-138 may serve as a good
experimental model for better understanding miRNA-medi-
ated translational repression, because of its strong preference
for this mechanism. Our correlation-based analysis provides
an intuitive, but powerful means that allows efficient data
integration for delineating systems-wide behavior and gener-
ating specific hypotheses that can be further confirmed by
more focused miRNA perturbation studies.

* This work was supported by the National Institutes of Health
grants U24CA126479 (to DCL) and R01GM088822 (to BZ). QL’s work
was partially supported by the National Natural Science Foundation of
China (31070746 to QL).

□S This article contains supplemental Figs. S1 to S7, Table S1, Text
S1, and Data Sets S1 to S4.

§§ To whom correspondence should be addressed: Vanderbilt Uni-
versity School of Medicine, Medical Research Building III, U1213, 465
21st Avenue South, Nashville, TN 37232. Tel: 615-322-3063; Fax:
615-936-1001; E-mail: daniel.liebler@vanderbilt.edu; Department of
Biomedical Informatics, Vanderbilt University School of Medicine,
2525 West End Ave Suite 800, Nashville, TN 37203. Tel.: 615–936-
0090; Fax: 615–936-1427; E-mail: bing.zhang@vanderbilt.edu.

¶¶ Authors contributed equally.

REFERENCES

1. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and
function. Cell 116, 281–297

2. Baek, D., Villén, J., Shin, C., Camargo, F. D., Gygi, S. P., and Bartel, D. P.
(2008) The impact of microRNAs on protein output. Nature 455, 64–71

3. Selbach, M., Schwanháusser, B., Thierfelder, N., Fang, Z., Khanin, R., and
Rajewsky, N. (2008) Widespread changes in protein synthesis induced
by microRNAs. Nature 455, 58–63

4. Farh, K. K., Grimson, A., Jan, C., Lewis, B. P., Johnston, W. K., Lim, L. P.,
Burge, C. B., and Bartel, D. P. (2005) The widespread impact of mam-
malian MicroRNAs on mRNA repression and evolution. Science 310,
1817–1821

5. Filipowicz, W., Bhattacharyya, S. N., and Sonenberg, N. (2008) Mecha-
nisms of post-transcriptional regulation by microRNAs: are the answers
in sight? Nat. Rev. Genet. 9, 102–114

6. Olsen, P. H., and Ambros, V. (1999) The lin-4 regulatory RNA controls
developmental timing in Caenorhabditis elegans by blocking LIN-14
protein synthesis after the initiation of translation. Dev. Biol. 216,
671–680

7. Zeng, Y., Wagner, E. J., and Cullen, B. R. (2002) Both natural and designed
micro RNAs can inhibit the expression of cognate mRNAs when ex-
pressed in human cells. Mol. Cell 9, 1327–1333

8. Guo, H., Ingolia, N. T., Weissman, J. S., and Bartel, D. P. (2010) Mammalian
microRNAs predominantly act to decrease target mRNA levels. Nature
466, 835–840

9. Hendrickson, D. G., Hogan, D. J., McCullough, H. L., Myers, J. W., Her-
schlag, D., Ferrell, J. E., and Brown, P. O. (2009) Concordant regulation
of translation and mRNA abundance for hundreds of targets of a human
microRNA. PLoS Biol 7, e1000238

10. Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P., and
Bartel, D. P. (2007) MicroRNA targeting specificity in mammals: deter-
minants beyond seed pairing. Mol. Cell 27, 91–105

11. Nielsen, C. B., Shomron, N., Sandberg, R., Hornstein, E., Kitzman, J., and
Burge, C. B. (2007) Determinants of targeting by endogenous and exog-
enous microRNAs and siRNAs. RNA 13, 1894–1910

12. Huang, G. T., Athanassiou, C., and Benos, P. V. (2011) mirConnX: condi-
tion-specific mRNA-microRNA network integrator. Nucleic Acids Res.
39, W416–423

13. Huang, J. C., Babak, T., Corson, T. W., Chua, G., Khan, S., Gallie, B. L.,

Importance and Scope of Translational Repression in microRNA-mediated Regulation

1910 Molecular & Cellular Proteomics 12.7

http://www.mcponline.org/cgi/content/full/M112.025783/DC1
http://www.mcponline.org/cgi/content/full/M112.025783/DC1


Hughes, T. R., Blencowe, B. J., Frey, B. J., and Morris, Q. D. (2007) Using
expression profiling data to identify human microRNA targets. Nat. Meth-
ods 4, 1045–1049

14. Jayaswal, V., Lutherborrow, M., Ma, D. D., and Hwa Yang, Y. (2009)
Identification of microRNAs with regulatory potential using a matched
microRNA-mRNA time-course data. Nucleic Acids Res. 37, e60

15. Volinia, S., Visone, R., Galasso, M., Rossi, E., and Croce, C. M. (2010)
Identification of microRNA activity by Targets’ Reverse EXpression.
Bioinformatics 26, 91–97

16. Wang, Y. P., and Li, K. B. (2009) Correlation of expression profiles between
microRNAs and mRNA targets using NCI-60 data. BMC Genomics 10,
218

17. Sprung, R. W., Jr., Brock, J. W., Tanksley, J. P., Li, M., Washington, M. K.,
Slebos, R. J., and Liebler, D. C. (2009) Equivalence of protein inventories
obtained from formalin-fixed paraffin-embedded and frozen tissue in
multidimensional liquid chromatography-tandem mass spectrometry
shotgun proteomic analysis. Mol. Cell. Proteomics 8, 1988–1998

18. Tabb, D. L., Fernando, C. G., and Chambers, M. C. (2007) MyriMatch:
highly accurate tandem mass spectral peptide identification by multivar-
iate hypergeometric analysis. J. Proteome Res. 6, 654–661

19. Zhang, B., Chambers, M. C., and Tabb, D. L. (2007) Proteomic parsimony
through bipartite graph analysis improves accuracy and transparency. J.
Proteome Res. 6, 3549–3557

20. Ma, Z. Q., Dasari, S., Chambers, M. C., Litton, M. D., Sobecki, S. M.,
Zimmerman, L. J., Halvey, P. J., Schilling, B., Drake, P. M., Gibson,
B. W., and Tabb, D. L. (2009) IDPicker 2.0: Improved protein assembly
with high discrimination peptide identification filtering. J. Proteome Res.
8, 3872–3881

21. Elias, J. E., Haas, W., Faherty, B. K., and Gygi, S. P. (2005) Comparative
evaluation of mass spectrometry platforms used in large-scale proteom-
ics investigations. Nat. Methods 2, 667–675

22. Halvey, P. J., Zhang, B., Coffey, R., Liebler, D. C., and Slebos, R. J. (2011)
Proteomic Consequences of a Single Gene Mutation in a Colorectal
Cancer Model. J. Proteome Res. 11, 1184–1195

23. Kislinger, T., Cox, B., Kannan, A., Chung, C., Hu, P., Ignatchenko, A., Scott,
M. S., Gramolini, A. O., Morris, Q., Hallett, M. T., Rossant, J., Hughes,
T. R., Frey, B., and Emili, A. (2006) Global survey of organ and organelle
protein expression in mouse: combined proteomic and transcriptomic
profiling. Cell 125, 173–186

24. Zhang, B., VerBerkmoes, N. C., Langston, M. A., Uberbacher, E., Hettich,
R. L., and Samatova, N. F. (2006) Detecting differential and correlated
protein expression in label-free shotgun proteomics. J. Proteome Res. 5,
2909–2918

25. Li, M., Gray, W., Zhang, H., Chung, C. H., Billheimer, D., Yarbrough, W. G.,
Liebler, D. C., Shyr, Y., and Slebos, R. J. (2010) Comparative shotgun
proteomics using spectral count data and quasi-likelihood modeling. J.
Proteome Res. 9, 4295–4305

26. Ning, K., Fermin, D., and Nesvizhskii, A. I. (2012) Comparative analysis of
different label-free mass spectrometry based protein abundance esti-
mates and their correlation with RNA-Seq gene expression data. J.
Proteome Res. 11, 2261–2271

27. Vogel, C., Abreu Rde, S., Ko, D., Le, S. Y., Shapiro, B. A., Burns, S. C.,
Sandhu, D., Boutz, D. R., Marcotte, E. M., and Penalva, L. O. (2010)
Sequence signatures and mRNA concentration can explain two-thirds of
protein abundance variation in a human cell line. Mol. Syst. Biol. 6, 400

28. de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M., and Vogel, C. (2009)
Global signatures of protein and mRNA expression levels. Mol. Biosyst.
5, 1512–1526

29. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing,
often flanked by adenosines, indicates that thousands of human genes
are microRNA targets. Cell 120, 15–20

30. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., and Burge,
C. B. (2003) Prediction of mammalian microRNA targets. Cell 115,
787–798

31. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S.
(2004) Human MicroRNA targets. PLoS Biol. 2, e363

32. Wang, X., and El Naqa, I. M. (2008) Prediction of both conserved and
nonconserved microRNA targets in animals. Bioinformatics 24, 325–332

33. Durinck, S., Spellman, P. T., Birney, E., and Huber, W. (2009) Mapping
identifiers for the integration of genomic datasets with the R/Bioconduc-
tor package biomaRt. Nat. Protoc. 4, 1184–1191

34. Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A.,
and Huber, W. (2005) BioMart and Bioconductor: a powerful link be-
tween biological databases and microarray data analysis. Bioinformatics
21, 3439–3440

35. Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions.
Cell 136, 215–233

36. Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M.,
Castle, J., Bartel, D. P., Linsley, P. S., and Johnson, J. M. (2005) Mi-
croarray analysis shows that some microRNAs downregulate large num-
bers of target mRNAs. Nature 433, 769–773

37. Siegel, G., Obernosterer, G., Fiore, R., Oehmen, M., Bicker, S., Christensen,
M., Khudayberdiev, S., Leuschner, P. F., Busch, C. J., Kane, C., Hübel, K.,
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