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Abstract
Estimates of dominance variance for growth traits in beef cattle based on pedigree data vary considerably across studies, 
and the proportion of genetic variance explained by dominance deviations remains largely unknown. The potential 
benefits of including nonadditive genetic effects in the genomic model combined with the increasing availability of large 
genomic data sets have recently renewed the interest in including nonadditive genetic effects in genomic evaluation 
models. The availability of genomic information enables the computation of covariance matrices of dominant genomic 
relationships among animals, similar to matrices of additive genomic relationships, and in a more straightforward 
manner than the pedigree-based dominance relationship matrix. Data from 19,357 genotyped American Angus males 
were used to estimate additive and dominant variance components for 3 growth traits: birth weight, weaning weight, and 
postweaning gain, and to evaluate the benefit of including dominance effects in beef cattle genomic evaluations. Variance 
components were estimated using 2 models: the first one included only additive effects (MG) and the second one included 
both additive and dominance effects (MGD). The dominance deviation variance ranged from 3% to 8% of the additive 
variance for all 3 traits. Gibbs sampling and REML estimates showed good concordance. Goodness of fit of the models was 
assessed by a likelihood ratio test. For all traits, MG fitted the data as well as MGD as assessed either by the likelihood 
ratio test or by the Akaike information criterion. Predictive ability of both models was assessed by cross-validation and did 
not improve when including dominance effects in the model. There was little evidence of nonadditive genetic variation 
for growth traits in the American Angus male population as only a small proportion of genetic variation was explained 
by nonadditive effects. A genomic model including the dominance effect did not improve the model fit. Consequently, 
including nonadditive effects in the genomic evaluation model is not beneficial for growth traits in the American Angus 
male population.
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Introduction
Traditionally, nonadditive effects are ignored in genetic 
evaluation models due to several reasons such as the lack of 
informative pedigrees and the need of demanding computation 
(Varona et  al., 2018). Although additive variance includes part 
of the biological dominant effects of the genes (Hill, 2010), the 
dominance deviation variance should not be neglected. Knowing 
its magnitude in real data and exploring the predictive ability of 
a model that accounts for dominance effects is of relevance.

Availability of large genomic data sets has renewed the 
interest of including nonadditive genetic effects in genomic 
evaluation models. Toro and Varona (2010), Su et al. (2012), and 
Vitezica et al. (2013) proposed different approaches to consider 
dominance effects in genomic models. Including dominance 
effects in the model and, consequently, having accurate 
estimates for those effects can be advantageous (e.g., Varona 
et  al., 2018). If the amount of dominance genetic variance is 
substantial, including dominance effects in the model can lead 
to improvements in accuracy of breeding values and in selection 
response (Toro and Varona, 2010; Aliloo et al., 2016; Duenk et al., 
2017), can help in mate allocation procedures (Mäki-Tanila, 
2007; Toro and Varona, 2010; Aliloo et  al., 2017) and to define 
convenient breeding schemes (Mäki-Tanila, 2007; Zeng et  al., 
2013). The inclusion of dominance in genomic models has been 
studied by several authors in different species (e.g., Ertl et al., 
2014; Heidaritabar et  al., 2016; Xiang et  al., 2016; Moghaddar 
and van der Werf, 2017) with no gain in accuracy of estimated 
breeding values and with variable results in terms of the 
magnitude of the dominance deviation variance estimated for 
different traits.

In beef cattle systems, growth traits as birth weight (BW), 
weaning weight (WW), and postweaning gain (PWG) are 
the most important traits under selection. These traits have 
moderate narrow-sense heritabilities that range from 0.20 to 
0.45, and dominance deviation variance can be important and 
should be determined. Recently, other studies reported values of 
dominance variance (expressed as a proportion of phenotypic 
variance) equal to 0.11 for live weight measured post-weaning 
(Bolormaa et  al., 2015) and around 0.12 for yearling weight 
(Raidan et al., 2018). The first one was a multibreed study (with 
animals from 3 different breed types: Bos taurus, Bos indicus, and 
composite breeds) and the latter was in Brahman and Tropical 
Composite beef cattle.

The aims of this study were to estimate additive and 
dominance variance components on growth traits in American 
Angus males and to evaluate the predictive ability of the model 
when dominance effects are included.

Materials and Methods

Animals and Genotypes

Data for this study were provided by the American Angus 
Association. Animal Care and Use Committee approval was not 
obtained for this study because the data were obtained from an 
existing database.

Three growth traits were analyzed in this study: BW, WW, 
and PWG. A  total of 19,357 genotyped males with at least 1 
record for one of the traits were considered in the analysis. 
Animals were genotyped or imputed using a panel of 54,609 SNP 
from BovineSNP50k v2 BeadChip (Illumina Inc., San Diego, CA). 
Only SNP located in autosomes were used. After quality control 
using default checks by preGSf90 (Aguilar et al., 2014)—Hardy–
Weinberg equilibrium (HWE), minor allele frequency (<0.05), 

SNP call rate, and animal call rate (<0.90)—a total of 39,245 
autosomal SNP remained and were used to build additive and 
dominant genomic relationship matrices.

Quality control of phenotypes ensured records fulfilled 
quality requirements of the American Angus Association 
national genetic evaluation. Animals from contemporary groups 
with less than 10 individuals were excluded. As only males with 
phenotype and genotype data were used in the analysis, this 
arbitrary size avoided unreliable estimates of contemporary 
group effects from few records. Table 1 presents a summary of 
the data. As described in Lourenco et  al. (2015), the American 
Angus Association applied no genotyping strategy; therefore, 
the members could choose which animals were genotyped (in 
most of the cases, the chosen ones were young). As there was 
no genotyping strategy, usually not all the animals within a 
contemporary group were genotyped. Moreover, the genotyped 
animals used in this study represented 65 % for BW and WW 
and 77% for PWG of the total number of males in the “original” 
contemporary groups (defined by sex) used in the genetic 
evaluation (e.g., Lourenco et  al., 2015). All 19,357 genotyped 
animals were born between 2001 and 2014, but most of them 
(18,593) were born after 2010 and they did not have genotyped 
male progeny in the data set, 38% of the oldest ones (764 males 
born before 2010) had at least 1 offspring genotyped and with 
phenotypic records.

Statistical Models

Phenotypes were analyzed using a univariate GBLUP model. Two 
linear models were considered: the first included only additive 
genetic effects (MG) and the second included both additive and 
dominance genetic effects (MGD). The MG and MGD models 
were equal to

MG : y = Xβ+ fb+ Zu+ e

and

MGD : y = Xβ+ fb+ Zu+ Zv+ e,

where y is a vector of observed phenotypic values of males for 
each trait; X is a design matrix relating the phenotype to the 
fixed effect, β is a vector of fixed effects (contemporary groups), 
f is the vector of genomic inbreeding coefficients calculated 
as the proportion of homozygous loci for each animal (Silió 
et al., 2013; Xiang et al., 2016), b is the inbreeding depression 
parameter, Z is an incidence matrix relating the phenotype 
with the breeding value and dominance deviations (in MGD), u 
is a vector of breeding values distributed as u ∼ N(0,Gσ2

A), v is 
a vector of dominance deviations distributed as v ∼ N(0,Dσ2

D),  
and e is a vector of residuals distributed as e ∼ N(0, Iσ2

e). Matrix 
G is the additive genomic relationship matrix and D is the 
dominance genomic relationship matrix. Parameters σ2

A , σ2
D,  

and σ2
e refer to additive genetic, dominance deviations, and 

residual variances, respectively. The MGD model assumes 

Table 1.  General statistics for growth traits

Trait1

Number  
of records Average, kg SD, kg

Number of  
contemporary  

groups

BW 19,357 36.29 3.63 718
WW 19,345 312.07 40.37 730
PWG 14,767 233.60 48.08 532

1BW, birth weight; WW, weaning weight; PWG, postweaning gain.
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Cov(u,v) = 0 under orthogonality (Vitezica et  al., 2013). 
Xiang et  al. (2016) proved analytically that, in the presence 
of directional dominance, inclusion of genomic inbreeding 
as a covariate in the model is necessary to obtain correct 
estimates of dominance variance. This has long been known 
for pedigree analysis (e.g., De Boer and Hoeschele, 1993; Miller 
and Goddard, 1998).

An exploratory analysis of the data set showed that among 
all dams, 15,579 (80% of dams) had only 1 offspring, leading to 
an average of 1.10 offspring per cow. Consequently, maternal 
effects were completely confounded and were not included in 
BW and WW analysis.

The additive genomic relationship matrix G was calculated 
according to VanRaden (2008) as follows:

G =
MM′

2
∑m

k=1 pkqk
,

where M is a matrix with dimensions of number of animals (n) 
by the number of SNPs (m), with elements equal to (2− 2pk), 
(1− 2pk), and (−2pk), for genotypes AA, Aa, and aa, respectively; 
pk is the frequency for allele A of SNP k and qk = 1− pk.

The dominance deviation genomic relationship matrix D 
was built as in Vitezica et al. (2013):

D =
WW′

∑m
k=1 (2pkqk)

2 ,

where W has the same dimension as in M, with elements equal 
to (−2q2k), (2pkqk), and (−2p2k) for AA, Aa, and aa, respectively; pk
is frequency for allele A of SNP k and qk = 1− pk. Matrices M 
and W, their cross-products, and the inverses of G and D were 
built using own programs. Parallel programming in Fortran 
using OpenMP and BLAS-MKL libraries was used. Matrices 
G and D were blended in order to make them full rank as 
G∗ = 0.95G+ 0.05I, and D∗ = 0.95D+ 0.05I, and then inverted.

Variance Component Estimation and Model 
Comparison

Estimation of variance components was performed by 
Bayesian methods using Gibbs sampling and also by REML 
using the software GIBBS2F90 and REMLF90 (available at 
http://nce.ads.uga.edu/wiki/), respectively (Misztal et  al., 
2014). A  total of 200,000 iterations were run for each trait 
under the Bayesian approach, with burn-in of 10,000 initial 
iterations and sample interval of 10. Posterior means and 
posterior SD were calculated based on a final chain of 19,000 
samples. Convergence to the final distribution was checked 
by visual inspection of the chains and its variability. Initial 

parameters for REML were obtained from the Gibbs sampling 
estimates.

The maximum likelihood ratio test was performed from 
REML results to assess goodness of fit and to compare MG and 
MGD models. The Akaike information criterion (AIC) was also 
considered for those purposes. The superiority of an alternative 
model MGD over model MG was evaluated using a likelihood 
ratio test. The χ2 was calculated as χ2 = −2 log LMG + 2 log LMGD, 
the first term involved the MG likelihood and the second one 
took into account the MGD likelihood. P-values of the chi-square 
tests were obtained from a mixture of chi-square distributions 
with 1 and 0 degrees of freedom (Visscher, 2006).

GBLUP, using the software BLUPF90 (Misztal et  al., 2014), 
was used to obtain estimated genetic values (u,v) by fixing the 
variance components that were estimated. Conventional cross-
validation was conducted to compare the 2 models. Two data 
sets were used for this purpose: 1)  the “complete” data set as 
described above (Table 1) and 2) the “reduced” data set in which 
young animals had no own or progeny information. Those 
animals born in 2014 were considered the “young” males for BW 
and WW, but as they did not have records for PWG, a different 
“young” group of animals born in 2013 was considered for this 
trait. The predictive ability of phenotypes of “young” males 
for the 2 models was assessed as the cor(y∗, ŷ) (Legarra et  al., 
2008) where y∗ is the corrected phenotype from the “complete” 
data set, calculated as y∗ = y− Xβ̂ − f b̂ and ŷ is the predicted 
corrected phenotype from the “reduced” data set, equal to the 
estimated additive genetic effects (u) for MG model, or the sum 
of estimated additive and dominant genetic effects (u+ v)for 
MGD model.

Results
Table 2 shows the variance component estimates for each trait 
using both MG and MGD models. For all traits, additive variance 
estimates were not affected by the inclusion of dominance 
effect in the model. Additive genetic variance did not differ 
between MG and MGD models, which empirically shows the 
orthogonality in the partition of the genetic variance. The model 
used in the analysis in terms of breeding values and dominance 
deviations (Vitezica et al., 2013) enables an orthogonal partition 
of the genetic variance in HWE and linkage equilibrium. HWE 
holds in this dataset, however linkage disequilibrium (LD) 
exists. Note that a tight linkage is needed to yield substantial LD 
in outbred populations (Hill and Mäki-Tanila, 2015). Likewise, no 
changes in h2

A were observed when including dominance in the 
model (going from MG to MGD).

Means of the diagonal and off-diagonal elements of matrices 
G and D were calculated. The average of the diagonal elements 

Table 2.  Estimates of additive, dominance deviation, and residual variance components (σ2
A, σ2

D, σ2
e) and heritability for growth traits using MG 

and MGD models

Trait1 Model2 σ2
A σ2

D h2
A h2

D (σ2
D/σ

2
A) σ2

e

BW MG 6.27 (0.33) — 0.25 — — 18.82 (0.24)
MGD 6.28 (0.33) 0.18 (0.15) 0.25 0.01 0.03 18.65 (0.28)

WW MG 222.75 (14.61) — 0.16 — — 1186.28 (14.26)
MGD 223.55 (14.82) 10.02 (4.98) 0.16 0.01 0.04 1176.88 (14.86)

PWG MG 270.76 (20.42) — 0.16 — — 1388.81 (19.87)
MGD 270.30 (21.94) 21.68 (10.95) 0.16 0.01 0.08 1369.01 (26.00)

1BW, birth weight; WW, weaning weight; PWG, postweaning gain.
2MG, model including only additive effects; MGD, model including both additive and dominant effects.
The results are given as estimate (in parenthesis SE); h2

A = σ2
A/σ

2
P and h2

D = σ2
D/σ

2
P, where σ2

P is the phenotypic variance.

http://nce.ads.uga.edu/wiki/
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was close to 1 in both cases (1.02 for G matrix and 1.01 for D 
matrix) and the off-diagonal average was almost 0 in both 
cases (−5.24 e−05 for G and 0.02 for D), as expected in a base 
population with HWE. The SD of the off-diagonal elements of 
both matrices (0.06 for G and 0.05 for D) was similar, so both 
matrices were similar in terms of informativity. The relationship 
between diagonals and off-diagonal elements of G and D was 
explored. The correlation was 0.96 and 0.05 for the diagonal and 
off-diagonal elements, respectively. These values agreed with 
those reported by Raidan et al. (2018, in supplementary figure 1) 
and confirmed that the studied population was in HWE.

Dominance deviation variance was small for all the 
analyzed traits (Table  2). For all growth traits, the proportion 
of dominance to additive variance was less than 10% (from 
3% to 8%) and h2

D (σ2
D/σ

2
P) was 0.01 in all cases, showing that 

there is little evidence of nonadditive genetic variation in BW, 
WW and PWG in this Angus male population. Pedigree-based 
estimates of h2

D range from 0 to 0.39 for BW and from 0 to 0.56 
for WW (Rodríguez-Almeida et al., 1995; Gengler et al., 1997). In 
Limousin cattle, h2

D for PWG ranges from 0.10 to 0.18 (Gengler 
et al., 1997; Misztal et al., 1998).

Posteriori correlations between variance component 
estimates were computed for each trait. High correlation 
between additive and dominant variance components would 
show difficulty to disentangle both in the MGD model. However, 
this correlation was close to 0 (ranging from −0.04 to 0.03) and 
confirmed that MGD model allowed correct partitioning of the 
genetic variance. Additive variation was not confounded with 
dominance variation.

Genomic inbreeding coefficient was calculated as the 
proportion of homozygous SNPs per genotyped individual, 
following Silió et al. (2013). The mean of genomic inbreeding 
coefficient, across animals, was 0.634 with a SD of 0.013. The 
mean, across animals, of genomic inbreeding coefficient 
in this population is comparable to those values reported 
by Reverter et  al. (2017) for Bahman (0.597, SD = 0.014) and 
Tropical Composite (0.602, SD = 0.027) beef cattle using a 70K 
SNP panel.

Estimated inbreeding depression for each trait using both 
models is shown in Table 3. Inbreeding depression estimates are 
expressed as the change in phenotypic mean per 10% increase 
in inbreeding. For WW, a decrease of 10.20 kg (approximately) is 
expected per 10% increase in inbreeding and a loss of 10.70 kg is 
expected for PWG every 10% increase in inbreeding. Inbreeding 
depression estimates were in the same order of magnitude 
to those reported in literature for growth traits in beef cattle. 
The reported values were going from −4.40 kg to −8.96 kg per 
10% increase in inbreeding (Burrow, 1993, 1998; Falcão et  al., 

2001; Santana et  al., 2010) for WW. For BW, the estimates in 
literature are more variable, some authors report no inbreeding 
depression for this trait (Burrow, 1998; Davis and Simmen, 2010), 
whereas others obtained values going from −0.60 kg to −3.80 kg 
per 10% increase in inbreeding (Swiger et  al., 1961; Burrow, 
1993). Values obtained in this study for BW were in this range 
(−0.48 kg per 10% increase in inbreeding). Recently, Sumreddee 
et al. (2018) estimated inbreeding depression for BW and WW 
in a Hereford cattle population using SNP information. Across 
different measures, BW and WW decreased by 0 to 0.12 kg and 
2.12 to 5.29 kg, respectively, for each 10% increase in genomic 
inbreeding. Both values (BW and WW) were lower than our 
estimates. However, estimates of inbreeding depression are 
population specific (Howard et al., 2017), and differences may be 
due to differences in allele frequencies and in the magnitude of 
directional selection.

Goodness of fit of the models was assessed by performing 
a likelihood ratio test (Table  4). For all traits, model MG fitted 
the data as well as MGD, consequently including dominance 
in the model did not improve model fit. Similar results were 
obtained with AIC (Table 4). For all traits, the model with less 
(or equal) AIC value was MG. In addition to these statistics, a 
conventional cross-validation was carried out. The predictive 
ability of phenotypes, measured as the correlation between 
the phenotypes of selection candidates based on “complete” 
and “reduced” data set, was around 0.43, 0.21, and 0.30 in BW, 
WW, and PWG for both models. No differences in the predictive 
ability of phenotypes for young animals were observed between 
MG and MGD models.

Discussion
Additive and dominance deviation variance components were 
estimated for 3 traits of interest in the American Angus male 
population. Heritabilities for all 3 growth traits were consistent 
but lower than values provided for the whole population 
(males and females) by the American Angus Association. These 
values were 0.41 for BW and 0.20 for WW and PWG (Lourenco 
et al., 2015). The lower values obtained in this study could be 
explained by 2 reasons. First, only genotyped males were used 
in this analysis (GBLUP approach), which are a small sample 
of the whole American Angus population. Second, even if the 
American Angus Association applied no genotyping strategy 
and the members choose which animals are genotyped (as 
described by Lourenco et  al., 2015), by chance the data set 
used in this study might not be a representative sample of the 
national herd.

Dominance variance expressed as the proportion to additive 
variance was less than 10% (going from 3% to 8%) for all traits. 
Pedigree-based estimates of dominance variance were highly 
variable and low accurate (Rodríguez-Almeida et  al., 1995; 
Gengler et al., 1997; Misztal et al., 1998). The lack of accuracy of 
pedigree-based models to estimate dominance deviations and 
its variance can explain that dominance was ignored in genetic 
evaluation models. Dominance is much easier with genomic 
information. Instead of dealing with probabilities of identical 
genotypes, heterozygote states are observed. However, to date, 
few studies have estimated dominance deviation variance in 
growth traits. Estimates for postweaning and yearling weight 
were reported in a multibreed population (with animals from 
3 different breed types: Bos taurus, Bos indicus, and composite 
breeds; Bolormaa et  al., 2015) and in Brahman and Tropical 
Composite breeds (Raidan et  al., 2018). Compared with these 
studies, little evidence of dominance genetic variation was 

Table 3.  Estimated inbreeding depression (b) for the 3 growth traits 
using 2 models

Trait 2

b1

MG3 MGD3

BW −0.480 (0.195) −0.476 (0.207)
WW −10.225 (1.510) −9.998 (1.588)
PWG −10.695 (1.900) −10.230 (2.036)

1Inbreeding depression estimates are expressed as the change in 
phenotypic mean (kg) per 10% increase in inbreeding (SE are in 
parenthesis).
2BW, birth weight; WW, weaning weight; PWG, postweaning gain.
3MG, model including only additive effects; MGD, model including 
both additive and dominant effects.
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observed for growth traits BW, WW, and PWG in American Angus 
male population.

Even though the data set employed in the analysis was 
extensive, the results may indicate a lack of power to detect 
dominance variation. In this respect, 2 issues have to be taken 
into account. First, even though the number of animals with 
phenotypic and genomic data was over 19,000, no maternal 
effects could be taken into account given that they were 
completely confounded in the model due to the small number 
of offspring per dam. On the other hand, the proportion of full-
sibs was small (7.64%) and, hence, little dominance-specific 
information was available for the estimation (Ertl et al., 2014). 
Including in the analysis individuals with phenotypic data but 
without genomic data could be an alternative to increase the 
amount of dominance-specific information. However, a Single-
step approach with dominance is not a feasible solution yet.

Additive genetic variance estimates did not vary when 
dominance effect was included in the model (MGD), compared 
with those obtained with MG. Under orthogonality there is no 
covariance between the additive and dominant genetic effects 
(assumption of the model used; Vitezica et  al., 2013), and the 
substitution effect contributes to the additive variance and the 
dominance deviation contributes to the dominance variance. If 
the model used in the estimation of variance components is not 
orthogonal (e.g., Su et al., 2012), biased and reduced estimates 
of additive genetic variance may be found when the model is 
expanded from additive to include dominance effects. Linkage 
disequilibrium may introduce genetic covariances between 
different genetic effects and complicate the partition of the 
genetic variance (Hill and Mäki-Tanila, 2015). A  relationship 
between genetic effects (e.g., Wellmann and Bennewitz, 2011, 
2012; Bennewitz et al., 2017) can be modeled. However, a model 
assuming uncorrelated effects and fitting orthogonal breeding 
values and dominant deviations performed similarly for 
prediction (Xiang et al., 2018).

No improvement in terms of goodness of fit for any of the 
analyzed traits, nor in the predictive ability of phenotypes for 
young animals was observed with the inclusion of dominance 
in the model. Values of AIC were similar across models and 
models including dominance did not seem to fit the data 
better than the simplest model. Similar results were reported 
by Aliloo et al. (2017), no differences in terms of goodness of 
fit were found between an additive genomic model including 
heterozygosity and a model considering additive and 
dominance effects with heterozygosity. Though speculative, 
increasing the amount of dominance-specific information 
might have a positive impact in the goodness of fit of the 
MGD, specially for BW. Predictive ability was not improved 
when dominance effects were included in the model. This is in 
agreement with most of the previous studies (Ertl et al., 2014; 
Esfandyari et al., 2016; Xiang et al., 2016; Moghaddar and van 
der Werf, 2017; Vitezica et al., 2018).

Varona et al. (2018) refer to some issues that have to be dealt 
with before models like the MGD become standard in genomic 
evaluation. Among those, these authors refer to a major obstacle 
given by the lack of serious testing as it requires extensive data 
sets with genotypes and phenotypes. The results, even with these 
limitations (only males, reduced number of full-sibs), reported 
here can contribute in this sense as the data set employed was 
extensive coming from a beef cattle population in which the 
proportion of genetic variation explained by nonadditive effects 
in traits of interest such as growth remains unknown.

According to Falconer and Mackay (1996), biological genotypic 
effects (a, d) and allele frequencies ( p, q) contribute to the 
additive variance (2pq(a+ (q− p)d)2), the dominance variance 
((2pqd)2), and the inbreeding depression of a trait (2pqdF). 
Inbreeding F may thus change (reduce in the case of inbreeding 
depression) the mean of the trait by an amount 2pqdF. De Boer 
and Hoeschele (1993) showed that for models considering 
dominance, this change in the mean due to inbreeding should 
be fit in the model including the inbreeding coefficient as a 
covariate in the model together with the dominance deviations. 
Otherwise, dominance deviations are not centered around 0 and 
the estimate of the variance of dominance deviations (which 
refers to the base, noninbred, population) is inflated. Even if 
dominance deviations are not included in the model, inbreeding 
depression is an effect in the model that, if deemed considerable, 
should be included in the model per se as otherwise the model 
is incomplete and biased. In this study, both models MG and 
MGD included the effect of inbreeding as a covariate to consider 
inbreeding depression and also to obtain accurate variance 
component estimations.

When considering the joint action of several loci with 
dominance effect, a possibility is to have inbreeding effect with 
little variance of dominance deviations. This can be explained 
as follows. Considering several loci, dominance deviation 

variance, σ2
D =

∑
i
(2piqidi)

2
 is 0 only if d is 0 for all loci. In this 

case, there is no inbreeding depression either as 
∑
i
2piqidiF sums 

to 0.  However, if there are several loci implied, some of them 
with a positive effect d in the heterozygote and some of them a 
negative effect d in the heterozygote; some of them will have a 
large effect and some a small one. Thus, it is possible to have high 
inbreeding depression and low dominance deviation variance, 
and the opposite, depending on the relationship between d and 
d2 across loci. If all loci have d > 0 but with very small values, 
then 

∑
i
2piqidiF is high and these genes will generate large 

inbreeding depression, but σ2
D =

∑
i
(2piqidi)

2
 is small and so there 

will be little variance of dominance deviations. Conversely, if d 
effects are equally positive and negative and of large magnitude, ∑
i
2piqidiF will be 0 but σ2

D =
∑
i
(2piqidi)

2 will be large.

Little evidence of dominance genetic variation in growth 
traits like BW, WW, and PWG was found in American Angus 

Table 4.  Goodness of fit, likelihood ratio test and AIC values of models MG and MGD for growth traits

−2 log likelihood Likelihood ratio test AIC

Trait1 MG2 MGD2 χ2 P-value MG2 MGD2

BW 127,529.78 127,527.76 2.02 0.08 127,533.78 127,533.75
WW 203,515.41 203,515.89 0.00 1.00 203,519.41 203,521.89
PWG 163,439.91 163,441.62 0.00 1.00 163,443.91 163,447.62

1BW, birth weight; WW, weaning weight; PWG, postweaning gain.
2MG, model including only additive effects; MGD, model including both additive and dominant effects.
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male population. Because of the small variance explained, 
a genomic model that includes the dominance effect may 
not be of superior fit compared with only the additive effect. 
Dominance in the model did not improve predictive ability in 
the cross-validation study.
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