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Abstract

An efficient method for finding a better maximizer of computationally extensive probability

distributions is proposed on the basis of a Bayesian optimization technique. A key idea of

the proposed method is to use extreme values of acquisition functions by Gaussian pro-

cesses for the next training phase, which should be located near a local maximum or a

global maximum of the probability distribution. Our Bayesian optimization technique is

applied to the posterior distribution in the effective physical model estimation, which is a

computationally extensive probability distribution. Even when the number of sampling points

on the posterior distributions is fixed to be small, the Bayesian optimization provides a better

maximizer of the posterior distributions in comparison to those by the random search

method, the steepest descent method, or the Monte Carlo method. Furthermore, the Bayes-

ian optimization improves the results efficiently by combining the steepest descent method

and thus it is a powerful tool to search for a better maximizer of computationally extensive

probability distributions.

Introduction

Bayesian optimization [1–5] has recently attracted much attention as a method to search the

maximizer/minimizer of a black-box function in informatics and materials science [6–12]. In

this method, the black-box function is interpolated by Gaussian processes. Then the interpo-

lated function is used to predict the maximizer/minimizer of the black-box function. The

Bayesian optimization is effective for problems where the value on the black-box function can-

not be easily obtained. In other words, it is effective when the data for the black-box function

is limited.

We are currently developing a generic effective physical model estimation method from

experimentally measured data using machine learning, which relates to calibration in data

science [13–15]. As the first example, we developed a method to estimate a set of model
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parameters x = (x1, . . ., xK) in the Hamiltonian HðxÞ, where K is the number of model parame-

ters [16]. Let yex be the set of physical quantities {yex(gl)}l=1,. . .,L depending on the external

parameter gl with L being the number of data. By using Bayes’ theorem, the posterior distribu-

tion P(x|yex), or the conditional probability of x given yex is expressed as

PðxjyexÞ ¼
PðyexjxÞPðxÞ

ZðyexÞ
; ð1Þ

where P(x) and Z(yex) are the prior distributions of the model parameters and the normaliza-

tion constant of the posterior distribution, respectively. Assuming that the observed noise fol-

lows a Gaussian distribution with a mean of zero and a standard deviation of σ, the likelihood

function P(yex|x) is given as

PðyexjxÞ / exp �
1

2s2

XL

l¼1

ðyexðglÞ � y
calðgl; xÞÞ

2

" #

; ð2Þ

where {ycal(gl, x)}l=1,� � �,L is the gl dependence of the physical quantity calculated from HðxÞ,
and hereinafter let ycal(x) be the set of {ycal(gl, x)}l=1,� � �,L. Then, the posterior distribution is

expressed as

PðxjyexÞ / exp ½� EðxÞ�; ð3Þ

where the “energy function” as a function of x is given by

EðxÞ ¼
1

2s2

XL

l¼1

ðyexðglÞ � y
calðgl; xÞÞ

2
� log PðxÞ: ð4Þ

From the viewpoint of the maximum a posterior (MAP) estimation, the plausible model

parameters for explaining yex are obtained as the maximizer of Eq (3) or the minimizer of Eq

(4). Thus, the most fundamental task for construction of an effective model is summarized to

maximize Eq (3) or minimize Eq (4).

A computational method to evaluate the posterior distribution or energy function consists

of a double-loop calculation. In the inner loop, the physical quantities ycal(x) are calculated

from HðxÞ when a set of model parameters is given. The computational cost of the inner loop

depends on the simulation method used to calculate ycal(x). As discussed in Ref. [16], the stee-

pest descent method is a promising way for this calculation when the input data is assumed to

be explained by a simple classical Hamiltonian at the zero temperature. Evaluating ycal(x) for

the given HðxÞ, in general, requires statistical/quantum mechanical many-body calculations,

such as the Markov-chain Monte Carlo (MCMC) method [17–21], the exact diagonalization

method [22–24], and the density matrix renormalization group method [25–27]. All of which

drastically increase the computational cost for the inner loop.

In the outer loop, a sampling of a model parameter x in the posterior distribution is per-

formed. In Ref. [16], we used the MCMC method with the exchange Monte Carlo method

[28]. Although this combined method efficiently yields the global maximum of the probability

distribution even when many local maxima exist, an enormous number of sampling points is

very time consuming. Consequently, the MCMC approach to calculate the outer loop of a

complicated effective model estimation is one of the main obstacles for applications in material

science.

In this paper, a computational method that estimates the effective model with a reduced

outer loop computational cost is discussed on the basis of a Bayesian optimization for compu-

tationally extensive probability distributions. In the our Bayesian optimization technique,

BO for probability distributions
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extreme values of acquisition functions obtained by Gaussian processes are used as candidates

of maximizers of Eq (3) or minimizers of Eq (4). We investigate the efficiency of our Bayesian

optimization technique to search the minimizer of E(x) defined by Eq (4) relative to the ran-

dom search method, the steepest descent method, and the Monte Carlo method when the

number of sampling points is fixed to be small. In our demonstrations, the magnetization

curve from the classical Ising model calculated by the mean-field approximation and the spe-

cific heat from the quantum Heisenberg model calculated by the exact diagonalization method

are treated as the inputted measured data. Consequently, it is found that the Bayesian optimi-

zation is useful to search a better maximizer of the computationally extensive probability

distribution.

Bayesian optimization

Gaussian process

The Gaussian processes are a powerful machine learning technique to estimate unknown

data from known data sets [29]. Here we consider the case when the given data set is

{xn, E(xn)}n=1,. . .,N, where N is the number of data. In our case, xn is the set of model parame-

ters in the effective physical model and E(xn) denotes the value of the energy function E(x)

defined by Eq (4) on xn. Using Gaussian processes which are zero mean, the conditional

probability P(E(x)|x) of E(x) given any x is written as the Gaussian distribution with a mean

of μ(x) and a standard deviation of δ(x):

mðxÞ ¼ kT
ðKþ lINÞ

� 1E; ð5Þ

d
2
ðxÞ ¼ c � kT

ðKþ lINÞ
� 1k; ð6Þ

where IN is the N-dimensional identity matrix. Furthermore, E, k, K, and c are defined as

E ¼ ð Eðx1Þ � � � EðxNÞ Þ
T
; ð7Þ

k ¼ ð kðx1;xÞ � � � kðxN ;xÞ Þ
T
; ð8Þ

K ¼

kðx1; x1Þ � � � kðx1; xNÞ

..

. . .
. ..

.

kðxN ; x1Þ � � � kðxN ; xNÞ

0

B
B
B
B
@

1

C
C
C
C
A
; ð9Þ

c ¼ kðx; xÞ þ l; ð10Þ

where k(xi, xj) is the Gauss kernel function:

kðxi; xjÞ ¼ exp �
1

2g2
k xi � xj k

2

� �

: ð11Þ

Although the computational cost of Gaussian processes is OðN3Þ, some methods to reduce it

including an approximation method and their efficiencies are currently under investigation

[30, 31]. In this formula, λ and γ are the hyperparameters, which should be specified prior to

the analysis. While various methods have been proposed to determine the hyperparameters,

we adopt the cross validation method for determination of the hyperparameters λ and γ, which

are chosen so as to minimize the prediction error. In the cross validation, the data set D, that is,

BO for probability distributions
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{xn, E(xn)}n=1,. . .,N is randomly divided into S data subsets. Each data subset is expressed by Ds
labeled by s = 1, . . ., S. One of the S data subsets is regarded as the testing data, while the

remaining S − 1 subsets are used as training data. For each data subset Gs = D \ Ds, Gaussian

process training is performed when the training data are {xn, E(xn)}n2Gs
. The mean-square

error between the testing data E(xn) and the estimated μ(xn) for n 2 Ds is evaluated. The cross

validation regards the mean-square error as the prediction error when the testing data Ds is

treated as unknown data. The optimal values of λ and γ are evaluated to minimize the predic-

tion error averaged over S data subsets.

Bayesian optimization for computationally extensive probability

distributions

We introduce a Bayesian optimization technique to find a better minimizer for the energy

function E(x) defined by Eq (4), when the number of sampling points is limited. Our Bayesian

optimization is comprised of the following procedure:

Step 1: Sets of model parameters xn are randomly generated with n = 1, . . ., P, and E(xn) is

calculated for the generated xn. That is, the P calculations of ycal(xn) from HðxnÞ are

necessary.

Step 2: Gaussian process is trained for the data set {xn, E(xn)}n=1,. . .,P, yielding the mean value

μ(x) and the standard deviation δ(x) of P(E(x)|x).

Step 3: The steepest descent method with randomly chosen initial parameters is performed for

the three types of acquisition functions [32–35] defined as

fLCBðxÞ ¼ mðxÞ � kdðxÞ; ð12Þ

fGP� LCBðxÞ ¼ mðxÞ � ktdðxÞ; kt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log ðjXjt2p2=6�Þ

p
; ð13Þ

fEIðxÞ ¼ � dðxÞ½ZFðZÞ � �ðZÞ�; Z ¼ ½Emin � mðxÞ�=dðxÞ; ð14Þ

where κ> 0 and 0< �� 1 are the hyperparameters. |X| is the size of the search space, and t
is the step of repetition of BO. Furthermore, ϕ(Z) and F(Z) are the standard normal proba-

bility distribution function and its cumulative distribution function, respectively, and Emin

is the present minimum value of E(x). Then, a local or global minimum x� of acquisition

functions is obtained and Q different model parameters are generated by repeating this

operation. Note that the fixed value of � as 0.5 is used in the analysis of this paper for

simplicity.

Step 4: E(x�) is calculated for each x� obtained in Step 3. By adding the new data, the data set is

updated as {xn, E(xn)}n=1,. . .,P+Q. Here, the Q calculations of ycal(xn) from HðxnÞ are

necessary.

Step 5: Steps 2–4 are repeated R times. In each iteration, the number of data points is increased

by Q evaluation.

Step 6: Finally, the minimum value of E(x) from {xn, E(xn)}n=1,. . .,P+Q×R is determined.

We emphasize that the number of calculations of ycal(xn) from HðxnÞ is Ns = P + Q × R in this

procedure, which corresponds to the number of sampling points on E(x). The computational

cost in Step 3 is low because μ(x) and δ(x) are quickly obtained for a given x. Thus, many can-

didates for a local minimum or a global minimum of E(x) are generated from the acquisition

BO for probability distributions
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functions without calculation of E(x), which is the key of our Bayesian optimization. Notice

that an alternative approach has been proposed for optimizing a continuous function with an

easily-calculable statistical function defined only on discrete grid points, in contrast to the our

method [36].

Results

Application for posterior distribution based on a classical Ising model

We demonstrate an application for posterior distribution in effective physical model estima-

tion based on a classical Ising model in two dimensions. The model Hamiltonian of the classi-

cal Ising model under magnetic field H is defined by

HCðxÞ ¼ �
X

i;j

Jijs
z
i s

z
j � H

X

i

sz
i ; ðsz

i ¼ �1Þ; ð15Þ

where Jij is the exchange interactions between the i-th spin and the j-th spin. Here, we consider

three types of exchange interactions on the square lattice shown in Fig 1(a). In this case, three

different model parameters are to be estimated, that is, x = (x1, x2, x3) = (J1, J2, J3).

To discuss the efficiency of the proposed method for the effective model estimation, a syn-

thesis magnetization curve {mex(Hl)}l=1,. . .,L is used as the input data generated by the same

model of Eq (15). By performing mean-field calculations for the four sublattice model, the

magnetic field dependency of the magnetization is calculated with (x1, x2, x3) = (−1.0, −0.5,

0.3) for a temperature T = 3.0. Here, the Boltzmann constant is set to unity and the physical

energy unit is set to |J1|. Gaussian noise with a mean of zero and a standard deviation of 0.004

is added to the obtained magnetization curve. Fig 1(b) shows the inputted magnetization curve

{mex(Hl)}l=1,. . .,L where the number of data points is L = 200.

To estimate the effective model from {mex(Hl)}l=1,. . .,L, we search the maximizer of the poste-

rior distribution, which is defined as

PðxjfmexðHlÞgl¼1;:::;LÞ / exp ½� ECðxÞ�; ð16Þ

ECðxÞ ¼
1

2s2

XL

l¼1

ðmexðHlÞ � m
calðHl;xÞÞ

2
� log PðxÞ; ð17Þ

Fig 1. (a) Lattice and types of exchange interactions considered in the classical Ising model defined by Eq (15). (b) Inputted magnetization curve

{mex(Hl)}l=1,. . .,L with L = 200 where (x1, x2, x3) = (−1.0, −0.5, 0.3) are used for a temperature T = 3.0.

https://doi.org/10.1371/journal.pone.0193785.g001
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where {mcal(Hl, x)}l=1,. . .,L is the set of calculated magnetization curves from HCðxÞ. In this

demonstration, the mean-field calculations for the four sublattice model are used as the inner

loop calculation method to obtain {mcal(Hl, x)}l=1,. . .,L. Furthermore, instead of treating the

posterior distribution itself, the minimizer of EC(x) is searched. For simplicity, the prior distri-

bution of model parameters P(x) is assumed to be a uniform distribution; that is, P(x) = 1

which corresponds to the least square fitting, and then the factor 1/2σ2 is set to be a constant

without loss of generality.

The minimum values of EC(x) obtained by the random search method, the steepest descent

method, the Monte Carlo method, and the our Bayesian optimization are compared, depend-

ing on the number of sampling points Ns on EC(x). The details of each method are denoted

below.

Random search method. A set of model parameters xn = (x1, x2, x3) is randomly gener-

ated from the region where −5� x1, x2, x3� 5. Then EC(xn) is calculated. This procedure is

repeated Ns times, and the data set fxn;ECðxnÞgn¼1;:::;Ns
is obtained, from which the minimum

value of EC(x) is searched.

Steepest descent method. An initial set of model parameters [i.e. x1 = (x1, x2, x3)] is ran-

domly generated from the region where −5� x1, x2, x3� 5. A set of model parameters is

updated Ns/2 times by using the following equation from xn = (x1, . . ., xk, . . ., xK) to

xnþ1 ¼ ðx1; . . . ; x0k; . . . ; xKÞ:

x0k ¼ xk � a
DE
Dx

; ð18Þ

DE ¼ ECðx1; . . . ; xk þ Dx; . . . ; xKÞ � ECðx1; . . . ; xk; . . . ; xKÞ: ð19Þ

Here, k is randomly chosen from k 2 1, . . ., K where K = 3 in this case, and Δx = α = 0.01.

Notice that the calculation of EC(x) should be repeated twice in each update. Thus, when the

number of updates is Ns/2, the number of sampling points on EC(x) becomes Ns. Using this

update of the model parameters, EC(x) decreases for each update. From the obtained

fxn;ECðxnÞgn¼1;...;Ns=2
, the minimum value of EC(x) is searched.

Monte Carlo method. An initial set of model parameters [i.e. x1 = (x1, x2, x3)] is randomly

generated from the region where −5� x1, x2, x3� 5. A set of model parameters is updated Ns

times using the following Metropolis-type transition probability from xn to xn+1:

wðxnþ1jxnÞ ¼ minf1; exp ½� DEðxnþ1; xnÞ�g; ð20Þ

DEðxnþ1; xnÞ ¼ ECðxnþ1Þ � ECðxnÞ: ð21Þ

Here, the set of model parameters after updating is prepared as xnþ1 ¼ ðx1; . . . ; x0k; . . . ; xKÞ
with x0k ¼ xk þ r from the set of model parameters before updating xn = (x1, . . ., xk, . . ., xK),

where k is randomly chosen from k 2 1, . . ., K, and r is a random number between −1 and +1.

From the obtained fxn;ECðxnÞgn¼1;...;Ns
, the minimum value of EC(x) is searched.

Bayesian optimization. A set of model parameters xn is randomly generated from the

region where −5� x1, x2, x3� 5 and EC(xn) is calculated. This procedure is repeated P = 200

times as the initial data set, and the Bayesian optimization is performed with Q = 10 and

R = (Ns − P)/Q. In the method, the steepest descent method in Step 3 is implemented by using

BO for probability distributions
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the following equation from x = (x1, . . ., xk, . . ., xK) to x0 ¼ ðx1; . . . ; x0k; . . . ; xKÞ:

x0k ¼ xk � a
Df
Dx

; ð22Þ

Df ¼ f ðx1; . . . ; xk þ Dx; . . . ; xKÞ � f ðx1; . . . ; xk; . . . ; xKÞ; ð23Þ

where f(x) expresses the acquisition functions defined by Eqs (12), (13) and (14). Here, k is

randomly chosen from k 2 1, . . ., K, and Δx = α = 0.01. f(x) is defined by Eq (12), which is

obtained from Gaussian process. In our calculation, the steepest descent method is performed

with 100 updates to obtain the extreme value of f(x). From the obtained fxn;ECðxnÞgn¼1;...;Ns
,

the minimum value of EC(x) is searched.

Fig 2(a) is the sampling number Ns dependence of the averaged minimum value Eav of

EC(x) for 100 independent runs with each methods. The error bars are calculated from the

standard deviation. The Bayesian optimization yields the smallest Eav, indicating that the

Bayesian optimization gives better minimizers of EC(x) even if Ns is small. Furthermore, the

most successful analysis is given by the Bayesian optimization using f(x)LCB with κ = 20, while

the steepest descent method and the Monte Carlo method produce worse results than the ran-

dom search method. These methods are frequently trapped at a local minimum depending on

the initial set of model parameters, and eventually Eav stays at large values.

Fig 3(a) is the distribution of the estimated model parameters for 100 independent runs

with various Ns by the random search method and the Bayesian optimization. The black lines

Fig 2. Results of the average Eav of the minimum values of EC(x) obtained from 100 independent runs in the effective model estimation of the

classical Ising model. (a) Eav as a function of Ns, which is the number of sampling points on EC(x), obtained from the random search method (red

circles), the steepest descent method (yellow circles), the Monte Carlo method (green circles), and the Bayesian optimization (blue circles). (b) Eav as a

function of Ns obtained from the random search method (RS) (red circles), the Bayesian optimization using fLCB(x) with κ = 20 (BO) (blue circles), the

random search method with the steepest descent method (RS+SD) (red diamonds), and the Bayesian optimization with the steepest descent method

(BO+SD) (Blue diamonds). Dashed lines connect the initial Eav (circle point) by only RS or BO and the obtained Eav (diamond point) by performing

the steepest descent method with 50 updates after RS or BO.

https://doi.org/10.1371/journal.pone.0193785.g002
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indicate exact solutions by which the input magnetization curve without Gaussian noise is gen-

erated, except for the case where any one of the parameters xk has zero. As Ns increases, the

results by the Bayesian optimization converge on the black lines, implying that the model

parameters can be correctly estimated with a high probability. On the other hand, the case of

the random search method shows no significant improvement with increasing Ns. This could

be understood by noticing that the accuracy of the acquisition functions by Gaussian processes

in the Bayesian optimization is improved with increasing the sampling points, namely Ns,

while the random search method does not refer to the prior sampling points.

The Bayesian optimization as well as the random search method, in general, does not take

into account local structure of the energy function such as gradient in the parameter space. To

improve the solutions, we consider combinations of the steepest descent method with the ran-

dom search method or the Bayesian optimization. One may expect that the steepest descent

method produces a local minimum or a global minimum around the estimated model parame-

ters by the random search method or the Bayesian optimization. That is, the estimated model

parameters by the random search method or the Bayesian optimization are used as the initial

set of model parameters in the steepest descent method, which is performed with 50 updates.

Fig 2(b) compares Eav’s by the random search method, the Bayesian optimization using fLCB(x)

with κ = 20, and those with the steepest descent method. The drastic improvement can be con-

firmed even for 50 updates in the steepest descent method. Note that if the number of updates

in the steepest descent method is increased, the obtained Eav should be improved. However,

since the number of sampling is also increased, a trade-off between search for initial sets by the

random search method or the Bayesian optimization and evaluation of local structures by the

steepest descent method should be optimized. We confirmed for some cases that the Bayesian

optimization with steepest descent method is the best among the considered methods.

Fig 3(b) shows the distribution of the estimated model parameters. For the Bayesian optimi-

zation with the steepest descent method, the real minimizer of EC(x) is found in all indepen-

dent runs, while some of the obtained results by the random search method with the steepest

descent method differ from the exact solutions, and these cases are trapped in local minima.

The steepest descent method significantly improves the estimates by the Bayesian optimization

and random search methods. The results imply that the Bayesian optimization combined with

the steepest descent method is powerful tool to find the global minimum of EC(x).

Application for posterior distribution based on a quantum Heisenberg

model

The case where the number of model parameters increases against the previous case is consid-

ered when a quantum Heisenberg model on the one-dimensional chain is used (Fig 4(a)). The

model Hamiltonian of the quantum Heisenberg model under magnetic field H is defined by

HQðxÞ ¼ �
X

i;j

Jij½ŝ
x
i ŝ

x
j þ ŝ

y
i ŝ

y
j þ Dŝz

i ŝ
z
j � � H

X

i

ŝz
i ; ð24Þ

where Δ is the parameter for the anisotropy and ðŝx
i ; ŝ

y
i ; ŝ

z
i Þ is the Pauli matrix. Here, the

model parameters are x = (x1, x2, x3, x4, x5) = (J1, J2, J3, Δ, H). Fig 4(a) depicts three types of

exchange interactions.

This demonstration uses the temperature dependence of the specific heat as an input data.

The input specific heat {Cex(Tl)}l=1,. . .,L is generated from the model defined by Eq (24) as fol-

lows. By performing the exact diagonalization method, the temperature dependence of the

thermal average of the specific heat for (x1, x2, x3, x4, x5) = (1.0, 0.8, −0.2, −0.7, 0.3) is calcu-

lated. The Gaussian noise with a mean of zero and a standard deviation of 0.004 is added to

BO for probability distributions
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Fig 3. Results of the estimated model parameters in the effective model estimation based on the classical Ising model. (a) Distribution of the

estimated model parameters from 100 independent runs depending on Ns by the random search method (RS) (red circles) and the Bayesian

optimization using fLCB(x) with κ = 20 (BO) (blue circles). The black lines indicate exact solutions when the input magnetization curve without

Gaussian noise is obtained. (b) Distribution of the estimated model parameters by the random search method with the steepest descent method

(RS+SD) (red diamonds) and the Bayesian optimization with the steepest descent method (BO+SD) (blue diamonds). In these cases, starting from the

results shown in (a) by RS and BO, the steepest descent method is further performed with 50 updates.

https://doi.org/10.1371/journal.pone.0193785.g003

Fig 4. (a) Lattice and types of exchange interactions considered in the quantum Heisenberg model defined by Eq (24). (b) Inputted specific

heat result {Cex(Tl)}l=1,. . .,L with L = 200 and (x1, x2, x3, x4, x5) = (1.0, 0.8, −0.2, −0.7, 0.3).

https://doi.org/10.1371/journal.pone.0193785.g004
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the obtained specific heat. Fig 4(b) shows the temperature dependence of the specific heat with

L = 200, which is used as the input in the effective model estimation. As shown in the previous

case, our task is to search for the minimizer of energy function EQ(x) defined as

EQðxÞ ¼
XL

l¼1

ðCexðTlÞ � CcalðTl;xÞÞ
2
; ð25Þ

where {Ccal(Tl)}l=1,. . .,L is the set of calculated specific heat from HQðxÞ by performing the exact

diagonalization method.

We compared Eav, which is the average of the minimum value of EQ(x) for 100 independent

runs, for the random search method, the steepest descent method, the Monte Carlo method,

and the Bayesian optimization (Fig 5(a)). The setups of these methods are the same as the pre-

vious case except for the number of model parameters (K = 5) and the region in which a set of

model parameters is randomly generated. In this case, we use −3� x1, x2, x3� 3 and −2� x4,

x5� 2. The results are qualitatively the same as the previous case. The most successful analysis

is produced by the Bayesian optimization using f(x)EI. This result is different from the previous

demonstration, which means that an appropriate acquisition function depends on a target

physical model and input physical quantities. Furthermore, as shown in Fig 5(b), the combined

steepest descent method improves the estimates of the Bayesian optimization and the random

search method again. Similar to the previous case, the Bayesian optimization with the steepest

descent method gives a better minimizer of EQ(x). Consequently, we conclude that the Bayes-

ian optimization is useful to find a better maximizer of the posterior distribution in an effective

model estimation with a small number of sampling points.

Fig 5. Results of the average Eav of the minimum values of EQ(x) obtained from 100 independent runs in the effective model estimation of the

quantum Heisenberg model. (a) Eav as a function of Ns obtained from the random search method (red circles), the steepest descent method (yellow

circles), the Monte Carlo method (green circles), and the Bayesian optimization (blue circles). (b) Eav as a function of Ns obtained from the random

search method (RS) (red circles), the Bayesian optimization using fEI(x) (BO) (blue circles), the random search method with the steepest descent

method (RS+SD) (red diamonds), and the Bayesian optimization with the steepest descent method (BO+SD) (blue diamonds). In the steepest descent

method, 50 updates are performed after RS or BO.

https://doi.org/10.1371/journal.pone.0193785.g005
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Discussion

We searched for a better maximizer of a posterior distribution in the effective physical model

estimation which is a computationally extensive probability distribution, using the Bayesian

optimization. It is found for at least two simple models that the Bayesian optimization has a

higher efficiency of finding a better maximizer of the posterior distribution compared to the

random search method, the steepest descent method, and the Monte Carlo method when the

number of sampling points on the posterior distribution is fixed to be small, while an appro-

priate acquisition function providing a high efficiency still depends on the problem to be

solved. Our Bayesian optimization has some hyperparameters, i.e., P, Q, and R. Although we

did not optimize these hyperparameters, the Bayesian optimization is a better method to

obtain the maximizer of the posterior distribution. Particularly, since the value of Q is related

to the batch/parallel problem of the Bayesian optimization [37, 38], some improvement of

the performance is expected by tuning Q. Furthermore, a combination of the Bayesian opti-

mization and the steepest descent method drastically increases the efficiency of finding a bet-

ter maximizer of the posterior distribution. The key of our Bayesian optimization is to

predict a set of model parameters near a local maximum or a global maximum of the poste-

rior distribution from the extreme values of acquisition functions by Gaussian processes,

which requires a relatively low computational cost. Consequently, the model parameters

near a global maximum can be found with a high probability. These facts suggest that the

Bayesian optimization will be a powerful tool for effective model estimations. However, to

find a maximizer of posterior distributions with various types of prior distributions and a

large number of model parameters, the Bayesian optimization may be not always useful.

Then in the future, we will evaluate effective model estimations using the Bayesian optimiza-

tion for actual materials. Because the maximizer of a probability distribution is searched in

many scientific fields, the Bayesian optimization will play an important role in the promotion

of science.
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