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Abstract
The clinical similarity among different neuropsychiatric disorders (NPDs) suggested a shared genetic basis. We catalogued 
23,109 coding de novo mutations (DNMs) from 6511 patients with autism spectrum disorder (ASD), 4,293 undiagnosed 
developmental disorder (UDD), 933 epileptic encephalopathy (EE), 1022 intellectual disability (ID), 1094 schizophrenia 
(SCZ), and 3391 controls. We evaluated that putative functional DNMs contribute to 38.11%, 34.40%, 33.31%, 10.98% and 
6.91% of patients with ID, EE, UDD, ASD and SCZ, respectively. Consistent with phenotype similarity and heterogeneity 
in different NPDs, they show different degree of genetic association. Cross-disorder analysis of DNMs prioritized 321 can-
didate genes (FDR < 0.05) and showed that genes shared in more disorders were more likely to exhibited specific expression 
pattern, functional pathway, genetic convergence, and genetic intolerance.
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Introduction

Neuropsychiatric disorders (NPDs) are a group of disorders 
with brain dysfunction, leading to abnormal in cognition, 
behavior, mood and communication. The influence of NPDs 
to international public health is acknowledged, especially 
due to their high clinical complexity (Craddock & Owen, Kuokuo Li and Zhenghuan Fang have contributed equally to this 

work.
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2010; Willsey et al., 2018). The similarity and heterogeneity 
among different types of NPDs such as autism spectrum dis-
order (ASD), epileptic encephalopathy (EE), intellectual dis-
ability (ID), and schizophrenia (SCZ), undiagnosed develop-
mental disorder (UDD) promote clinicians and researchers 
studying them. These disorders tend to strike before adoles-
cence, in particular ASD, EE, ID, and UDD onset during the 
time of infant and child. (Forrest, Parnell, & Penzes, 2018). 
Their clinical phenotypes vary significantly among different 
patients from mild to severe impairment in many aspects of 
brain development and other organ system (Martin et al., 
2018). NPDs are defined as distinct clinical classifications 
based on DSM-5 and ICD-11, whereas significant overlap 
of symptoms between different disorders (Moreno-De-Luca 
et al., 2013). For example, 20% of patients that meet the 
criteria of more than one disorder (Adam, 2013) and family 
history of one disorder increased the risk of another dis-
order (Sullivan et al., 2012). In addition, because of sig-
nificant clinical similarity of ID and UDD, previous studies 
frequently combined individuals with these two disorders to 
explore genetic reasons (Coe et al., 2019; Satterstrom et al., 
2020). Moreover, due to the dynamic nature of symptoms, 
patients often receive diagnoses of additional disorders, par-
ticular within the first year of the original diagnosis, and 
these pair comorbidities were bidirectional (Plana-Ripoll 
et al., 2019). All of these studies highlight the clinical simi-
larity among NPDs, which implicated common etiological 
mechanisms.

Twins and adoption studies exhibited high heritability 
of NPDs, which provides the opportunity to understand 
their etiologies from genetic perspective (Polderman et al., 
2015). The clinical similarity of NPDs might implicated by 
genetic. Recently, multiple studies employed whole-exome 
sequencing (WES) or whole-genome sequencing (WGS) to 
detect de novo mutations (DNMs) and successfully prior-
itized candidate genes with DNMs in ASD (An et al., 2018; 
Iossifov et al., 2014), UDD (Deciphering Developmental 
Disorders, 2017), EE (Epi et al., 2013), ID (Lelieveld et al., 
2016), and SCZ (Fromer et al., 2014). Due to the strong 
functional effects of DNMs [16], some candidate genes 
have been established to be associated with specific clini-
cal phenotypes, such as CHD8 (Bernier et al., 2014) with 
ASD, ID, sleep problem, macrocephaly, and gastrointestinal 
symptoms, and DYRK1A (van Bon et al., 2016) with ID, 
microcephaly and febrile seizures infancy. Genotype–phe-
notype correlation analysis will strengthen the genetic evi-
dence (Dong et al., 2014; Willsey et al., 2013); integration 
of DNMs that distributed in different publications was an 
effective method to increase sample size of patients carry-
ing DNMs of specific disease gene (Li et al., 2016; Nguyen 
et al., 2017). In addition, consistent with SNP based genetic 
correlation, genes with DNMs also show of significant over-
lap between different classification of NPDs (Cross-Disorder 

Group of the Psychiatric Genomics, 2013; Schork et al., 
2019). Moreover, genetic correlations among bipolar 
disorder, ASD and SCZ matched with clear similarity in 
transcriptomic features detected in the post-mortem brain 
(Gandal et al., 2018). These associations were replicated in 
our Chinese cohorts (Guo et al., 2018, 2019; Wang et al., 
2016). Therefore, integrating data from multiple disorders 
with phenotypic similarity increased the statistical power 
of candidate gene discovery (Coe et al., 2019; Gonzalez-
Mantilla et al., 2016; Li et al., 2016).

The functional analysis of candidate genes from both 
expression and functional networks provide clues to eluci-
date the molecular pathway related to these disorders, such 
as the brain-size-related genes (Li et al., 2017a), Vitamin 
D-related genes (Li et al., 2017b) and recessive genes (Wang 
et al., 2020) in ASD, as well as the genetic components 
related to three ASD subcategories (Li, Hu, et al., 2018), 
we previously reported. In addition, functional genomics 
of NPDs will reveal the characteristics of pleiotropic genes 
from disorder-specific genes, which may advance the diag-
nostic classification and treatment (Cross-Disorder Group of 
the Psychiatric Genomics Consortium. Electronic address 
and Cross-Disorder Group of the Psychiatric Genomics, 
2019). By searching the scientific literature, we collected 
DNMs from 13,853 NPD cases and 3391 controls to per-
form a cross-disorder analysis of five types of NPDs: ASD, 
UDD, EE, ID and SCZ. We want to decipher perspectives of 
NPDs as follow: (1) the burden and contribution of DNMs 
in NPDs; (2) the prioritization of candidate genes; (3) the 
expression patterns and functional pathways of candidate 
genes.

Materials and Methods

Data Collection and Annotation

We collected DNMs detected by WGS or WES from 37 
published studies and performed cross-disorder analysis 
(Table S1). We searched original articles in PubMed from 
2010 to 2019 based on the terms of “de novo mutation”, 
“whole-exome sequencing” and “whole-genome sequenc-
ing”. The DNMs in ASD, UDD, EE, ID and SCZ were used 
for further analysis, because only these five NPDs have 
enough DNMs. Additionally, DNMs detected in unaffected 
individuals were also collected as negative control. ANNO-
VAR (Wang, Li, & Hakonarson, 2010) and our previously 
reported VarCards (Li, Shi, et al., 2018) were utilized to 
annotate DNMs based on a human reference genome (hg19). 
Based on the functional effects of variants, we classified 
DNMs into two classes as follow: (1) Coding region vari-
ant, including loss-of-function variant (LoF, including splic-
ing (≤ 2 bp), stopgain, and stoploss SNVs, and frameshift 
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indels), deleterious missense variant (Dmis), tolerant mis-
sense variant (Tmis), synonymous variant, (2) Noncoding 
region variant. The pathogenesis of missense variant was 
predicted by ReVe, recently developed by our group (Li, 
Zhao, et al., 2018). LoF and Dmis variant were combined 
as putative functional (Pfun) variants. We only focused on 
coding region variant in further analysis. All variants were 
available in our currently developed Gene4Denove database 
(Zhao et al., 2019).

Burdens and Contributions Analysis of Different 
Types of DNMs

To test which classes of DNMs contribute to each disor-
der, two-tailed Fisher’s exact test was used to compare the 
burden of DNMs of each NPD with unaffected control. As 
DNM data was collected from different publications, we 
normalized DNMs by the number of de novo synonymous 
variants based on the hypothesis that synonymous vari-
ants would be unrelated to phenotype and could potentially 
remove batch effects of DNM detection rate. To perform 
burden analysis, we constructed four number as follow: the 
count of specific class of DNMs (Dmis, LoF, Pfun) in case 
and control, and the count of de novo synonymous in case 
and control. Additionally, we used “ascertainment differen-
tials” as described in previous work (Iossifov et al., 2014) to 
estimate the contribution of each class of DNMs to different 
NPDs and synonymous variants also were used to remove 
bias between different studies.

Gene Set Overlap Across Five Disorders Based on De 
Novo Mutations

We also used DNENRICH (Fromer et al., 2014; Shohat, 
Ben-David, & Shifman, 2017) to test whether genes that 
were detected to carry specific classes of DNMs (i.e., LoF, 
Dmis, and Pfun) in any two NPDs show of significant over-
lap. DNENRICH was a software that perform gene set 
enrichment based on gene size, structure, and local trinu-
cleotide mutation rate. We performed 100,000 permutations 
which weight mutation number of each gene and compared 
observed and expected overlap of two gene set. The input 
of DNENRICH includes (1) gene carrying specific class of 
DNMs in one disorder, (2) genes carrying consistent class 
of DNMs in another disorder. The Benjamini and Hochberg 
false discovery rate procedure was used to adjust for multiple 
testing.

Candidate Genes Prioritization Based on TADA

The transmitted and de novo association (TADA) tool was 
used to perform statistical analysis based on recurrent of 
variants in same gene (He et  al., 2013). Here, we used 

TADA-Denovo which only take DNMs into consideration. 
To prioritized candidate genes, we used two strategies in our 
analysis. Firstly, we performed TADA analysis of DNMs in 
each disorder. Secondly, we performed TADA analysis of the 
DNMs in five NPDs based on the hypothesis that NPDs shared 
genetically components. Genes with FDR (q-value) < 0.05 in 
either of above two strategies were prioritized as candidate 
genes. Genes with Pfun DNMs in at least two disorders were 
classified as shared genes, and genes with DNMs in only one 
disorder were classified as unique genes.

Expression Patterns and Functional Networks 
Analysis

As in our previous study (Li et al., 2017a), we performed 
weighted gene coexpression network package (WGCNA; 
Langfelder & Horvath, 2008) to RNA-seq data of 524 brain 
samples from the BrainSpan database with the power of six 
to depict the spatiotemporal expression patterns of candidate 
gene. In addition, we sourced transcriptome data of 526 pre-
natal neocortical samples from the BrainSpan database with 
the power of three to characterize neocortical expression pro-
files of candidate gene. The other consensus parameters of 
WGCNA for spatiotemporal expression pattern and prena-
tal neocortical samples are as follow: minModuleSize = 20, 
mergeCutHeight = 0.25, corType = “pearson”. In addition, 
to construct functional networks of candidate genes, we cal-
culated the Pearson correlation coefficients between any two 
genes based on the RNA-seq data of 524 brain samples from 
the BrainSpan database mentioned above, and gene pairs with 
|R|> 0.8 were regarded as expressed. Protein–protein interac-
tion (PPI) data with a combined score higher than 400 accord-
ing to the version 10.5 of STRING (Szklarczyk et al., 2019) 
database were also incorporated to construct a functional net-
work. Cytoscape v3.6.1 (https://​cytos​cape.​org/) was used to 
visualize the functional network.

Gene Functional Enrichment

To investigate the function of candidate gene, we used Metas-
cape tool (http://​metas​cape.​org/) with default parameters to 
perform functional enrichment analysis in three gene ontology 
(GO) including molecular function, cellular component and 
biological process for all candidate genes (Zhou et al., 2019). 
In addition, we performed functional enrichment of candidate 
genes in each independent coexpression module identified by 
WGCNA to identify specific function.

https://cytoscape.org/
http://metascape.org/
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Results

Pfun DNMs Involved in the Five NPDs with Burden 
and Contribution

In total, we collected 23,110 DNMs in coding regions from 
17,244 trio-based WES/WGS studies, including 8175 DNMs 
from 6511 patients with ASD, 7696 DNMs from 4293 
patients with UDD, 1165 DNMs from 933 patients with 
EE, 1393 DNMs from 1022 patients with ID, 1052 DNMs 
from 1094 patients with SCZ, and 3629 DNMs from 3391 
unaffected controls (Table S1). The DNMs were available 
in Gene4Denove database, recently developed by our group 
(Zhao et al., 2019). After controlling for batch effects with 
synonymous variants, we found that all the five NPDs car-
ried significantly more LoF and Dmis DNMs, as well as the 
combination of these two classes of DNMs (i.e., Pfun) but 
not Tmis DNMs, suggesting that Pfun DNMs are involved 
in all the five disorders (Table 1; Fig. S1). However, differ-
ent degree of mutation burden for the five NPDs. First, we 
found that Pfun DNMs exhibited a high degree of muta-
tion burden in patients with EE (odds ratio, OR = 2.45), ID 
(OR = 2.36), and UDD (OR = 1.77). Second, Pfun DNMs in 
ASD (OR = 1.33) were moderately higher than those in the 
control. Thirdly, SCZ (OR = 1.28) presented with the lowest 
difference of Pfun compared to the control.

We then evaluated the contribution of Pfun DNMs to 
NPDs based on “ascertainment differentials” of DNMs, 
a method based on the bias of DNMs events per child 
between patients and controls, as previous study (Iossifov 
et al., 2014). As a result, we found that 43.61% LoF and 
33.93% Dmis DNMs contribute to 10.22% and 10.94% 
of overall NPD patients, respectively (Table 1). Specifi-
cally, 64.61%, 55.90%, 48.72%, 33.06% and 21.85% of 
LoF DNMs contribute in 19.53% of ID, 11.50% of EE, 
15.68% of UDD, 6.24% of ASD, and 2.72% of SCZ 
patients, respectively. In addition, we noted that 61.03%, 
51.87%, 39.86%, 18.92%, 21.11% of Dmis DNMs contrib-
ute in 22.90%, 18.58%, 17.62%, 4.75%, and 4.19% of EE, 
ID, UDD, ASD and SCZ patients, respectively. Together, 
Pfun DNMs presented a gradient of effect sizes and con-
tributed in 38.11%, 34.40%, 33.31%, 10.98% and 6.91% of 
patients with ID, EE, UDD, ASD and SCZ, respectively. 
These results suggested that DNMs play strong roles in the 
etiology of ID, EE, and UDD, and moderate roles in ASD, 
compared to general roles in SCZ.

Genetic Similarity Among the Five Disorders

Due to the clinical similarity between NPDs, we explored 
genes overlap among the five disorders based on DNMs 

with different functional effects. We found that genes 
with LoF, Dmis, as well as Pfun DNMs were signifi-
cantly shared among the five disorders. However, a com-
pellingly divergent degree of genes overlap was also 
observed (Fig.  1; Table  S2). Specifically, we found a 
high degree of overlapping Pfun genes between UDD and 
ID [padj = 3.85E−5, with an observed-to-expected ratio 
(O/E) = 10.51], EE and ID [padj = 3.85E−5, (O/E) = 8.21], 
and UDD and EE [padj = 1.11E−4, (O/E) = 6.03]. We also 
observed that ASD showed a secondary (lesser) degree of 
genetic overlap with ID [padj = 3.85E−5, (O/E) = 4.33], EE 
[padj = 9.73E−5, (O/E) = 3.36] and UDD [padj = 3.85E−5, 
(O/E) = 3.35]. Although SCZ and EE showed signifi-
cant overlap with ASD, ID and UDD, but SCZ and EE 
[(O/E) = 1.59, padj = 0.097] were only very slightly geneti-
cally overlap with each other.

Cross Disorder Analysis Prioritize Novel Candidate 
Gene

Based on the TADA model for Pfun DNMs in five disorder, 
we prioritized 279 candidate genes (FDR < 0.05), containing 
59, 202, 43, and 66 genes in ASD, UDD, EE, and ID, respec-
tively (Table S3). Due to the smaller number of sample size 
and less contribution of DNMs, we did not prioritize any 
candidate genes in SCZ by single-disorder analysis. Since 
these five disorders presented significant genetic similarity, 
we also integrated Pfun DNMs in these five disorders. As a 
result, we prioritized 238 candidate genes with FDR < 0.05, 
including 42 novel candidate genes that were not included 
in the above 279 candidate genes (Table S3). In addition, 
we also noted that 43 of the 238 candidate genes showed 
stronger statistical evidence by integrated analysis. After 
removing redundancy between the above two strategies, 
321 candidate genes were finally prioritized (Table 2). We 
found that Pfun DNMs of these candidate genes account for 
27.37%, 26.81%, 21.54%, 7.14%, and 3.20% patients with 
UDD, ID, EE, ASD, and SCZ, respectively (Table S4). 
For example, SCN2A carrying the largest number of Pfun 
(n = 48), accounts for 0.40% (n = 17), 0.88% (n = 9), 0.94% 
(n = 9), 0.18% (n = 12), 0.091% (n = 1) of patients with 
UDD, ID, EE, ASD and SCZ, respectively.

Based on the strength of the statistical evidence (FDR), 
we ranked candidate genes into four tiers, namely: tier 1 
(FDR ≤ 0.0001, n = 126), tier 2 (0.0001 < FDR ≤ 0.001, 
n = 34), tier 3 (0.001 < FDR ≤ 0.01, n = 54), and tier 4 
(0.01 < FDR < 0.05, n = 107). In addition, 26.48% (85/321) of 
candidate genes carrying Pfun DNMs in only one disorder and 
32.71% (105/321), 27.10% (87/321), 13.71% (44/321) of can-
didate genes carrying Pfun DNMs in two, three, and at least 
four disorders, respectively (Table 2). For example, ATP1A3 
(FDR = 2.61E−5), PBX1 (FDR = 3.95E−6) carried Pfun 
DNMs in three disorders and KIAA2022 (FDR = 6.34E−7), 
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Table 1   Burdens and contributions of different classes of DNMs in five disorders

“Clinical implicated DNMs” means the estimated proportion of DNMs in each disorder involved in the etiology of disorders. “Contribute to 
patients” means the proportion of patients can be interpreted by DNMs based on the clinical implicated DNMs. We performed a Fisher exact 
test, which normalizes by the number of de novo synonymous mutations in each condition to adjust the batch effects in different studies. The 
Benjamini and Hochberg false discovery rate (FDR) procedure was used to adjust for multiple testing. padj below 0.05 were highlighted in bold
ASD autism spectrum disorder, UDD undiagnosed developmental disorder, EE epileptic encephalopathy, ID intellectual disability, SCZ schizo-
phrenia, NPDs neuropsychiatric disorders, integration of these five disorders, DNMs de novo mutations, OR odds ratio, CI confidence interval, 
Dmis deleterious missense variants as predicted by ReVe, Tmis tolerant missense variants, LoF loss-of-function variants including frameshift, 
stoploss and stopgain, splicing variants, Pfun putative functional variant including Dmis and LoF variants

Disorders (N) Category LoF Dmis Pfun Tmis Synonymous

ASD (6511) DNMs 1228 1633 2861 3406 1864
p 6.80E−09 6.00E−04 9.81E−08 0.20
padj 2.72E−08 8.00E−04 1.96E−07 0.20
OR 1.49 1.23 1.33 1.07
95% Cl 1.30–1.72 1.09–1.39 1.20–1.48 0.97–1.18
Clinical implicated DNMs (%) 33.06 18.92 24.99
Contribute to patients (%) 6.24 4.75 10.98

UDD (4293) DNMs 1,382 1,898 3,280 2676 1607
p 2.11E−22 6.66E−17 6.15E−26 0.60
padj 4.22E−22 8.88E−17 2.46E−25 0.60
OR 1.95 1.66 1.77 0.97
95% Cl 1.70–2.24 1.47–1.88 1.59–1.97 0.88–1.08
Clinical implicated DNMs (%) 48.72 39.86 43.59
Contribute to patients (%) 15.68 17.62 33.31

EE (933) DNMs 192 350 542 414 192
p 5.03E−12 1.66E−20 1.90E−22 0.018
padj 6.71E−12 3.32E−20 7.60E−22 0.018
OR 2.27 2.57 2.45 1.26
95% Cl 1.79–2.88 2.09–3.16 2.03–2.97 1.04–1.53
Clinical implicated DNMs (%) 55.90 61.03 59.22
Contribute to patients (%) 11.50 22.90 34.40

ID (1022) DNMs 309 366 675 447 248
p 7.94E−24 2.91E−14 2.23E−24 0.59
padj 1.59E−23 3.88E−14 8.92E−24 0.59
OR 2.82 2.08 2.36 1.05
95% Cl 2.2–3.48 1.71–2.52 1.99–2.81 0.88–1.26
Clinical implicated DNMs (%) 64.61 51.87 57.70
Contribute to patients (%) 19.53 18.58 38.11

SCZ (1094) DNMs 136 217 353 450 241
p 0.045 0.028 0.011 0.35
padj 0.060 0.056 0.044 0.35
OR 1.28 1.27 1.27 1.09
95% Cl 1.00–1.64 1.02–1.57 1.05–1.54 0.91–1.31
Clinical implicated DNMs (%) 21.85 21.11 22.40
Contribute to patients (%) 2.72 4.19 6.91

NPDs (13,853) DNMs 3247 4464 7711 7393 4152
p 3.53E−20 4.68E−14 1.85E−22 0.39
padj 7.06E−20 6.24E−14 7.40E−22 0.39
OR 1.77 1.51 1.61 1.04
95% Cl 1.56–2.01 1.36–1.69 1.46–1.78 0.95–1.14
Clinical implicated DNMs (%) 43.61 33.93 38.01
Contribute to patients (%) 10.22 10.94 21.16

Control (3391) DNMs 411 662 1073 1595 932
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AGO1 (FDR = 3.31E−6), NACC1 (FDR = 4.38E−4) in four 
disorders, and increase significant genetic evidence from com-
bined analysis. To test the disorder bias (one disorder harbor 
significant enrichment of DNMs in specific gene than other 
disorders) of specific candidate gene, we performed Poisson 
rate test as our previous studies (Li et al., 2016). For the 236 
candidate genes carrying Pfun DNMs in at least two disor-
ders, we found that 51 genes also presented disorder bias, 
including 33 genes in UDD, 11 genes in EE, seven genes in 
ID (Table S5).

In three recent studies(Coe et al., 2019; Gonzalez-Mantilla 
et al., 2016; Nguyen et al., 2017) which integrated rare vari-
ants and/or DNMs in multiple NPDs to identify risk genes, 
64.49% (207/321) of candidate genes were identified, com-
pared to 35.51% (114/321) genes being identified here (Fig. 
S2). Among these 114 novel candidate genes, 5, 9, 32, 68 
genes were classified into tier 1 (KIAA2022, KCNT1, ATP1A3, 
NALCN, SOX11), tier 2 (GFOD2, SLC22A23, SNAP25, 
NACC1, RFX3, AKT3, LOC400927-CSNK1E, DHDDS), tier 
3, and tier 4, respectively. We performed literature searches to 
find genetic or functional evidence of these novel candidate 
genes, and found 54.39% (62/114) of which were reported 
associated with human brain disorders. Moreover, 85.71% 
(12/14) of novel candidate genes in tier 1 and tier 2 associated 
with neurodevelopmental disorders (Table S6).

Expression Patterns and Characteristics 
of Candidate Gene

The spatiotemporal expression patterns of candidate genes 
represent a quantitative phenotype that provides an in-depth 

view of the molecular pathways disrupted in NPDs. Based 
on transcriptomic data of brain samples from the BrainSpan 
database, we found that 250 of 321 genes could be classified 
into two independent modules (M1–M2) with highly similar 
expression patterns during development (Fig. 2a; Table S7). 
Genes in M1 (68.4%, 171/250) exhibited high expression 
in embryonic and early-to-middle fetal periods [8–24 post-
conceptual weeks (pcw)] and then gradually decreased. In 
contrast, candidate genes in M2 (31.6%, 79/250) showed low 
expression during prenatal periods. We then tested whether 
candidate genes with FDR < 0.05 in each disorder were sig-
nificantly enriched in specific modules compared to all can-
didate genes in the coexpression modules and found that 26 
of 43 (60.47%) EE genes belonged to M2 (Fisher’s exact test, 
p = 7.07E−6, OR = 4.66, 95% CI 2.30–7.67) and only 8 of 43 
(18.60%) EE genes in M1 (Fisher’s exact test, p = 1.55E−5, 
OR = 4.97, 95% CI 2.18–12.79) (Fig. 2b). In addition, genes 
with Pfun DNMs existing in several disorders were more 
likely to belong to coexpression modules (Ordered logistic 
regression, p = 2.07E−7) including chromatin related M1 
(Ordered logistic regression, p = 1.08E−2) and synapse 
related M2 (Ordered logistic regression, p = 3.81E−2), sug-
gesting the profound effect of chromatin and synapse on the 
etiology of multiple disorders.

Since the expression levels of candidate genes changed 
dramatically in the human brain during the fetal period 
(described above), we characterized the profiles of candidate 
genes based on prenatal neocortical samples from the Brain-
Span database. Here, we identified three modules (Ma–Mc) 
involved in 210 of 321 candidate genes with distinct laminar 
neocortical expression patterns (Fig. 2c; Table S7). Genes 

Fig. 1   Overlap of genes across five NPDs based on de novo muta-
tions. Overlap of genes among disorders were performed based on 
three classes of variants include LoF, Dmis and Pfun. O/E ratio of 
observed to expected numbers of shared genes, Dmis Deleterious 
missense variants, Tmis Tolerant missense variants, LoF loss of func-

tion. LoF include frameshift, stoploss and stopgain, splicing variants, 
Pfun Putative functional variants, including Dmis and LoF variants. 
The Benjamini and Hochberg false discovery rate (FDR) procedure 
was used to adjust for multiple testing
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in Ma (57.62%, 121/210) were high expressed in the middle 
to upper layers. However, genes in Mb (23.81%, 50/210) 
presented a relatively reversed expression pattern compared 
to Ma. Genes in Mc (18.57%, 39/210) showed a relatively 
stable expression level in different layers. Similar to spatio-
temporal expression patterns described above, convergent 
and divergent features were observed in different disor-
ders (Fig. 2d). Specifically, 58.14% (25/43) of EE genes 
belonged to Ma (Fisher’s exact test, p = 0.013, OR = 2.29, 
95% CI 1.15–4.66). In addition, genes carrying Pfun DNMs 
in a higher number of disorders were more likely to be 

enriched coexpression modules (Ordered logistic regression, 
p = 1.60E−3), particularly in Ma (Ordered logistic regres-
sion, p = 6.59E−6), along with a concurrent enrichment in 
synaptic related function.

Functional Network and Characteristics 
of Candidate Gene

We next constructed a network which contained 84.11% 
(270/321) of the candidate genes that were co-expressed 
at mRNA level and/or displayed interactions at the protein 

Fig. 2   Expression characteristics of candidate genes in the human 
brain. a Spatiotemporal expression pattern of candidate genes based 
on RNA-seq data from BrainSpan. 250 of 321 Candidate genes could 
be classified into two co-expression modules: M1 (n = 171) and M2 
(n = 79). MFC medial prefrontal cortex, OFC orbital frontal cortex, 
DFC dorsolateral prefrontal cortex, VFC ventrolateral prefrontal 
cortex, M1C primary motor cortex, S1C primary somatosensory cor-
tex, IPC inferior parietal cortex, A1C primary auditory cortex, STC 
superior temporal cortex, ITC inferior temporal cortex, V1C primary 
visual cortex, HIP hippocampus, AMY amygdala, STR striatum, MD 
mediodorsal nucleus of thalamus, CBC cerebellar cortex. b Distri-
bution of candidate genes at different conditions in the spatiotem-
poral coexpression modules. Candidate genes per disorder refers to 
genes with FDR < 0.05 based on putative functional DNMs in each 
individual disorder (ASD, UDD, EE, ID). Number of shared disor-
ders refers to candidate genes in modules carrying Pfun in one, two, 
three or more than four disorders (1, 2, 3, > 4). We used the number 

of all candidate genes with expression in RNA-seq data of BrainSpan 
to set the background (All). c Neocortical expression pattern of can-
didate genes based on microarray data from micro-dissected human 
prenatal neocortex. A total of 210 candidate genes could be classi-
fied into three co-expression modules: Ma (n = 121), Mb (n = 50) 
and Mc (n = 39). SG subpial granular zone, MZ marginal zone, CPo 
outer cortical plate, CPi inner cortical plate, SP subplate zone, IZ 
intermediate zone, SZo outer subventricular zone, SZi inner subven-
tricular zone, VZ ventricular zone. d Distribution of candidate genes 
in different conditions in the modules. Candidate genes per disorder 
refers to genes with FDR < 0.05 based on putative functional DNMs 
in individual disorders (ASD, UDD, EE, ID). Number of shared dis-
orders refers to candidate genes carry Pfun in one, two, three or more 
than four disorders (1, 2, 3, > 4). We used the number of all candidate 
genes with expression in microarray data to set background levels 
(All). M0 candidate genes not be included into coexpression modules. 
*p < 0.05; **p < 0.01; ***p < 0.001
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level (Fig. 3a). We noted that 208 of 270 genes (77.04%) 
in the functional network were shared genes, compared to 
28 of 51 genes (54.90%) that were not included in the net-
work (Fisher’s exact test p = 7.18E−3, OR = 2.51, 95% CI 
1.26–4.94). In addition, genes in the network carrying Pfun 

DNMs in a higher number of disorders showed more inter-
connectedness with others based on both coexpression data 
(Spearman’s rank correlation = 0.21, p = 1.58E−5, Fig. 3b) 
and protein–protein interaction data (Spearman’s rank cor-
relation = 0.20, p = 3.71E−4, Fig. 3b) suggesting that shared 

Fig. 3   Functional network of candidate genes. a A network repre-
sentation to show connectivity between candidate genes based on 
co-expression and protein–protein interactions (PPI). Dotted lines 
and full lines between nodes represent co-expression and PPI, respec-
tively. The node size and color of the node boundary represent the 
number of putative functional variants and shared disorders for spe-
cific genes. Colors within nodes indicate the distribution of putative 
functional variant in each disorder. b Box plots for the relationship 
between the number of candidate genes connected with others, and 
the gene intolerance score, and the number of shared disorders. Top, 
co-expression and protein–protein interactions; bottom, residual vari-

ation intolerance score (RVIS) and substitution intolerance scores 
from Aggarwala et  al., Nature Genetics 2016. c Top 20 clusters of 
functional enrichment for candidate gene (gene ontology terms with a 
similarity > 0.3 were merged into one cluster). d Distribution of genes 
in different conditions in the clusters related to their chromatin and 
synaptic function. Candidate genes per disorder refers to genes with 
FDR < 0.05 based on putative functional DNMs for individual disor-
ders (ASD, UDD, EE, ID). Number of shared disorders refers to all 
candidate genes carrying Pfun in one, three or more than four disor-
ders (1, 2, 3, > 4). We used the number of all candidate genes to set 
the background (All). *p < 0.05; **p < 0.01
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genes were more likely to be hub gene. Moreover, we found 
that genes shared by more disorders were more likely to 
be intolerant to mutation based on two different methods, 
residual variation intolerance score (RVIS; Petrovski et al., 
2013) (Spearman’s rank correlation =  − 0.44, p = 1.71E−15, 
Fig.  3b) and Aggarwala constraint metrics (Aggarwala 
& Voight, 2016) (Spearman’s rank correlation = 0.43, 
p = 3.60E−12, Fig. 3b). These results suggested that genetic 
variants of shared genes may presented higher penetrance by 
regulating more genes.

Subsequently, we performed functional annotation and 
identified several gene ontology (GO) terms involved in 
NPDs based on the 321 candidate genes, including chro-
matin, chromosome, synapse and neuron related function 
(Fig. 3c). We found that EE genes were more likely to be 
involved in synapse relation function (20/43, Fisher’s exact 
test, p = 1.28E−3, OR = 3.08, 95% CI 1.48–6.37), but not 
chromatin (3/43, Fisher’s exact test, p = 1.43E−3, OR = 5.50, 
95% CI 1.69–28.47) (Fig. 3d). In addition, candidate genes 
with Pfun DNMs in multiple disorders were more likely to 
have enriched chromatin function (Ordered logistic regres-
sion, p = 0.023) as well as synaptic function (Ordered logis-
tic regression, p = 0.014), suggesting essential roles for these 
two pathways in the common etiology in NPDs.

Discussion

The high heritability of NPDs provides an opportunity 
to understand their etiologies from a genetic perspective. 
DNMs with strong functional effects have been widely 
demonstrated to significantly contribute to the etiology of 
NPDs. Therefore, we try to integrate DNMs data from five 
NPDs with phenotypic similarity to identify novel candidate 
gene and decipher the association among NPDs from new 
perspectives.

Our data showed that Pfun DNMs rather than Tmis and 
synonymous DNMs play broad roles in the five NPDs, along 
with compellingly different degrees of DNM burden and 
contribution to phenotypes. First, ID, EE and UDD pre-
sented a high degree of DNMs burden and we estimated that 
Pfun DNMs contributed to these NPDs in more than 30% 
of patients. Our results strengthen previous studies which 
showed that DNMs result in a diagnostic yield of 42%, 40% 
and 26.9% for UDD (Deciphering Developmental Disor-
ders, 2017), ID (Gilissen et al., 2014), and EE (Hamdan 
et al., 2017), respectively. Second, ASD presented a moder-
ate degree of DNMs burden, and Pfun DNMs contributing 
in about 10% of patients with ASD. Other genetic variants 
might be involved in the etiology of ASD, such as de novo 
promoter variants (An et al., 2018) and common variants 
(Grove et al., 2019). Additionally, patients with ASD also 
present phenotype of developmental delay and ID (Iossifov 

et al., 2014; Martin et al., 2018). Currently study found that 
patients carrying DNMs in ASD-NDD genes (gene carry-
ing more DNMs in other neurodevelopmental disorder than 
ASD) exhibited later walk and lower IQ than patients carry-
ing DNMs in ASD-predominant genes (gene carrying more 
DNMs in ASD than other neurodevelopmental disorder) 
(Satterstrom et al., 2020). However, DNMs also significant 
contribute to ASD when removed the influence of IQ (Sat-
terstrom et al., 2020). Third, SCZ showed the lowest degree 
of DNMs burden and contribution, indicating that DNMs 
are probably not the major genetic factor for the etiology of 
SCZ. Our results expand on the highly polygenic nature of 
previous studies which reported that common variants could 
account for over 30% of SCZ (Li et al., 2017c; Ripke et al., 
2013), along with more than one hundred of SCZ-associated 
loci having been identified by GWAS (Li et al., 2017c).

We then estimated genetic association and observed sig-
nificant overlaps in genes with LoF, Dmis, and Pfun DNMs 
among the five disorders. We found that UDD, ID and EE 
showed the strongest genetic similarity [(O/E) > 6], provid-
ing genetic evidence for the strong comorbidity observed 
among these three disorders. For example, a previous clini-
cal investigation showed that 41.6% of patients with severe 
ID had symptoms of epilepsy (Robertson et al., 2015). In 
addition, ASD also showed relatively moderate genetic over-
lap with UDD, EE and ID [3 < (O/E) < 4]. Furthermore, SCZ 
was slightly but significantly correlated with ID, UDD and 
ASD [1 < (O/E) < 3]. Although we did not observe signifi-
cant overlap of genes between SCZ and EE [(O/E) = 1.59, 
padj = 0.097], the trends suggest that they are genetically 
associated. We encourage further studies could investigate 
the associations between SCZ and EE based on larger sam-
ple size.

We totally prioritized 321 candidate genes including 
35.51% (114/321) candidate genes that were not reported in 
previous cross-disorder studies (Coe et al., 2019; Gonzalez-
Mantilla et al., 2016; Nguyen et al., 2017), which might be 
attributed to the integration of a larger sample size of dis-
orders than previously and increased the statistical power. 
Based on literature search 54.39% (62/114) these novel 
candidate genes were reported associated with human brain 
disorders and 85.71% (12/14) of high confidence genes in 
tier 1 and tier 2 associated with neurodevelopmental dis-
orders. These results highlight the advantages of integra-
tion of genetic data from different disorders with similar 
phenotypes. We noted that 73.52% (236/321) of candidate 
gene carry Pfun DNMs in at least two disorders, suggesting 
that DNMs with different functional effects in certain genes 
contributed to the differential etiology of the disorders. For 
example, missense mutations in SCN2A (Ben-Shalom et al., 
2017; Wolff et al., 2017) presented as gain-of-function in 
early onset EE and loss-of-function in late onset EE and 
ASD, respectively. The mutations in GABRB3 (Shi et al., 
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2019) and GRIN2D (XiangWei et al., 2019) also exhibited 
complexity of the pathological mechanisms. In addition, 
patients with DNMs in shared genes may exhibit wide range 
of phenotypes, but original studies only give priority to a 
certain disorder. For example, a large sequencing study used 
ASD as the inclusion criteria but took other comorbidities 
(ID/EE) into secondary consideration (Iossifov et al., 2014). 
It is important to recheck clinical phenotype, once a patient 
that was diagnosed with one NPD carrying Pfun variant in 
candidate gene of another NPD. It should also be noted that 
21.61% (51/236) of shared genes carrying Pfun DNMs were 
biased to a specific disorder including 33 genes in UDD, 11 
genes in EE and seven genes in ID, which consistent with 
recently findings (Coe et al., 2019). A recent study employed 
large-scale exome sequencing in ASD and identified 102 
ASD-related risk genes (Satterstrom et al., 2020). The dis-
order bias of gene in our findings are also in agreement with 
this study. For example, 79.31% (23/29) of the Pfun DNMs 
were detected in patients with EE and was defined as one of 
the “seed” gene to discover the gene group that related with 
EE in current study (Chow et al., 2019). We observed that 
26.48% (85/321) candidate genes carrying Pfun DNMs were 
present in only one disorder. Unique genes and biased genes 
suggest that a definition of “molecular endophenotypes” 
should be used in genetic counselling and genetic diagnosis, 
as “functional cellular endophenotypes” (Lago et al., 2018). 
Molecular endophenotypes represent a plausible strategy to 
summarize complex NPDs with high clinical heterogene-
ity, by separating them into different subtypes with similar 
pathogenic mechanisms based on DNMs, such as MECP2 
variants in patients with Rett syndrome (Amir et al., 1999; 
Tillotson et al., 2017).

The expression patterns and functional networks of can-
didate genes represent quantitative phenotypes and pro-
vide an in-depth view of NPDs (Li, Santpere, et al., 2018; 
Parikshak et al., 2013). Our results showed that candidate 
genes associated with NPDs presented specific spatiotem-
poral expression patterns in the human brain and prenatal 
neocortex, reflecting the wax and wane function of candi-
date genes at different times and in regions of the brain. 
We identified two spatiotemporal expression patterns of 
candidate genes (Fig. 2a). Genes in M1 exhibited high 
expression in embryonic and early-to-middle fetal periods 
and related to chromatin modification which associated 
with expression regulation. In contrast, candidate genes 
in M2 showed high expression during postnatal periods 
and related to synaptic communication (Fig. 2b). These 
expression pattern consistent with current study which 
found that genes involved in expression regulation high 
express during prenatal time and in neuronal communica-
tion genes high express during postnatal time (Satterstrom 
et al., 2020). Disruptive DNMs in synaptic communica-
tion related gene might impact on neurotransmission in 

ASD and other neurodevelopmental disorders, whereas 
chromatin modification related gene might regulate func-
tional pathway that associate with these disorders. An 
example is that patients carrying disruptive mutations in 
chromodomain related gene CHD8 and its target genes 
exhibited similarly clinical phenotypes (Beighley et al., 
2020). Candidate genes for EE exhibited more specific 
features related to their expression pattern and functional 
pathways comparing to ASD, ID and UDD. More impor-
tantly, genes with Pfun DNMs shared by more disorders 
were more intolerant to genetic variants and were more 
likely to participate in chromatin and synaptic function, 
highlighting the core roles of shared genes and these two 
functional pathways in maintaining the normal function of 
human brain. Dysfunction of shared genes may cause the 
cascading paralysis of biological processes and contribute 
significantly to the occurrence of multiple disorders.

We acknowledge several limitations in this study. First, 
integrated DNMs derived from several different cohorts 
would increase the statistical power of candidate gene 
detection, but due attention should be paid to the lack of 
uniform quality control among different studies. Although 
we used synonymous DNMs as standardizations to remove 
confounding factors, bias maybe still be present. Second, 
an unbalanced sample size among NPDs might also influ-
ence the power of discoveries for each disorder. Third, 
we prioritized several candidate genes with strong statisti-
cal support but lack functional experiments. Fourth, both 
genetic and environmental factors are involved in the etiol-
ogy of NPDs, and the combination of these factors should 
be the topic of further research to fully understand the 
etiology of NPDs.

This study demonstrated that DNMs play relatively 
strong roles in NPDs. In addition, significant genes over-
lap among the five NPDs has provided genetic evidence 
for clinical comorbidity, which consistent with previous 
proposed to encompass genetic data of a wide spectrum 
of neuropsychiatric disorders to identify candidate gene 
(Moreno-De-Luca et  al., 2013). Genotype–phenotype 
correlation analysis of candidate genes prioritized in this 
study are required in the future to strengthen genetic evi-
dence and further for genetic counseling and the clini-
cal assessment of NPDs. The expression patterns and 
functional network offer novel insight for the shared and 
unique genetic mechanisms in the etiology of NPDs.
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