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Abstract

Bacterial restriction-modification (RM) systems are comprised of two complementary enzymatic activities that prevent the
establishment of foreign DNA in a bacterial cell: DNA methylation and DNA restriction. These two activities are tightly
regulated to prevent over-methylation or auto-restriction. Many Type II RM systems employ a controller (C) protein as a
transcriptional regulator for the endonuclease gene (and in some cases, the methyltransferase gene also). All high-
resolution structures of C-protein/DNA-protein complexes solved to date relate to C.Esp1396I, from which the interactions
of specific amino acid residues with DNA bases and/or the phosphate backbone could be observed. Here we present both
structural and DNA binding data for a series of mutations to the key DNA binding residues of C.Esp1396I. Our results
indicate that mutations to the backbone binding residues (Y37, S52) had a lesser affect on DNA binding affinity than
mutations to those residues that bind directly to the bases (T36, R46), and the contributions of each side chain to the
binding energies are compared. High-resolution X-ray crystal structures of the mutant and native proteins showed that the
fold of the proteins was unaffected by the mutations, but also revealed variation in the flexible loop conformations
associated with DNA sequence recognition. Since the tyrosine residue Y37 contributes to DNA bending in the native
complex, we have solved the structure of the Y37F mutant protein/DNA complex by X-ray crystallography to allow us to
directly compare the structure of the DNA in the mutant and native complexes.
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Introduction

Restriction-modification (RM) systems encode a restriction

endonuclease (ENase) and a DNA methyltransferase (MTase).

The DNA MTase protects the host DNA from cleavage by the

associated restriction enzyme, whilst the ENase cleaves foreign

DNA that attempts to enter the bacterial cell, before it has time to

be protected by methylation [1,2]. Control mechanisms exist to

ensure the correct temporal expression of RM genes, so that all

recognition sites on the host DNA are methylated prior to

exposure to the ENase.

The most widespread of these mechanisms employs a ‘‘control-

ler’’ (C) protein encoded by a gene downstream of its own

promoter, and usually co-transcribed with the endonuclease (R)

gene as a single transcriptional unit [3–7]. The C-protein binds at

various sites within the C/R promoter to regulate transcription of

its own gene and the associated endonuclease gene [8]. ENase

expression has been shown to be delayed with respect to the

MTase when the C-protein is expressed in a new host in vivo [9].

Transcription of the C-gene is itself dependent on the concentra-

tion of the protein it encodes, leading to a regulatory feedback

circuit [10].

In the C.Esp1396I system, and other related systems, the

operator sequence at the C/R promoter has two operator sites

(denoted OL and OR) that are distal and proximal, respectively, to

the transcription unit comprised of the C and R genes [11,12].

The high-affinity OL site binds a C-protein dimer and recruits the

sigma subunit of RNA polymerase to switch both the C and R

genes on. As the C-protein concentration rapidly increases, the

low affinity OR site proximal to the gene then becomes occupied

and the gene is down-regulated through displacement of bound

RNA polymerase [12–14]. Unusually, in the RM system Esp1396I

(Figure 1), the C-protein also represses the MTase (M) gene by

binding to the promoter at the transcriptional start site, denoted

OM where the C/R genes and the M gene are transcribed

convergently from different promoters [15].

Analysis of C-protein binding sites in a wide variety of RM

systems suggested a repeating quasi-symmetrical ‘‘consensus’’

sequence consisting of two sets of inverted repeats or ‘‘C-boxes’’

upstream of the C/R genes [6,8,12,16]. The first published

structure of a controller protein bound to DNA was that of

C.Esp1396I bound as a tetramer, i.e. with two dimers bound

adjacently on the 35 bp operator sequence (OL+OR) of the C/R

promoter to form the ‘‘repression complex’’ [11]. The structure

revealed the mechanism of the switch from activation to repression
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of the C and R genes. In the crystal structure of the complex (PDB

code: 3CLC), two dimers are bound to the DNA, each centred on

the pseudo-dyad located between the central A and T bases in the

TATA sequence within each operator site, and interacting across

the major groove at the centre of the DNA.

Subsequent high resolution crystallographic studies of the

complex with the OL and OM operators [17,18] showed the

sequence-specific contacts to the bases within the recognition site

(‘‘direct readout’’), as well as the non-specific interactions with the

severely bent phosphodiester backbone (‘‘indirect readout’’). We

also investigated the affinities of the protein for its three natural

promoters, OM, OR and OL, in order to understand the structural

and mechanistic basis of differential DNA sequence recognition in

this system [18].

Here, we are interested in dissecting the contribution to DNA

binding of key amino acid side chains involved in sequence specific

interactions with the bases (T36, R46), and those involved in

interactions with the DNA backbone (Y37, S52). By individually

mutating these residues, and assessing DNA binding affinity by

SPR, we analyse the contribution of the mutated side chains to

DNA binding. To confirm that these mutations have not affected

the overall fold of the protein, we have determined their structures

by X-ray crystallography, and these structures show further

conformational details of the flexible loop region involved in

DNA sequence recognition. We also crystallized one of the mutant

proteins bound to DNA and have determined the structure of this

DNA-protein complex, to compare the conformation of the DNA

in the native and mutant complexes.

Results

SPR Analysis of DNA Binding
To evaluate the effects of the individual mutations on binding

DNA, we used Surface Plasmon resonance (SPR) to follow binding

to the OM operator DNA sequence (see Figure S1). Since it was

not possible in all cases to obtain accurate on- and off- rates, we

determined the binding affinity of the mutants (and wild type)

Figure 1. Gene arrangement of the Esp1396I RM system and C.Esp1396I binding sites. (A): The C-protein (C), endonuclease (R) and
methyltransferase (M) genes. C/R genes form an operon that is convergent with the M gene. The three C-protein binding sites are shown in orange.
(B) The OM operator controls expression of the M gene. (C) The OL and OR operators control the expression of the C/R genes.
doi:10.1371/journal.pone.0098365.g001

Figure 2. Binding analysis and location of mutations. (A) DNA binding curves of C.Esp1396I mutant proteins binding to the OM operator site
from SPR data. (B) The amino acid residues mutated in this study (T36, Y37, R46 and S52) showing their location at the DNA-protein interface. Image
generated in PyMOL using the wild type C.Esp1396I-19OM co-crystal structure (3UFD).
doi:10.1371/journal.pone.0098365.g002
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proteins from the SPR signal (RU) at equilibrium, using a range of

protein concentrations (Figure 2A). The location of the mutated

residues with respect to the bound DNA is shown in Figure 2B.

The range of protein concentrations used for the SPR experiments

varied from 20–200 nM total protein, corresponding to 0.2 nM to

17 nM dimer (see Methods section) and all except T36A were

shown to interact with the OM operator site within this

concentration range. In further experiments, the maximum total

protein concentration was increased to 1000 nM (corresponding

to 210 nM dimer) but still no interactions were observed with

those mutants (data not shown). The wild type protein, as

expected, showed the highest binding affinity (KD = 0.5 nM). Of

the mutant proteins, Y37F showed the strongest binding to the OM

site, followed by S52A and Y37A. The mutant protein R46A

bound with a much lower affinity (,16 nM), and T36A did not

show any measurable binding under these conditions (Figure 2 and

Table 1).

The KD for the R46A mutant was ,30 fold greater than that of

the wild type, showing a much weaker interaction with the OM

operator site, and consistent with a key DNA-binding role for this

arginine side chain. An even more important role is indicated for

T36, since the DNA binding ability of the T36A mutant was

completely abolished, as measured by SPR. The KD for the S52A

interaction with the OM operator was 5 fold higher than the wild

type, confirming the importance of this hydrogen bond interaction

Figure 3. Coordination of the sulphate ion required in the
crystal structure. Top panel shows the asymmetric unit of the
C.Esp1396I high resolution wild type X-ray crystal structure (4I6R) in
orange with a symmetry related dimer in light orange. The sulphate ion
is shown in pink. The zoom shows atoms hydrogen bonding directly to
the sulphate including water molecules (dark blue spheres). Hydrogen
bonds are shown as grey dashed lines.
doi:10.1371/journal.pone.0098365.g003

Figure 4. Conformation of the flexible loop of C.Esp1396I. (A):
The three observed loop conformations observed in crystal structures
of the native protein. The two alternative C.Esp1396I loop positions in
3G5G are shown in light blue (conformation I) and light green
(conformation II) and the high resolution wild type loop position from
4I6R is shown in orange (III). (B): The side chains of residues S45, R46
and N47 are displayed as sticks.
doi:10.1371/journal.pone.0098365.g004

Table 1. Equilibrium SPR analysis of the C.Esp1396I mutant proteins binding to the OM operator.

Protein KD (nM) Error (nM) Chi2 DG (kJ mol21)

Wild type 0.51 60.04 1.90 253.0

Y37F 1.80 60.26 7.20 249.9

S52A 2.60 60.45 4.80 249.0

Y37A 5.50 61.70 0.16 247.1

R46A 15.8 64.70 0.18 244.5

T36A N/D N/D N/D N/D

Analysis of the SPR data was performed using the 1:1 affinity model from the BiaEval software. The dimerisation constant of C.Esp1396I was fixed at 1.6 mM to enable
estimation of the dimer concentration from the total protein concentration. N/D = not detectable.
doi:10.1371/journal.pone.0098365.t001
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in stabilising the DNA-protein complex. The Y37A and Y37F

mutants had KDs that were 11 and 3.5 fold higher than the wild

type respectively. The three-fold difference between these two

mutants indicates that both the phenyl ring and the hydroxyl

group of the tyrosine are important for interacting with the DNA.

Structural Analysis of Native and Mutant Proteins
In order to confirm that the structures of the mutant proteins

closely resembled the native protein, and that the amino acid

substitution had not introduced any inadvertent structural

changes, we crystallized each mutant protein and solved their

structures by molecular replacement. Since the resolution of the

diffraction data from each mutant protein (1.5–2.0 Å) was

significantly better than the previously determined native structure

(2.7 Å), we also crystallized the native protein and obtained crystals

that diffracted to much higher resolution (1.4 Å) than the

published structure, to permit a more accurate comparison.

Overall the new triclinic wild type and mutant protein

structures closely resemble the original protein structure [19,20].

The root mean square deviations (RMSD) between the main chain

atoms of each of the structures presented here and the previous

structure (3G5G) were ,1 Å in all cases. One obvious feature of

the higher resolution structures was the presence of several water

molecules on the surface of the proteins. The side chain positions

could also be placed with a higher degree of confidence. Because

the mutants crystallized in multiple space groups and unit cells, the

crystal contacts were mostly unique to each structure. One key

crystallisation contact in the majority of the structures relied upon

an SO4 ion contacting symmetry related chains. The B-factors

across the mutant structures are all fairly consistent with the C-

terminus having the highest B-factors.

The native protein. The high-resolution (1.4 Å) triclinic wild

type structure presented here differs significantly in crystal contacts

when compared to the previously described wild type structure

3G5G [19]. In terms of crystal contacts, Y29 does not stack with a

symmetry related Y29 residue in the manner observed in several

C.Esp1396I crystal structures. Instead the majority of the contacts

are direct hydrogen bonds between side chains. A large number of

crystal contacts occur through the C-terminal tail of C.Esp1396I

and symmetry related chains. This gives that previously flexible

region a high degree of stability, allowing the complete C-terminus

up to the terminal carboxyl oxygen atoms to be modelled. The

other primary intermolecular interface is centred on one of the

SO4 ions. The SO4 ion essentially bridges the gap between

symmetry related chains as in this region no direct protein-protein

interactions occur (Figure 3). Of these intermolecular contacts,

only R35 of the recognition helix is involved in DNA interactions

in the protein-DNA complex. We see no difference in protein

Figure 5. Dimerisation contacts in the alternative loop conformations. The high resolution wild type crystal structure (4I6R) is shown in
orange (one monomer dark and one light) and the low resolution wild type is shown in blue/silver (one monomer dark and one light). The hydrogen
bond is shown as a grey dashed line.
doi:10.1371/journal.pone.0098365.g005
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structure in different crystal forms of mutant and native proteins,

regardless of the presence or absence of an SO4 ion in the unit cell.

The flexible loop region identified by Ball et al. [19] is found in a

different conformation to those previously described for this

protein. Instead, the loop adopts another geometrically favourable

position involving an ,8 Å shift in the Ca of S45 (Figure 4). For

clarity, the three loop positions of the protein will be referred to as

I and II (the major and minor conformations from Ball et al. [19])

and III (the newly described loop conformation). The movement

of the Ca of residue R46 between loop conformations I and III is

,6 Å, resulting in an even larger movement of the R46 side chain

(Figure 5). Since R46 is a key residue mediating DNA sequence

recognition, this movement allows the recognition of variations on

the consensus sequence of the C-box [18,19].

Mutant protein structures. The mutant proteins Y37F,

Y37A, T36A, S52A and R46A were crystallized (the latter in two

different space groups) and the crystals diffracted X-rays to a

resolution of 1.5–2.0 Å (Table 2). The SO4 based interaction

observed in the high-resolution wild type structure is also observed

in the Y37A, S52A and monoclinic R46A structures. Both the

monoclinic R46A and S52A structures show almost identical

crystal contacts to those of the triclinic wild type protein, even

though the space group and unit cell are different. The other three

mutant structures are all unique in space group, unit cell and

crystal contacts. Despite Y37F and T36A only crystallising in the

presence of SO4, this anion was not visible in either electron

density map. As with the high-resolution wild type structure, the

C-terminal tail is also involved in several crystal contacts with

multiple monomers in the T36A, Y37F and trigonal R46A

structures.

The T36A mutant structure was observed to adopt two loop

conformations (I and III) in equal proportions, indicating the

conformational flexibility in this region. T36 is not part of the

flexible loop region; it is in fact near the N-terminal end of helix 3

and therefore the likelihood of a mutation at this position altering

the loop conformation is minimal. In terms of crystal packing

interactions, the Y37A crystal structure is identical to the triclinic

wild type structure but adopts loop conformation I in both

monomers in the asymmetric unit. The Y37F crystal structure has

six monomers (three biological dimers) in the asymmetric unit.

Five of the monomers in the asymmetric unit are observed to be in

loop conformation I but the sixth more closely resembles that of

conformation II, which is almost identical to that in the DNA-

protein complex with the 19OM operator site [18]. Both of the

R46A crystal structures and the S52A crystal structure have

adopted loop conformation III, despite the varying buffer

conditions and crystallographic interactions in those three

structures. The ensemble of mutant loop conformations is shown

in Figure 6.

Y37F-19OM Co-crystal structure. The DNA duplex was

designed with overhanging A-T bases that, in the crystal, formed a

pseudo-continuous DNA double helix. Intermolecular A-T base-

pairs were observed both within and between asymmetric units,

identical to those observed in the WT-19OM co-crystal structure.

The protein-protein crystal contacts were also identical between

the Y37F-19OM and WT-19OM structures. Very few dimer-dimer

contacts were observed in the Y37F-19OM crystal structure;

however, one key contact occurs, involving Y29 of one chain

stacking with Y29 of the symmetry-related chain, and additionally

forms a stabilising hydrogen bond with D26.

Comparing the two independent complexes in the asymmetric

unit, the overall RMSD was 0.4 Å for all equivalent main chain

atoms of the protein and the 18 DNA base pairs, and therefore

only one complex is discussed further. The overall Y37F-19OM

structure was essentially identical to the native complex, with an

RMSD of 0.5 Å for the main chain protein atoms. As with the

native co-crystal structure, the flexible loop was identical in both

protein subunits of the complex (Figure 7). The three major DNA

base-binding residues R35, T36 and R46 were in essentially the

same positions as those observed in the WT-19OM co-crystal

structure, making the same interactions.

The structure of the DNA duplex in the Y37F-19OM co-crystal

structure also closely resembles that in the native complex, with an

overall RMSD of 0.6 Å (Figure 8). The tyrosine residue Y37 in

C.Esp1396I is implicated in DNA bending due to its interaction

with the phosphate group at the highly compressed minor groove

in all the known C-protein-DNA structures [11,17,18]. However,

we find that the overall bend angles of the DNA in the Y37F-

19OM and WT-19OM complexes are effectively identical at 54.7u
and 56.0u, respectively [17]. This would suggest that the missing

hydroxyl from the tyrosine, and concomitant loss of a key

hydrogen bond interaction, does not affect the DNA distortion

induced by C.Esp1396I.

Discussion

SPR analysis showed that Y37F formed much more stable

complexes with the OM operator site than Y37A, with KDs of 1.8

and 5.5 nM respectively, but both were less stable than the wild

type (KD = 0.51 nM). This indicated that the role of the tyrosine

was more than just the formation of a hydrogen bond with the

DNA backbone, but also involved the phenyl ring common to

both tyrosine and phenylalanine. The free protein structures of the

wild type, Y37F and Y37A mutants showed no major structural

Figure 6. Conformation of the flexible loop of C.Esp1396I in the mutant crystal structures. The three wild type loop conformations
observed in 3G5G and 4I6R are shown in the same colours as in Figure 5 and are translucent. (A) T36A loop positions shown in green. (B) Y37A loop
position shown in dark red. (C) Loop positions in both R46A structures shown in red (monoclinic space group) and purple (trigonal space group). (D)
Loop position of S52A shown in light green. (E) Loop positions in Y37F (blue).
doi:10.1371/journal.pone.0098365.g006
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differences either in the local binding regions in terms of helix or

side chain positions, or in the overall fold. Comparing the native

and mutant (Y37F) protein-DNA complex structures, the tyrosine

and the phenylalanine were equally buried and inaccessible to

solvent and in both cases the phenyl ring stacks against the

deoxyribose ring in the DNA.

From the Y37F-19OM co-crystal structure, it is clear that the

only major alteration to the binding interface is the loss of the

hydroxyl - phosphate hydrogen bonds, of which there is one per

protein subunit. The DG values were calculated from the

equilibrium binding constants for the wild type, Y37F and Y37A

proteins binding to DNA to be 253.0, 249.9 and 247.1 kJ mol21

Figure 7. Comparison of the wild-type and Y37F mutant 19OM co-crystal structures. The wild type structure is shown in pale blue and the
Y37F mutant structure in purple. (A) An overlay of the two structures shows the high degree of similarity between the two. (B) The DNA ‘‘pinching’’
point at the central TATA sequence. Hydrogen bonds are shown as grey lines.
doi:10.1371/journal.pone.0098365.g007
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respectively (Table 1). The DG for the native C-protein-DNA of 2

53.0 kJ mol21 falls within the range of other HTH DNA binding

protein-DNA interactions including SinR (236.7 kJ mol21) [21],

the C-protein C.AhdI (245.7 kJ mol21) (12) and the Cro repressor

(264.4 kJ mol21) [22].

The DG difference (DDG) due to loss of a side chain in the

mutant proteins can be estimated. For the hydroxyl group only,

the DDG between the wild type and Y37F mutant was found to be

23.1 kJ mol21 (21.55 kJ mol21 per hydrogen bond). The DDG

for the phenyl group alone (comparing the values for Y37F and

Y37A), is 22.8 kJ mol21 (21.4 kJ mol21 per monomer).

Comparison of these two values indicates that the ring stacking

and hydrogen bond interaction with the DNA make similar

energetic contributions. Together, these interactions of Y37 with

the DNA backbone contribute 5.9 kJ mol21 per dimer.

Comparing DGs for S52A and WT, we obtain DDG of 4.0 kJ

mol21, comparable with that for the Y37F mutant (3.1 kJ mol21),

and indeed in the crystal structure of the protein-DNA complex,

both of these residues form a hydrogen bond to the phosphodiester

backbone of the DNA. The DDG for R46A is significantly larger

(8.5 kJ mol21), and that for the T36A mutation must be larger still,

since we could not measure any DNA binding activity of this

mutant protein. Both R46 and T36 of C.Esp1396I are seen in

crystal structures of DNA-protein complexes to interact directly

with the base pairs involved in sequence recognition [18],

specifically with the G and C bases, respectively, of the C-box

recognition sequence GTC. Further hydrogen bonds from these

amino acid residues to the thymine base may be mediated by

water molecules.

The high-resolution structural studies of the mutants revealed

the dimerisation interface of the proteins in great detail.

Comparative analysis was then performed between these struc-

tures, previously published structures and the newly determined

high-resolution (1.4 Å) wild type structure. It was observed that the

Figure 8. DNA bending analysis of the DNA from the C.Esp1396I-Y37F-19OM co-crystal structure. (A) Groove width analysis of the DNA
in the Y37F-19OM crystal structure. The wild-type 19OM co-crystal structure is shown in grey and the Y37F mutant co-crystal structure in purple. Major
grooves widths are shown with squares and minor groove widths with circles. (B) The DNA duplex from the Y47F-19OM co-crystal structure shown
with the helical axis in grey. Analysis performed using the Curves+ server [32].
doi:10.1371/journal.pone.0098365.g008
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dimerisation interfaces of the mutants were identical to the wild

type protein, complete with the same hydrogen bonding networks

and hydrophobic interactions.

As well as confirming that the mutant proteins were folded

correctly, the structural studies revealed a more detailed structural

picture of C.Esp1396I. Previously a flexible loop in C.Esp1396I

had been identified from the wild type structures, where two

alternative conformations were observed [19]. The wild type

structure of C.Esp1396I presented in this study revealed further

details including an additional, third conformation of the flexible

loop region that was subsequently observed in several of the

mutant protein structures. Between the 16 published and 20 newly

determined structures of the C.Esp1396I monomer (from nine free

protein X-ray crystal structures containing multiple monomers)

and across seven different crystal forms, only these three loop

conformations were observed. The T36A mutant protein crystal

structure showed both the major conformation (I) and the novel

conformation observed in this study (III), indicating that both

could exist simultaneously in different subunits of the protein

dimer. Flexibility in this loop is very important for DNA sequence

recognition, as it has been observed in the nucleoprotein structures

to adopt different conformations depending on which operator site

the protein is bound to. Thus the side chains of DNA binding

residues within the loop are presented in different orientations and

so accommodate the different DNA sequences in the operator

sites, albeit with very different affinities as required for finely tuned

operation of the genetic switch control mechanism.

Methods

Mutagenesis of C.Esp1396I to create the R46A and T36A

mutant protein constructs was carried out as previously described

[11]. All other mutant protein construct genes were synthesised by

GenScript (USA). C.Esp1396I native and mutant constructs were

purified as described previously [11]. In brief, all protein

constructs were over-expressed in E. coli strain BL21 (DE3) pLysS

with an N-terminal hexahistidine sequence for nickel affinity

chromatography. After removal of the hexahistidine tag using the

serine protease thrombin, size exclusion chromatography was used

to further purify the C.Esp1396I proteins.

For SPR experiments the purified C.Esp1396I native and

mutant proteins were dialysed into SPR running buffer (130 mM

NaCl, 10 mM HEPES pH 7.4 and 0.05% (v/v) Tween-20). A 59

biotinylated single stranded DNA oligonucleotide comprising the

entire OM operator site and its complementary sequence were

synthesised by ATDBio (Southampton, UK). The two DNA

molecules were incubated together at a 1:1 molar ratio prior to

heating to 353 K and cooling overnight. DNA duplexes were

further purified using gel electrophoresis. The biotinylated DNA

duplexes were diluted to 20 nM in the SPR running buffer prior to

injection over a streptavidin coated SPR chip until a stable

baseline of ,200 response units (RU) was achieved. One channel

was left empty to act as a control. Varying concentrations of the

purified C.Esp1396I constructs (within the range 20–1000 nM

total protein) were injected over the DNA coated chip and

sensorgrams were recorded using a BIACore T-100. Data were

processed using the BiaEval software with the total protein

concentrations corrected to biological dimer concentrations using

the dimerisation constant (kdim) of 1.6 mM previously reported [18].

Initial crystallisation experiments were carried out using the

HoneyBee X8 crystallisation robot (Cronus Technologies) and

sparse matrix screening using commercially available screens

(Molecular Dimensions Ltd.). Proteins crystals were grown in the

conditions summarised in Supplementary data (Table S1) at

protein concentrations between 2 and 14 mg mL21. For the

Y37F-19OM co-crystal structure, a DNA duplex corresponding to

the published wild type 19OM co-crystal structure [18] was

synthesised as complementary single stranded DNA molecules,

which were annealed and purified as for the SPR duplexes. The

DNA duplex was incubated at varying molar ratios with the

purified Y37F mutant C.Esp1396I construct prior to crystallisation

trials. The addition of spermidine to a final concentration of

10 mM reduced precipitation in many conditions and resulted in

larger crystals. Where required, crystals of sufficient quality for X-

ray diffraction experiments were transferred to a cryo-protectant

solution prior to flash-cooling in liquid nitrogen (Table S1). Cooled

crystals were taken to the Diamond Light Source (Oxfordshire,

UK) for X-ray diffraction experiments, all of which were

conducted at 100 K. Details of data collection are summarised

in Table 2. Diffraction data were processed using XDS and

XSCALE [23] or MOSFLM [24] and Aimless [25,26] and phases

were obtained in all cases by molecular replacement with Phaser

[27,28] using the wild type monomer (3G5G) as a search model in

each case (with the addition of the DNA duplex from 3UFD for

the Y37F-19OM structure). Refinement was carried out using

iterative rounds of model building in Coot [29] and refinement in

Refmac5 using TLS restraints [30]. Refinement statistics are

summarised in Table 3. All refined structures were deposited into

the Protein Data Bank with the accession codes detailed in Table2.

Molecular images were produced using Pymol [31].

ACCESSION NUMBERS: Coordinates and structure factors have been

deposited in the Protein Data Bank with accession numbers 4I6R; 4I6T;

4IA8; 4I6U; 4F8D; 4FBI; 4FN3; 4IVZ.
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Figure S1 Representative SPR data. Sensorgrams for the

wild type and mutant constructs of C.Esp1396I binding to the OM
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