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Highly-Sensitive Refractive 
Index Sensing by Near-infrared 
Metatronic Nanocircuits
A. R. Rashed1,2, B. Gudulluoglu3,2, H. W. Yun4, M. Habib  2, I. H. Boyaci5, S. H. Hong4, 
E. Ozbay2 & H. Caglayan  1

In this work, we present a highly-sensitive refractive index sensor based on metatronic nanocircuits 
operating at near-infrared spectral range. The structure is designed based on simple nanorod 
geometry and fabricated by nanopatterning of transparent conducting oxides. The functionality of 
these polarization dependent metatronic nanocircuits is enhanced by applying tunable response. 
This feature is investigated by depositing NH2 (Amine) groups via plasma polymerization technique 
on top of indium-tin-oxide nanorods. The dielectric constant of Amine groups is a function of their 
thickness, which can be controlled by the RF power and the time duration of the applied plasma 
polymerization process. The resonance wavelengths of nanocircuits shift to higher wavelength, as the 
dielectric constant of the deposited material increases. An excellent agreement between the design 
and experimental results are obtained. Our metatronic based nanosensor offers a high-sensitive 
performance of 1587 nm/RIU with a satisfactory figure of merit for this class of sensors.

One of the promising photonic applications, by material design and geometrical engineering, is plasmonic 
based index sensing1–4. Due to the underlying quantum mechanical limitations, the transmittance resonance of 
near-infrared (NIR) range structures, usually are much broader and weaker than that of resonators operating in 
the visible range. For this reason, realizing high performance sensors in NIR range is much challenging. Even if 
plasmonic based sensors with high sensitivity and high figure-of-merit (FOM) are achievable in visible regime, 
still they suffer from their lossy performance, because of the high intrinsic optical absorption of the materials in 
this spectral range. On the other hand, not only attaining sharp and strong resonances in NIR range is difficult, 
but also, moderating the optical losses of those sensor devices remains as a significant challenge5–8.

Some efforts to design refractive index sensing devices based on plasmonic nanostructures could provide high 
values of sensitivity and FOM, but still these works are dealing with complicated fabrication processes and loss 
problem. For instance, Shih et al.9 has reported an index sensing device in NIR wavelength range based on nan-
oporous gold disks with acceptable sensitivity of 525.7 nm per refractive index unit (RIU). However, the quality 
factor parameter could be compromising, due to the wide resonance of their design. Recently, gold nanodisks 
with perfect absorption properties have been reported as plasmonic sensor in NIR range10. This sensor presents 
a high FOM of 87, but the reported sensitivity is around 400 nm/RIU. In another work, a plasmonic nanostruc-
ture named as gold mushroom arrays is fabricated by using interference lithography with a good sensitivity of 
1015 nm/RIU and high FOM of 10811. However, the applied fabrication method is quite complicated, and not 
suitable for designing large-area sensing devices. In addition, the structure performance can be limited because 
of high absorption of the plasmonic materials in NIR range.

In order to investigate the refractive index correlated properties of a designed sensor, finding an effective 
method to tune the refractive index of the target material could be important. In one work, the refractive index 
of different polymers in visible wavelengths is tuned versus to the concentration of multiple developed nanosize 
organic dopants12. Tao et al. have investigated the preparation of polymeric nanocomposites with high refractive 
index by grafting a polymer chains onto the surfaces of TiO2 nanoparticles. They have shown that by increasing 
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the volume fraction of the coupled polymer chains to the surface of TiO2, the refractive index dispersion of 
polymer-grafted TiO2 composites modifies13. The other technique is to utilize plasma copolymerization process to 
create modification of the refractive index. This technique has been exploited to fabricate thin films of two (or 
more) monomers. By modifying the ratio of the fed monomers, the chemical composition can be controlled to 
manipulate the optical properties of the deposited films14. In the other study, Zhang and coworkers have shown 
that how the thickness modification of the polymeric films changes their refractive indices. Such thickness modi-
fication was achieved by irradiating those polymeric films to UV light at different exposure times15.

Another recent focus of photonics is overcoming fabrication obstacles of sub-wavelength nanoscaled circuits. 
Applying materials with appropriate dispersion and absorption properties in the structure of nanocircuits pro-
vide the possibility to translate fundamental lumped circuit elements to optical frequencies16,17. Such tremendous 
achievement opens up a new avenue for functional applications of optical electronics18–20. Transparent conductive 
oxides as plasmonic materials with low-loss properties in the NIR regime21–23 are promising candidates to realize 
metamaterial-inspired nanocircuits (metatronics) and to integrate them with silicon-based photonic applications.

In this work, we apply optical nanocircuits made of rectangular shape nanorods (NRs) separated by the air 
gaps for high sensitive refractive index sensing applications in NIR spectral range. An optimized design of such 
NRs (scheme in Fig. 1(a)) are fabricated by applying nanoimprint lithography and inductively coupled plasma 
(ICP) etching processes on the indium-tin-oxide (ITO) thin films. Such arrangements of plasmonic (with neg-
ative real part of permittivity) and dielectric (with positive real part of permittivity) materials lead to band-pass 
and band-stop filters in optical frequencies24,25. The polarization dependent response of nanocircuits can be 
exploited to enhance their performance for sensing applications. The realized nanocapacitors in the structure 
can be changed due to the applied surface modification, which results in resonance shift. Utilizing ITO as a 
plasmonic material26–28 to fabricate the building blocks of the designed device provides a low-loss sensor in NIR 
regime, which makes our design distinguishable in comparison to other designs. Moreover, the applied fabrica-
tion method of nanoimprint lithography is the key point to produce low-cost sensor devices with large-areas. 
Furthermore, we present a simple method to produce a tunable high refractive index material based on plasma 
polymerization (PlsP) process. We show that by controlling the polymerization process parameters such as the 
exposure time and the radio frequency (RF) power we can achieve refractive index modification of deposited 
Amine groups as their thicknesses change. Quantitatively and qualitatively, an excellent agreement between the 
obtained numerical simulations and the experimental results are observed. We do believe that our realized meta-
tronic based nanosensor device is a promising candidate for developing low-cost bulk refractive index sensors in 
NIR range with high sensitivity on a large scale.

Figure 1. Design and characterization of the fabricated nanocircuits. (a) Schematic view (b) SEM image (c) 3D 
view generated by AFM measurement of the fabricated ITO metatronic nanocircuits. (d) Transmission spectra 
of patterned NRs in both parallel and perpendicular regimes of the incident E-field wave vector.
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Results
Structural and optical characteristics of nanocircuits. The low-loss plasmonic properties of ITO in 
NIR range makes it a promising candidate to fabricate the designed refractive index sensor. The ellipsometry 
characterization results on 145 nm of ITO deposited on glass substrate show the plasmonic behavior beyond its 
epsilon-near-zero (ENZ) wavelength (see Fig. S1). Figure 1(b) and (c) show the scaning electron microscopy 
(SEM) image and generated 3D view by atomic force microscopy (AFM) image of the fabricated ITO NRs array, 
respectively. The optical response of ITO NRs can be tailored by varying width (w) and height (h) of ITO rods, air 
gaps width (g) and the polarization state of the incident light. The applied master template with a period (w + g) 
of 600 nm results in NRs array with geometries of w = 240 nm, g = 360 nm and h = 145 nm, confirmed by AFM 
results. As it is presented in Fig. 1(d), the optical responses of these NRs are dependent on the polarization of the 
E-field of the incident plane wave, resulted from their metatronic properties29. Each component of plasmonic ITO 
NR functions as a nanoinductor parallel with a nanoresistor, while the dielectric air gap region acts as a lossless 
nanocapacitor. The perpendicular polarization of the E-field vector with respect to the rods orientation results in 
functionality of NRs arrays as band-stop filters, while in parallel polarization regime the arrays act as band-pass 
filters (Fig. 1(d))24.

In perpendicular polarization of the incident wave, one can tune the spectral position of band-stop region by 
varying NR geometries. Caglayan et al. showed that lower possible values of w/g accompanied with deeper air 
gaps of patterned ITO shift transmittance resonances of the structure towards ENZ wavelength of the applied 
ITO24. Take it into account that the lower positive values of the imaginary part of the dielectric constant for ITO 
close to ENZ wavelength guaranties the higher quality factor of the transmission resonances30. This is a necessary 
condition to realize a highly-sensitive plasmonic sensor with a satisfactory high FOM, since this parameter has a 
direct relation with the quality factor of the resonator31. Details of the optimization process of the designed tem-
plate to pattern ITO films are discussed in section II of the Supplementary Information (Fig. S2).

Modification of nanocircuits surface properties by PlsP process. We used the PlsP technique to 
modify the optical properties of the ITO NRs by depositing Amine groups on their surfaces. By adjusting the RF 
power and the time duration of the applied PlsP process, one can control the thickness of deposited material. The 
increase of the RF power results in the enhancement of ionized gas amount and plasma density. Therefore, the 
efficiency of polymerization process enhances. While by increasing the exposure time, the interaction between the 
sample surface and produced plasma enhances. Consider that after a particular condition, increasing these two 
PlsP process parameters will not result anymore in growing the thickness of deposited monomers with a linear 
rate32,33. The AFM images presented in Fig. S3 show that how the surface of a bare glass alters after growing Amine 
groups on it. Our investigations show that by the physical deposition of the Amine groups on top of ITO or glass 
substrates, there is no chemical or optical interaction between NH2 molecules and these substrates. Furthermore, 
the constant absorption trend of Amine groups in the resonating range of ITO NRs approves this fact that their 
introduced weak absorption does not play any role in reshaping or tuning of the ITO NRs resonances.

For investigating the physical and optical properties of the Amine groups, we prepared ten control samples 
by depositing them on bare glass substrates. In parallel to that, we prepared ten ITO NRs coated with Amine 
monomers as main samples. We used the ellipsometry technique to acquire the thicknesses and the correspond-
ing refractive index of grown Amine groups on the surface of control samples (see Table 1). Figure 2(a) clearly 
shows the association of the refractive index to the thickness of deposited Amine groups. These results prove that 
by growing Amine groups on a particular surface the refractive index parameter is enhanced. We acquired the 
cross-sectional view of some control samples by focused ion beam (FIB) method to justify the correctness of the 
acquired thicknesses (Fig. 2(b)).

Moreover, the performed AFM analyses on most of the control samples confirm the correctness of the thick-
ness results extracted by ellipsometry method. The acquired results based on both methods are relatively in a 
good agreement with an average deviation error of 5%. Accordingly, this technique can be used to modify surface 
properties of nanocircuits in order to investigate their potential application as an index sensing device.

Fourier transform infrared (FTIR) spectroscopy performed on different Amine coated samples reveals that the 
plasma reactions induced the formation of various components, such as aromatic and aliphatic N-H, carbonitride 

Sample 
Label

Applied Plasma 
Conditions

Refractive Indices of Amine 
Groups in NIR Range

Amine Groups Thicknesses 
(nm) (Ellipsometry Data)

S1 05 Watt - 05 min 1.4931 6.2

S2 10 Watt - 05 min 1.5034 12.7

S3 15 Watt - 05 min 1.5118 18.5

S4 15 Watt - 10 min 1.5175 61

S5 15 Watt - 15 min 1.5199 86.2

S6 45 Watt - 15 min 1.5276 104.2

S7 75 Watt - 15 min 1.5339 127.6

S8 100 Watt - 15 min 1.5378 131.4

S9 100 Watt – 30 min 1.5582 161.7

S10 100 Watt - 45 min 1.5631 224.5

Table 1. The extracted refractive indices in NIR spectral range and thicknesses of control samples prepared at 
ten different conditions of the plasma polymerization process based on ellipsometry method.
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and hydrocarbon components (See Supplementary Information section IV). These components experience 
apparent modifications during the PlsP process as the exposure time or the RF power alters. Such modification 
in chemical components of the deposited Amine could be the reason for the modification of the refractive index 
versus their thickness change14,34–36.

Refractive index sensing features of nanocircuits. The applied treatments on the surface of ITO NRs 
by PlsP technique allow us to realize the tunable feature of the designed structures. Figure 3 presents the AFM 
results of two identical ITO NRs coated with Amine monomers under 45 watt and 100 watt of the input RF power, 
while for both samples the exposure time to glow discharge is considered as 15 minutes. The surface modification 
is evident as compared to the image of bare NR presented in Fig. 1(c). The provided 3D views of these samples are 
a good proof for the growth of Amine monomers on top of the nanostructures, in which higher applied power 
value resulted in more filling of the air gaps and higher roughness of the sample surface.

Figures 4 and 5 present the resonance wavelength modification of ITO NRs due to applied surface treat-
ments by depositing Amine groups in the air gaps and top sides of the nanocircuits. In Fig. 4, the transmittance 
of three ITO NRs coated with Amine monomers in three different PlsP process conditions are compared to 
their resonance bands before deposition process. During the polymerization processes of these samples the RF 
power is adjusted as 5, 10 and 15 watt, respectively, while the exposure time is kept constant as 5 minutes. The 
tuning of the resonance wavelength is evident for all three samples, in which for higher input power values of 
the applied PlsP process, further red-shifts of transmission resonances is observed. The acquired shift values for 
these three samples increases linearly as a function of refractive indices of deposited Amines. This occurs since 
for the applied PlsP conditions, the achieved refractive index of deposited Amines increases almost linearly, while 
the thickness parameter does not alter so much. As a support for the presented experimental results, Fig. 4(d) 
shows the simulated resonance wavelength shifts corresponding for the observed red-shift for each one of the 
samples. Figure S5 presents the experimental and simulation results for the other group of samples in which 
their surfaces are exposed to glow discharge for 15 minutes, while the input power parameter is applied as 15, 45 
and 75 watt. According to higher achieved refractive indices for thicker deposited layers of Amine monomers, 
further red-shift of resonance wavelengths are obtained with respect to that of the samples presented in Fig. 4. 
The rate of the red-shift for the samples presented in Fig. S5 does not change drastically with respect to that of 
the samples presented in Fig. 4. This occurs even if the thicknesses of Amine groups grows much faster for S5 to 
S7 than S1 to S3 samples, while their refractive index increases with the same rate of those samples (see Table 1). 
One can conclude that at higher thickness values of deposited Amine groups, the observed resonance shift values 
influenced by the refractive index change, rather than the Amine thickness change.

The red-shift of the resonance band related to three similar ITO NRs after coating with different thicknesses of 
Amine monomers is presented in Fig. 5(a–c). The exposure time of samples is adjusted as 15, 30 and 45 minutes, 
while the same RF power of 100 watt is applied. Increasing the time duration of the plasma process results in 
further red-shift of the nanocircuits resonance wavelengths. In Fig. 5(d), the simulation results associated to the 
observed red-shifts of nanocircuits resonances are shown. Figure S6 presents the experimental and simulation 
results for the other group of samples in which the RF power parameter is kept constant (15 watt) for all samples, 
while the time duration of the polymerization process is considered as 5, 10 and 15 minutes. A similar trend for 

Figure 2. Refractive index modification of Amine groups versus their thicknesses. (a) The measured refractive 
indices of deposited Amine monomers on glass substrates by ellipsometry method. These results show that we 
can tune the refractive indices of polymerized Amine monomers by controlling parameters of the PlsP process. 
(b) Cross-section views of S6 and S8 reference samples acquired by FIB method to measure the thicknesses of 
deposited Amine groups. These samples were coated with 100 nm and 50 nm of gold, respectively, to prevent 
charging effect on the surface of the samples. These check measurements are done to approve the correctness of 
the extracted results by ellipsometry method. The achieved results based on both methods are relatively in good 
agreement.
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the modification of the resonance is observed for these samples. However, since the time and power parameters 
are considered in lower values with respect to the applied PlsP conditions for samples presented in Fig. 5, the less 
amount of red-shift is expected.

Overall, the presented red-shifts in the resonance wavelengths of the nanocircuits is correlated to both refrac-
tive index and thickness parameters of the deposited material. Finite difference time domain (FDTD) simulation 
results in Fig. 6(a) show that for a constant thickness value of the deposited material on the surface of NRs, the 
increase of the refractive index shifts the structure resonance to higher wavelengths. This occurs because of the 
dielectric constant alteration and consequently the capacitance modification in the air gaps24. Moreover, the pres-
ence of the material on top sides of NRs creates an additional capacitance in series with RL circuit standing for 
ITO rods, resulting in further red-shift of the transmittance resonance band37.

By increasing the thickness of the deposited material on top of nanocircuits, while the refractive index 
parameter is kept constant, the transmission resonance shifts slightly to higher wavelengths (Fig. 6(b)). This 
occurs by modifying the effective dielectric constants of the capacitances, appeared in the air gaps and on top 
of ITO regions. However, above specific thicknesses of the deposited material (such as 50 nm) the broadening 
and reshaping of the resonance occurs rather than the red-shift effect. The broadening effect is apparent in both 
experimental and simulation results presented in Figs 5 and S6 at higher thicknesses of deposited material. Note 
that in Fig. 6(a) the broadening effect is not pronounced as much as red-shift effect. Thus, as it is aforementioned, 
the observed red-shift of the NRs resonances originate mostly from the refractive index modification rather than 
thickness modification of deposited material. All these effects can be investigated more in details by modeling the 
nanocircuits based on circuit theory as a future study.

The experimental and simulation red-shift values of the nanocircuits resonances resulted from different 
refractive indices of deposited material are summarized in Fig. 7. In addition, the primary calculated index sens-
ing results based on circuit theory is presented in section VI of Supplementary Information (Fig. S7(a)). It is evi-
dent that for all samples increasing the input power and the time duration of the polymerization process tunes the 
resonance to longer wavelengths. Interestingly, both experimental and simulation results are following the same 
trend which is the proof of functionally good agreement between these results.

The achieved good red-shift values corresponded to the refractive index changes of the material positioned 
on the surface of ITO NRs allows us to exploit these structures for the sensing applications. We can eliminate the 
effect of material thickness on the performance of the designed refractive index sensor by keeping it equal for the 
studied materials. A standard sensor evaluation method is used for calibration and to determine the detection 
limit of the sensor device. Corresponding refractive index change is recorded as a shift in the transmission spec-
trum. A red-shift in resonance wavelength occurred when the refractive index of deposited material on top of 
the structure is changed. The quality factor of the resonance band slightly drops after positioning the target mate-
rial on top of the device. However, the broadening effect can be neglected at lower thicknesses of the deposited 

Figure 3. Surface modifications of ITO NRs. AFM images related to the surface of two identical ITO NRs after 
plasma polymerization process by Amine groups in two different conditions of (a) 45 watt-15 min (b) 100 watt-
15 min. The modification of samples surfaces is obvious in 3D views of both samples versus to the bare sample 
surface presented in Fig. 1(c).
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material. By considering that the effect of deposited Amine thickness on the red-shift of NRs resonances is neg-
ligible after 50 nm thickness value, we calculated the sensitivity for the last six samples. By taking the average, we 
report the sensitivity of our device as ~1587 nm per RIU.

Figure of Merit (FOM) is another key parameter to evaluate the performance of a sensor device. This param-
eter is defined as (Δλ/Δn)(1/Δω) where Δλ is the wavelength shift, Δn is the refractive index modification and 
Δω is the full-width of the resonant dip at half-maximum31. The FOM determines the sensitivity of the sensor 
to measure very small wavelength changes of the resonance wavelength38. The average value for Δω of designed 
sensor device while it is deposited with Amine groups under PlsP condition is about 260 nm which results the 
FOM factor of 6.1.

Figure 4. Evaluating sensing performance of Amine coated nanocircuits with respect to their corresponding 
bare structures. The exposure time to glow discharge is kept constant as 5 minutes, while the input power is 
changed as (a) 5 watt, (b) 10 watt and (c) 15 watt. The amount of the resonance wavelength shifts of coated NRs 
with respect to that of bare NRs are presented on each figure. (d) Simulation results for the observed red-shift of 
the resonance band for three presented cases in parts (a) to (c). The inset shows a closer view of the resonance 
shifts.

Figure 5. Evaluating sensing performance of Amine coated nanocircuits with respect to their corresponding 
bare structures. The input power is kept constant as 100 watt, while the exposure time to PlsP process is 
modified as (a) 15 minutes, (b) 30 minutes and (c) 45 minutes. The amount of the resonance wavelength shifts of 
coated NRs with respect to that of bare NRs are presented on each figure. (d) Simulation results for the observed 
red-shift of the resonance band for three presented cases in parts (a) to (c). The inset shows a closer view of the 
resonance shifts.

Figure 6. ITO NRs resonance modification versus thickness and refractive index of the target material. The 
modification of the ITO NRs resonance spectrum versus (a) the refractive index change of the deposited 
material on top of the nanocircuit from 1 to 1.7, while the thickness parameter is kept constant as 50 nm. (b) 
the thickness change of the deposited material on top of the nanocircuit from 0 to 200 nm, while the refractive 
index parameter is kept constant as 1.5.
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Discussion
In summary, we have designed and fabricated metatronic nanocircuits for refractive index sensing in NIR range. 
The applied nanoimprint lithography provides us the possibility to produce sample devices with large area. By 
utilizing ITO as the main material of our design we could achieve a low-loss, highly sensitive sensor devices, 
operating in NIR spectral range.

A high sensitivity of 1587 nm/RIU is achieved with our sensor device which is higher than most of the 
designed sensors operating in visible and NIR spectral ranges. Our design has an acceptable figure of merit 
(FOM) of 6.1 for this class of samples. The nanocapacitor values and correspondingly, the resonance wavelength 
of the sensor device change, as the dielectric constant of the nanoscale gap regions and ITO surface change. This 
can be achieved by modifying the surface of nanocircuits via depositing Amine groups on top of the device via 
PlsP technique. The dielectric constant of Amine groups is tuned a function of their thickness which is controlled 
by the RF power and the exposure time of the applied PlsP process. We show that this technique can be applied 
as a promising method to produce high refractive index material. This novel approach of realizing low-loss index 
sensing will open up new avenues for future research and practical applications. Our low-expense device is a 
promising method to realize ultra-high resolution biosensors, for detecting targets such as proteins, viruses and/
or bacteria.

Methods
Nanofabrication processes of samples. ITO NR arrays were fabricated by applying nanoimprint lithog-
raphy and inductively coupled plasma (ICP) etching processes. Commercial 150 nm thick ITO coated glass was 
purchased, and cleaned with IPA solution for 10 min. Then, thermal imprint resist (PBMA 7 wt% in chloroben-
zene solution) was spin-coated at 3000 rpm for 1 minute on the ITO coated glass. It was covered by a master 
template which was structured to imprint the NR array. The used template to fabricate the samples has a period 
(w + g) of 600 nm. A nanoimprint tool was used to heat the stack of master template and substrate to a tempera-
ture of 140 °C and subsequently press it into the substrate at 20 bar for 20 minutes. The stack was cooled to room 
temperature and de-molded. An oxygen descum process was employed by RIE (reactive ion etching) equipment 
with 150 watt power and 40 mTorr pressure to remove any residual resist layer and control the ITO NR width. 
Then 30 nm Cr layer was deposited at 0.5 Å/s on the sample by e-beam evaporation. The resist was removed by 
lift-off in acetone sonication for 10 minutes leaving nanopatterned Cr on the ITO substrate. The ITO layer was 
patterned using an inductively coupled plasma reactive ion etch tool with a BCl3/Ar chemistry and 100 watt of RF 
power and 500 watt of ICP power employing the Cr layer as a hard mask. After etching process, the Cr layer was 
removed by dipping in commercial Cr etchant leaving the ITO NRs fabricated over large area (30 mm × 30 mm).

Optical and structural characterization. Normalized transmission spectra were obtained in the spectral 
range of 1 µm to 3 µm using Vertex 70 series FTIR spectrometer (provided by Bruker) integrated with Hyperion 
IR microscope system. Using the microscope incoming light is focused on the patterned structures and ITO 
etched glass substrate which is used as the reference sample to acquire the background signal. The polariza-
tion state of the impinging light to samples is controlled by applying NIR-MIR polarizer in transmitted beam 
path. SEM images were obtained using a Raith E-Line SEM operating at 10 kV. AFM images of Bare and Amine 
coated ITO NRs are acquired by using a commercial atomic force microscopy (MFP-30, Asylum Research) setup. 
Variable-angle high-resolution spectroscopic ellipsometry (J. A. Woollam, V-VASE) was used to determine the 
thicknesses and optical constants of the Amine coated thin films. The cross-section views of Amine coated ref-
erence samples are acquired by Nova 600 NanoLab Dual Beam SEM/FIB instrument provided by FEI company.

Plasma polymerization technique. Glow discharge plasma polymerization technique is used for the 
surface modification of the ITO NRs to create Amine groups. For this purpose, Allylamine (AA) was used as 

Figure 7. Simulating sensing results by FDTD method. (a) Experimentally measured and (b) Simulated red-
shift values of the designed sensor transmittance band for different values of the target material refractive index. 
There is a good agreement between the experimental and simulation results.
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a precursor. The glow discharge treatments were carried out in RF (13.56 MHz) Plasma Polymerization System 
(Diener electronic GmbH + Co. KG, Germany). The plasma system consisted of a vacuum chamber with two 
inlets having pressure gauges and frequency power components with the RF and electrodes wrapped around 
the vacuum chamber. The monomer tank is connected to the reactor through a flowmeter and a needle valve. 
The samples were placed on to the ground electrode in the middle of the reactor and the reactor was evacuated 
to 10−1 mbar pressure. In order to prevent impurities, the monomer tank was chilled with liquid nitrogen and 
the degassing was performed until the reactor inner pressure reached to 10−1 mbar. After 10 minutes continued 
vacuum procedure, monomer valve was opened; defrosted amine monomer vapor is allowed to flow though the 
reactor at a flow rate of 35 ml/min to remove the remaining air in the chamber. Then, RF power was adjusted in 
different values between 5 to 100 watt and the ITO NRs surfaces were exposed to glow discharge for different time 
values between 5 to 45 minutes. Power losses were minimized by means of a matching network. At the end of the 
process, the RF generator was turned off and the system was fed with argon gas for 10-15 minutes to deactivate 
free radicals.

Simulations. The optical properties of the sensor device have been simulated by means of a FDTD method, 
implemented with the aid of a commercial software package (Lumerical FDTD Solutions). For the calculation 
of normalized transmittance of Bare ITO NRs, the extracted dimensions by AFM method have been used in the 
software. The optical constants of ITO and Amine groups have been considered based on the extracted results 
by ellipsometry method. Unit cell of the design have periodic boundaries along x and y-axes, while the perfectly 
matched layer (PML) in the z-axis. The injection of the source is performed in the z (propagation) direction with 
a normal incident and transmitted signal collected in other side of the structure.
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