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Abstract

The fitness landscape is a concept commonly used to describe evolution towards optimal

phenotypes. It can be reduced to mechanistic detail using genome-scale models (GEMs)

from systems biology. We use recently developed GEMs of Metabolism and protein Expres-

sion (ME-models) to study the distribution of Escherichia coli phenotypes on the rate-yield

plane. We found that the measured phenotypes distribute non-uniformly to form a highly

stratified fitness landscape. Systems analysis of the ME-model simulations suggest that this

stratification results from discrete ATP generation strategies. Accordingly, we define “aero-

types”, a phenotypic trait that characterizes how a balanced proteome can achieve a given

growth rate by modulating 1) the relative utilization of oxidative phosphorylation, glycolysis,

and fermentation pathways; and 2) the differential employment of electron-transport-chain

enzymes. This global, quantitative, and mechanistic systems biology interpretation of fitness

landscape formed upon proteome allocation offers a fundamental understanding of bacterial

physiology and evolution dynamics.

Author summary

Genome-scale models enable quantitative prediction of bacterial phenotypes and a fine-

grained description of the underlying optimal proteome allocation. Thus, we can now

analyze the phenotypic potential of a large number of Escherichia coli genotypes grown

under different conditions, which leads to the discovery of a stratified distribution of phe-

notypes. The observed distribution is determined by distinct ATP generation strategies,

defined as “aero-types”, associated with optimal proteome allocation modulated upon dif-

ferential usage of the electron-transport-chain enzymes. This mechanistic approach offers

us a genome-scale understanding of the fitness landscape, and a fundamental interpreta-

tion of bacterial physiology and evolution dynamics.
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Introduction

Sewall Wright’s fitness landscape [1] represented an early attempt to illustrate the complex

genotype-fitness relationship in a graphical manner that allows an easy conceptualization of

evolutionary dynamics. Technology developments in diverse fields including mutagenesis,

microbial evolution experiments, and high-throughput DNA sequencing methods have now

turned this concept from a metaphor into real data that allows for the reconstruction of the

empirical fitness landscapes [2–4]. Two classes of such landscapes are usually studied to exam-

ine how natural selection may drive a population to the top of a fitness peak. The first one is

constructed based on discreteness of the protein sequences, where evolution is modeled as

movement through the evolutionary intermediates along feasible mutational pathways. This

discrete representation is useful for estimating the probability of evolutionary outcomes [5]

and demonstrating how molecular and epistatic interactions limit the number of accessible

evolutionary paths [6–9]. However, experimental exploration and subsequent mathematical

modeling of the fitness landscape is limited to a well-characterized posterior selection of muta-

tions in an intrinsically high-dimensional genotype space. The second model specifies the phe-

notype-fitness relationship in a continuous and multivariate phenotypic space. It is capable of

fitting variation in landscape structure across many species and environments [10–12], but

with an impaired ability to relate fitness change directly to a specific genetic and molecular

mechanism.

These well-studied fitness landscape models, whether discrete or continuous, address evolu-

tionary dynamics towards an optimal phenotype based on the rare beneficial mutations that

arise historically or in the course of microbial evolution experiments [13]. Directed evolution

expedites the search for beneficial mutations in the high-dimensional sequence space by

enforcing selection in the desired function and discarding those variants with no improve-

ment. This powerful technique is capable of elucidating the molecular mechanisms of adapta-

tion and evolutionary tradeoff in protein properties [14] under diverse environments [15],

therefore greatly enriching our understanding of the adaptive trajectory. However, fitness

effects for the majority of mutations that arise in nature are neutral, slightly deleterious, and

slightly beneficial [16]. The distribution of the fitness effects of these spontaneous mutations in

natural bacterial populations remains unclear.

An alternative approach to explore the fitness landscape and phenotypic distribution comes

from the solution space of a genome-scale metabolic model (M-model) [17, 18]. Genome-scale

models explicitly compute how the system-level optimization of organismal fitness is achieved

through natural evolution while considering the constraints on as many factors as possible.

These include the metabolic burden, resource allocation, and the interactions between gene

and cellular environment [19]. The models’ ability to predict phenotypes and rapidly screen

millions of genotypes allows for the exploration of the change in an optimal solution space

upon gene deletion, providing valuable insight into the impact of gene essentiality [20] under

diverse conditions [21], plasticity and robustness of metabolic networks [22], and the effect of

epistasis interactions on the fitness distribution [23, 24].

Expansion of the M-models to include constraints on the cost of protein biosynthesis has

been improving the accuracy of phenotypic predictions for different organisms under various

environments [25–28]. The genome-scale models of metabolism and protein expression (ME-

models) for E. coli, in particular, explicitly incorporate the full reconstruction of transcription

and translation pathways to allow for quantitative predictions of proteome allocation at the

gene level [29–31] and the ability to predict evolutionary outcomes [32]. A more recent

development further takes into account the temperature-dependent catalytic efficiency and

thermostability of all enzymes in the ME-model (FoldME-model [33]), enabling an explicit
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formulation of the effect of a gene mutation in contrast to a direct gene deletion. This final

improvement provides us with the opportunity to evaluate the phenotypic distribution of nat-

ural E. coli populations on a fitness landscape.

Here, we assemble and analyze large amounts of E. coli phenotypic growth data in the rate-

yield plane and find consistent non-uniformity in the fitness distribution. Both computation-

ally and experimentally determined phenotypes display multiple distinct phenotypic categories

that distribute in stripes on the rate-yield plane and form a landscape with a “stratified” topol-

ogy. We then show, by detailed analysis of metabolic fluxes and protein expression, that the

stratified topography of this phenotypic fitness landscape can be fully described by the energy

production strategy, which in turn is determined by a balance between proteome allocation

cost and the metabolic efficiency of ATP production. Interestingly, we find that a simple quan-

tity—the fraction of total ATP that is generated by the ATP synthase (fATPS)—is capable of out-

lining the stratification. Consequently, we define E. coli “aero-types” based on the multimodal

distribution of fATPS modulated through the discrete usage of electron-transport-chain

enzymes. An aero-type not only describes the cellular respiratory behavior, but also indicates

the associated metabolic state and proteomic compositions. Finally, we discuss how the aero-

type, as an effective fitness descriptor, can be used to address important biological questions

such as the predictability of microbial evolution and the interpretation of the rate-yield

tradeoff.

Results

A stratified structure in the E. coli phenotypic fitness landscape defined on

the rate-yield plane

We used the most fundamental bacterial growth parameters, the biomass yield (Y) and sub-

strate uptake rate (q), to span the phenotypic space for E. coli (Materials and methods). To

gain a comprehensive view of the fitness distribution, we first compiled a compendium of

experimental growth phenotypes from literature augmented with measurements obtained

from our adaptive laboratory evolution (ALE) experiments (Materials and methods and refer-

ences therein). This data set (n = 199) includes characterizations of different naturally occur-

ring E. coli strains, evolved gene knock-out mutants, and growth under various nutrient

conditions. It is immediately noticeable that both the high and low yield regions are densely

populated, yet the regions in between (0.2 < Y< 0.3gDW/g) are almost empty (S1 Fig).

Is the observed non-uniform distribution of the rate-yield phenotype a result of insufficient

sampling from experimental data, or a fundamental property determined by the design of a

cell’s genome and metabolic network? To answer this question, we used the FoldME model

[33] to compute the phenotypic fitness for a large number of in silico strains that sample the

genetic variations of the naturally occurring E. coli genomes (Materials and methods). To

implement such strain sampling, we first selected genes for mutation according to the calcu-

lated frequency of fixed mutations for each gene (S2 Fig). Then, we determined the molecular

effect of the selected mutation by varying the selected enzyme’s catalytic efficiency (keff) and

thermal stability (ΔG) by a random but small amount (see Materials and Methods for more

details). Finally, growth of the sampled strains was simulated under glucose minimal media

with temperature perturbations from 25˚C to 46˚C to take into account the effect of both

genetic mutations and environmental changes.

The calculated fitness effects for the in silico strains were projected onto the rate-yield

plane. The contour plot of a total of 2,200 sampled E. coli strains (Fig 1A) nicely confirms the

non-uniform distribution observed from the experimental data. More importantly, it offers a

characteristic representation for the “phenotypic fitness landscape”, in which growth
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phenotypes densely cluster along a few hyperbolic lines on the rate-yield plane (indicated by

the blue arrows) but rarely fall in between these stratified density peaks.

The metabolic location of ATP production stratifies the phenotypic fitness

landscape

To explain the observed stratification in phenotype distribution, we first examined the meta-

bolic features characterizing the simulated samples within each populated region on the rate-

yield plane. Interestingly, solutions along the densely populated hyperbolic lines (blue arrows

in Fig 1A), where q and Y are positively correlated, share similar features in their flux distribu-

tions in central metabolism (S3 Fig). On the contrary, samples along the constant growth rate

lines (μ-isoclines, red solid lines in Fig 1A) show consistent variation in the metabolic states

that correlate with shifts in the rate-yield phenotype.

Specifically, as Y decreases along a μ-isocline, the following changes in the metabolic state

can be identified through principal component analysis (Fig 1B and S3 Fig): 1) the amount of

ATP produced by ATP synthase decreases; 2) flux through the tricarboxylic acid (TCA) cycle

decreases; 3) total flux through the glycolysis pathway increases; 4) acetate secretion increases;

and 5) the overall metabolic complexity, measured by the number of active reactions,

Fig 1. Multimodal distribution of fATPS determines the discrete metabolic state and the stratification of

phenotypic landscape. (A) Fitness effect calculated from 2,200 in silico E. coli strains shows a stratified phenotype

distribution on the rate-yield plane. Blue arrows indicate the populated regions, within which metabolic flux

distribution remains relatively constant. Two example μ-isoclines are highlighted by red solid lines. Numbers in the

open circles indicate the locations of four in silico strains selected for metabolic flux analysis shown in panel B. (B)

Four representative metabolic states are depicted by the flux distribution of major pathways in the central metabolism,

including the glycolysis pathway (metabolites colored in green), oxidative pentose phosphate pathway (oxPPP, yellow),

and the TCA cycle (black). Key metabolites indicated on the figure are, glc: glucose; g6p: D-glucose 6-phosphate; g3p:

glyceraldehyde 3-phosphate; f6p: D-fructose 6-phosphate; pyr: pyruvate; 6pgc: 6-phospho-D-gluconate; pep:

phosphoenolpyruvate. Calculated fluxes of each state are colored on a log scale. (C) Distribution of the computed fATPS
fitted to a mixture of four Gaussian distributions. The result shows four peaks centered on 0.37, 0.53, 0.64, and 0.71.

An additional peak is seen at fATPS = 0. Peaks in the multimodal distribution of fATPS are highly correlated with the

populated regions on the rate-yield plane shown by the blue arrows in panel A.

https://doi.org/10.1371/journal.pcbi.1008596.g001

PLOS COMPUTATIONAL BIOLOGY Stratified fitness landscape originated from proteome allocation to discrete aero-types

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008596 January 19, 2021 4 / 25

https://doi.org/10.1371/journal.pcbi.1008596.g001
https://doi.org/10.1371/journal.pcbi.1008596


decreases. We analyzed the expression data from 17 E. coli strains evolved under glucose mini-

mal medium at 37˚C [34] and 42˚C [35], and confirmed the first two calculated trends with

the positive correlation between Y and the total mass fraction of genes involved in TCA cycle

and oxidative phosphorylation (S4 Fig).

We noticed that flux change of the energy production reactions correlated well with the

shift in metabolic state and phenotypic location. Hence, we computed the fraction of total

ATP produced by eight ATP-producing reactions: 1) ATP production by the ATP synthase

(ATPS4rpp), and reactions catalyzed by the polyphosphate kinase (PPKr and PPK2r) in oxida-

tive phosphorylation; 2) reactions catalyzed by the phosphoglycerate kinase (PGK) and the

pyruvate kinase (PYK) in the lower glycolysis pathway; 3) the reaction catalyzed by the acetate

kinase (ACKr) in mixed acid fermentation; 4) the reaction catalyzed by the succinyl-CoA syn-

thetase (SUCOAS) in the TCA cycle; and 5) the reaction catalyzed by the ribose-phosphate

diphosphokinase (PRPPS) in nucleotide biosynthesis. These quantities (fATPS, fPGK, fACKr, etc.)

formed an eight-element vector that we used as the explanatory variables in a stepwise linear

regression analysis. The results showed that six of the ATP production fractions could explain

89.5% of the variation in phenotypic distance (Materials and methods, S5 Fig), confirming the

predictable mapping relationships between the metabolic state of ATP production and the

phenotype.

Among these ATP production fractions, fATPS appears to be of particular importance. The

fact that fATPS is positively correlated with Y and negatively correlated with qglc at each specific

growth rate (S6 Fig), identifies it as the metabolic origin for the observed relationship between

a metabolic state and the rate-yield phenotype. The observed correlation is rooted fundamen-

tally in the cell’s energetic and metabolic network, rather than being just a simple function of

the expression of the ATP synthase (S7 Fig). Interestingly, fATPS displays a multimodal distri-

bution that is highly correlated with the distribution of the rate-yield phenotypes. Solutions

with higher fATPS values (e.g., with averages 0.71 or 0.64) are located within the top two hyper-

bolic bands on the rate-yield plane (Fig 1C). For these high-yield phenotypes, high-resolution
13C-metabolic flux data is available to estimate their fATPS values experimentally. We calculated

fATPS to be*0.65 for E. coli MG1655 evolved under glucose minimal medium and *0.706 for

E. coli BL21 [36], both within 1.5% difference of the peak values predicted by our simulations.

To further confirm the critical role of fATPS, we tested whether the discreteness of fATPS
directly gave rise to the stratified structure of the phenotypic fitness landscape. We performed

strain sampling simulations where fATPS was constrained at the five predicted peak values: 0,

0.37, 0.53, 0.64, and 0.71 (Materials and methods). The results showed clearly that optimal

solutions obtained at a particular fATPS were constrained within a thin hyperbolic band, where

q and Y were positively correlated (S8(A) Fig). Under the same substrate supply, the higher the

fATPS, the higher biomass yield can be achieved, consistent with correlations shown in S6(B)

Fig. This reconstructed fitness landscape fully reproduced the observed stratified phenotypic

distribution.

In summary, we introduced the fraction of total ATP produced by the ATP synthase (fATPS)
as a simple, yet effective, quantification for the cell’s metabolic state, and key determining fac-

tor for the stratified phenotypic distribution on the rate-yield plane.

Multimodal distribution of fATPS is constrained by proteome complexity of

the ATP production pathways

The quantitative relationship between fATPS and a cell’s metabolic and phenotypic state

inspired the investigation for the underlying constraints imposed on the ATP production reac-

tions. To deduce the source of this constraint, we look for systematic differences in protein
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expression profiles between solutions with different fATPS values. First, we generated sampling

simulations constrained to six defined growth rates at 30˚C to limit uncontrolled biases from

temperature-induced differences in growth rate (Materials and methods, S9(A) Fig). The result

confirmed the observed relationships by reproducing the multimodal distribution centered at

the same fATPS values (S9(B) Fig).

Next, we order the expression profiles of the simulated strains by their computed fATPS val-

ues (Fig 2A). We find that an increase in fATPS is accompanied by a shift to a more complex

proteome. The increase in proteome complexity is manifested in two ways. First, the number

of genes expressed increases (Fig 2B left). For example, the pentose phosphate pathway and the

multi-gene protein complexes in oxidative phosphorylation are only extensively used when

aerobic respiration is turned on (fATPS> 0). Second, the average number of subunits per

enzyme increases (Fig 2B right). In other words, as ATP synthase becomes responsible for a

larger fraction of ATP production, the cell tends to use larger multi-domain protein complexes

instead of single-gene enzymes with low molecular mass.

The switch between single-gene and multi-domain enzymes is the most obvious in oxida-

tive phosphorylation pathways, and particularly electron transport chain (ETC) reactions (Fig

2C). For example, reduction of the quinone pool is mainly performed by the NADH dehydro-

genase II Ndh at low fATPS, but switches to larger protein complexes, such as the formate dehy-

drogenase and the NADH:quinone oxidoreductase, as fATPS increases. In the subsequent

Fig 2. Multimodal distribution of fATPS is determined by proteome complexity. (A) Simulated concentration of the

enzymes shown in panel C across 368 sampling simulations, ordered by their computed fATPS values (thick blue solid

line). (B) Proteome complexity, measured by the calculated number of genes expressed (left) and the average number

of subunits per enzyme (right) in the optimal solution. Both numbers increase as the calculated fATPS increases. The

data is represented as box plots with the central red line showing the median, the bottom and top edges indicating the

25th and 75th percentiles, respedtively, and whiskers extending to 1.5 times the interquartile range. The non-

overlapping notches on the boxplot show that the medians between groups differ with a 95% confidence. Number of

samples in each box is indicated in parenthesis. (C) Molecular weight of the selected protein and protein complexes

catalyzing reactions in the ATP-producing pathways.

https://doi.org/10.1371/journal.pcbi.1008596.g002
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oxidation of quinol and transport of protons across the inner membrane, the smaller oxidase

complex CydABX is used at low fATPS, and the larger alternative CyoABCD takes over at higher

fATPS. We note that approximately 60% of the reactions in oxidative phosphorylation rely on

one or multiple protein complexes for catalysis (S1 Table). Compared to other metabolic path-

ways, this high level of protein complexity is likely an evolutionary result to provide more flexi-

bility and fine-tuning for the discrete selection of energy production strategies.

These results reveal an intricate balance between proteome complexity and the energy

requirements for cell growth. As the energy demand increases, more and more enzyme com-

plexes are necessary to achieve higher ATP yield. However, larger complexes also require sig-

nificantly more metabolic resources for their biosynthesis. Thus, once activated, these enzyme

complexes should be used as much as possible, inducing necessary rewiring of the metabolic

network for optimal balance in proteome allocation, and shifting the ATP production strategy

to the next discrete state.

Introduction of the “aero-type” as a phenotypic trait defined based on fATPS
We have shown that aerobic respiration through ATP synthase determines the cell’s metabolic

state and its phenotypic location on the rate-yield plane. Accordingly, we define “aero-types” i
to v to describe the five populated phenotypes represented by the five peak values of fATPS
(from fATPS = 0 to fATPS* 0.71) observed in the strain sampling simulations. Computationally,

we compare aero-type with the P/O ratio, a commonly used parameter that describes the cellu-

lar respiratory behavior. We show that the P/O ratio outlines only the local stoichiometry of

the oxidative phosphorylation pathways. Aero-type offers a more global description of cellular

fitness by representing the metabolic and phenotypic state, and the proteome complexity asso-

ciated with a specific energy production scheme (S1 Text and S10 Fig). Nevertheless, experi-

mental evidence is necessary to establish the computationally defined aero-type as a practical

proxy measure for the bacterial fitness.

We resorted to the characterization of genetic mutations that may trigger a switch in the

aero-type. According to the comprehensive decomposition of the ETC enzyme usage shown in

Fig 2 and S10 Fig, we selected two genes from the dehydrogenase (nuoB from the NADH dehy-

drogenase I and the NADH dehydronase II gene ndh) and two from the cytochrome oxidase

(cyoB from the cytochrome bo oxidase and cydB from the cytochrome bd-I oxidase) for genetic

manipulation (Materials and methods). We would expect that the removal of ndh would most

likely switch the cell to aero-type iv or v, which have the highest Y and the lowest qglc on the

rate-yield plane. Removing cyoB (regardless of which NADH dehydrogenase is present) would

most likely leave the cell in aero-type i and ii, with lower Y and higher qglc. The mutants

depleted of cydB and/or nuoB are, in principle, still accessible to all aero-types. However, it is

less likely for the ΔnuoB mutant to have higher Y and lower qglc, because the NADH dehydro-

genase I is almost always activated for aero-type iv and v.

We constructed the single (Δndh, ΔnuoB, ΔcydB, and ΔcyoB) and double (ΔndhΔcydB,

ΔndhΔcyoB, ΔnuoBΔcydB, and ΔnuoBΔcyoB) knockout strains to test the predicted phenotypic

effect experimentally (Materials and methods). Phenotype characterization of the eight

mutants qualitatively captured the computationally predicted trends (Fig 3A and S2 Table),

and showed that the designed removal of the ETC genes was able to restrain the mutant within

the corresponding aero-type at different temperatures (S11 Fig). Additional evidence came

from Portnoy et al. [37], where all terminal cytochrome oxidase genes (cydAB, cyoABCD, and

appBC) and a quinol monooxygenase gene, ygiN, were removed from the E. coli genome. This

mutant strain was characterized by the lowest possible Y and highest qglc, corresponding to

aero-type i (fATPS = 0).
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Next, we confirmed the correlation between aero-type and the proteomic state of the

mutant strains using RNA-Seq analysis (Materials and methods). Hierarchical clustering of

the expression profile showed groupings consistent with the aero-type assigned on the rate-

yield plane (Fig 3B). For example, the ΔcyoB mutants grouped together in lower aero-type

regardless of their large difference in growth rate and glucose uptake rate. Genes involved in

central metabolism were also clustered in two main groups (Fig 3B). Consistent with the meta-

bolic state shift shown in Fig 1B, aerobic respiration and metabolic activity decrease, while

anaerobic respiration increases as the assigned aero-type goes down from v (yellow) to ii
(purple).

In short, we design mutant strains where the major ETC enzymes are removed combinato-

rially to perturb the cell’s respiratory potential and ATP production strategy. We show that the

phenotypic outcome, proteome re-allocation, and the phenotypic aero-type switch of these

strains are consistent with the computational predictions.

Stratification of the anaerobic phenotypes using nitrate as the electron

acceptor

As a facultative anaerobe, E. coli is able to thrive under a variety of environmental conditions,

from highly oxic to completely anoxic, with its amazingly versatile pool of fifteen primary

dehydrogenases and ten terminal reductases [38]. So far, we have discussed how the differen-

tial usage of approximately one third of these enzymes gives rise to a stratified phenotypic dis-

tribution during aerobic growth when oxygen is used as a terminal electron acceptor. How do

optimal phenotypes distribute on the rate-yield plane under anaerobic condition if alternative

dehydrogenases and terminal reductases are activated?

To answer this question, we created an in silico strain where the expression of all terminal

cytochrome oxidase genes (cydAB, cyoABCD, and appBC) and a quinol monooxygenase gene

(ygiN) were set to zero. This mutant strain was shown to produce a phenotype that was almost

incapable of oxygen utilization and presented fermentative behavior under oxic condition

[37]. Considering that nitrate represses other anaerobic pathways in E. coli under anoxic

Fig 3. Experimental characterization of aero-type for the E. coli ETC-enzyme knockout strains. (A) Phenotypic

characterization for the single and double ETC knockout strains on the rate-yield plane. Aero-types are assigned

according to the computationally defined color-shaded area on the rate-yield plane. (B) Expression profiles for the

mutant strains are shown for central metabolic genes involved in glycolysis, pyruvate pathway, pentose phosphate

pathway, oxidative phosphorylation, TCA cycle, amino acid metabolism, and nucleotide metabolism. Hierarchical

clustering for mutant strains shows similar classification of the aero-type as assigned by their locations on the rate-

yield plane. Enrichment of genes in each cluster is indicated on the bottom.

https://doi.org/10.1371/journal.pcbi.1008596.g003
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conditions [38], we supplemented nitrate to be utilized as the preferred electron acceptor

instead of oxygen, performed strain sampling simulations, and examined the fitness

distribution.

Three discrete anaerobic phenotypes were found that distributed in a stratified fashion on

the rate-yield plane (Fig 4A). Consistent with the aero-type analysis, each observed phenotype

can be characterized by a particular fATPS value (Fig 4B), usage of a different combination of

the respiratory enzymes (Fig 4C), and different proteome complexity (Fig 4C and 4D). By

analogy but not to be confused with the “aero-type” where oxygen is used as the terminal elec-

tron acceptor, we denoted these anaerobic phenotypes “nitro-type” i* iii. Nitro-type i with

the lowest biomass yield expressed the siroheme NADH-nitrite reductase NirAB in addition to

the high expression of the nitrate reductase A or Z. This small-molecular-weight enzyme likely

helped to reduce proteome complexity through either detoxifying nitrite generated by the

nitrate reductases, or by carrying out fermentative ammonification that balanced between

maximizing ATP production and maintaining the NAD+ levels [39]. These results again

emphasized the importance of proteome allocation to the energy production pathways in

determining the phenotypic distribution.

Fig 4. The stratified phenotypic distribution under anaerobic condition supplemented with nitrate. (A) Fitness

effect calculated from 550 in silico E. coli strains grow anaerobically using nitrate as the electron acceptor. Three

anaerobic respiratory states (nitro-type iii in cyan, nitro-type ii in red, and nitro-type i in dark blue) can be clearly

identified on the rate-yield plane, which distribute in a stratified fashion similar to the aero-types. (B) Distribution of

the computed fATPS, showing three peaks correlated with the three populated nitro-types on the rate-yield plane shown

in panel A. (C) Simulated concentrations of the enzymes involved in oxidative phosphorylation across the 550

sampling simulations. Data shown on the third column labeled with “Nar” is the sum of concentrations for the nitrate

reductase A and Z; and on the fourth column labeled with “Fdn/o” is the sum of concentrations for the formate

dehydrogenase N and O. (D) Proteome complexity, measured by the calculated number of proteins expressed (left)

and the average number of subunits per enzyme (right) in the optimal solution. The data is represented as box plots

with the central red line showing the median, the bottom and top edges indicating the 25th and 75th percentiles, and

whiskers extending to 1.5 times the interquartile range. The non-overlapping notches on the boxplot show that the

medians between groups differ with a 95% confidence. Number of samples in each box is indicated in parenthesis. (E)

Molecular weight of the protein complexes shown in panel C. The molecular weight labeled with “Nar” is the averaged

of the nitrate reductase A and Z. The molecular weight labeled with “Fdn/o” is the averaged of the formate

dehydrogenase N and O.

https://doi.org/10.1371/journal.pcbi.1008596.g004
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Discussion

In this study, we develop a systems biology definition of the phenotypic fitness landscape

based on the solution space of the E. coli genome-scale FoldME model [33]. Simulations that

sample thousands of E. coli strains across many temperatures lead to the discovery of a strati-

fied geometry of phenotypic distribution, which is consistent with observations from a com-

pendium of experimental phenotypic data. FoldME’s capability to reveal quantitative multi-

level relationships between a cell’s genotype, metabolic state, proteomic allocation, energy pro-

duction strategy, and the phenotype provides us with the opportunity to interpret the observed

topography of the phenotypic fitness landscape [19, 40]. We find that: 1) the stratification is

due to the discreteness of the ATP production strategy; 2) the fraction of the ATP produced by

the ATP synthase (fATPS) is a governing parameter describing the discretization; and 3) the dis-

cretization is rooted in a balance between the modularity of proteome composition and meta-

bolic functions underlying optimal growth.

The direct correlation between a cell’s energy production strategy and the phenotypic land-

scape topography inspires the definition of the E. coli “aero-type” to summarize the complex

relationships between genotype, metabolic state, proteome allocation, and phenotype. We rea-

son that a switch in the aero-type may occur if differential usage of the ETC enzymes is

imposed by genetic mutations or environmental stresses. To confirm the hypothesis, we exper-

imentally construct the mutant strains where major ETC enzymes are removed combinatori-

ally, and show that the measured aero-types of the mutants are consistent with computational

prediction.

With the aero-type defined as a key phenotypic descriptor, it is worth pointing out that dis-

cretization of ATP production through other reactions (represented by fPGK, fPYK and fACKr, S8

(B)–S8(D) Fig) within each aero-type is also observed (S8(B)–S8(D) Fig). Based on these

results, we propose a multi-level regulation that the cell uses to adjust its energy production

strategy in adaptation to genetic and environmental perturbations (S12(A) Fig). A cell first

partitions its cellular resources between the ATP synthase and enzymes that catalyze other

ATP-production reactions to meet the minimal ATP requirement for growth. Thus, an aero-

type is determined. Next, within each aero-type, two types of reactions further fine-tune the

ratio between the proteome dedicated to ATP and biomass precursor production, respectively:

1) those that produce both ATP and biomass precursors, such as PGK and PYK, and 2) ACKr

that contributes to ATP production alone. The final result optimizes the ratio between ATP

and biomass precursors to maximize biomass production in adaptation to a particular condi-

tion that the cell encounters.

This two-level regulation is consistent with the underlying physical principles of the respira-

tion-fermentation tradeoff on the top level, and thermodynamic tradeoff between biomass and

ATP yield on the second [41, 42]. Moreover, our formulation offers critical mechanistic details

compared to similar efforts that model energy metabolism as a partition between the parallel

pathways of the high-yield, low-yield ATP producers and the biomass producer [43, 44], there-

fore extends the explanatory power beyond the constrained boundaries on the rate-yield plane

to the full scope of a fitness landscape.

The proposed hierarchical energy production strategy may find applications in diverse

fields such as metabolic biochemistry, cellular physiology, and evolutionary dynamics. For

example, rate-yield tradeoff is one of the long-standing questions in understanding bacterial

physiology [45], yet controversy as to whether a positive or negative relationship should be

seen still exists [46, 47]. On top of what relationship should result, mechanistic interpretations

also come in variety of forms: proteome investment tradeoff between the metabolic enzymes

and the uptake system of the limiting nutrient [48, 49], efficiency tradeoff between the
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fermentation and respiration enzymes [50, 51], or tradeoff between membrane efficiency and

ATP yield [52], to name a few. Our results help put forward a generalized yet straightforward

reconciliation of these different points of view. If the energy production strategy (or aero-type)

remains the same, a positive rate-yield correlation should be seen. When the current energy

plan is not capable of supporting growth and a switch to another aero-type must occur, pheno-

typic tradeoffs result.

The phenotypic landscape defined based on aero-type also offers an alternative perspective

to understand bacterial adaptation towards optimal fitness. Instead of “climbing up the fitness

peak”, mutations that arise during evolution could move the phenotype in two directions: one

towards higher growth rate, biomass yield, and nutrient uptake rate where the cells remain in

the same aero-type; and the other in an orthogonal direction where an aero-type switch is

anticipated under constant growth rate. The fitness effect of a particular mutation can then be

analyzed through its influence on the metabolic network and proteome re-allocation, which is

governed by the fundamental physicochemical principles regarding fermentation-respiration

and thermodynamic tradeoffs. We present an initial attempt to contextualize this perspective

on bacterial evolutionary dynamics (S2 Text and S12(B) and S12(C) Fig), and expect subse-

quent studies to investigate how this framework may help us understand the convergence and

divergence, predictability and stochasticity of bacterial evolution.

The concept of a fitness landscape has shaped thinking in evolutionary biology since the

1930s when it was first articulated. Here, we put forward a low-dimensional representation of

the fitness landscape by quantifying the metabolic and proteomic state using the relative con-

tributions of a few key ATP-producing reactions. Our analysis suggests that the topology of

this fitness landscape is encoded in the energy allocation strategy underlying an organism’s

metabolic network and proteome complexity. The influence of environmental fluctuations

(e.g., temperature change, the presence and absence of oxygen) and genetic perturbations (e.g.,

different sampling strategies on enzyme efficiency and protein stability) on the fitness land-

scape can be rationally evaluated based on how the cell’s energy production is regulated. In

principle, such a fitness landscape should be a general and effective framework with which to

understand adaptation and evolution of different cell types in a variety of organisms (e.g.,

Crabtree effect for yeast and Warburg effect for cancer cells) under diverse conditions.

Materials and methods

Literature compendium of E. coli phenotypes

Rate and yield are the most fundamental quantities used to describe bacterial ecology and

physiology. The rate can be measured as growth rate, or moles/grams of substrate, ATP, or

biomass production per unit time. Yield is usually measured by moles/grams of biomass or

ATP per unit of substrate. Regardless of which definition of rate and yield to use, these two

physiological parameters are tightly correlated with each other. However, the exact form of the

relationship is context-dependent, which may vary according to different experimental proce-

dures and conditions. Here, we aim to resolve the controversy and provide a unified explana-

tion for the condition-dependent rate-yield correlation. Therefore, the particular definition

should not affect our investigation and discussion. Without loss of generality, and to compare

with the genome-scale model simulations using glucose as carbon source, we choose to use the

substrate (glucose) uptake rate (q (qglc), mmol/gDW/h) and the biomass yield (gDW/g) to

denote the E. coli phenotypic space.

Substrate uptake rate (q) and growth rate (μ) are collected from two main types of experi-

mental measurements (S1(B) Fig, top left): 1) growth in nutrient chemostat [27, 53–57], and 2)

characterization of the ALE end-point strains [32, 34, 35, 37, 58–64]. Biomass yield is then
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calculated as m

q�m, where m is the molecular mass of the substrate. A total of 199 data points

result in the phenotypic space spanned by substrate uptake rate and biomass yield, including

measurements taken for wild-type E. coli and gene knockout strains (S1(B) Fig, top right),

under different nutrient conditions (S1(B) Fig, bottom left), and with different E. coli strains

(S1(B) Fig, bottom right). Despite the broad difference in data sources, the phenotypic charac-

terization of E. coli seems to occupy a common space with an interesting structure that is dis-

cussed in the Results.

An overview of the FoldME model

All sampling simulations in this paper are performed using the recently developed genome-

scale model for metabolism and protein expression enhanced with the chaperone network,

FoldME [33]. The reconstruction of FoldME started with associating all biochemical reactions

in the E. coli genome-scale ME-Model iOL1650 [31] with the sequences and structures of their

catalytic enzymes [65]. Then we computed the temperature-dependent folding properties for

every modeled protein, with which the protein’s condition-specific chaperone requirement

was formulated. Next, we coupled the folding state of the cell into its metabolic network by

allowing three folding pathways (spontaneous, DnaK-assisted, and GroEL/ES-mediated) to

compete for folding of any protein based on the calculated chaperone requirement. As such,

the model was capable of adjusting the in vivo folding pathway of each protein to minimize

the global cost invested in chaperone biosynthesis and the energy requirement for folding.

The choice of parameters is critical for applying genome-scale models to understand bio-

logical phenomena on the systems level. The FoldME model is constructed based on three

basic categories of parameters: 1) the global physiological parameters, 2) the in vivo turnover

rate of metabolic enzymes, and 3) the protein-specific thermodynamic parameters. The first

two categories of parameters are common to all ME-models, and thus are set to the default val-

ues as first developed in O’Brien et al. [31]. Protein-specific thermodynamic parameters,

including the kinetic folding rate, free energy of unfolding, and aggregation propensity, are

unique to the FoldME model. These parameters are calculated using protein sequences and

structures with empirical prediction algorithms that are well established in literature. More

details of model formulation, parameter calculation, and sensitivity analysis can be found in

Chen et al. [33].

We showed that the FoldME model improved the precision and scope of prediction for the

optimal proteome composition over a wide variety of perturbations, including temperature,

nutrient availability, and genetic mutations, and is therefore suitable for the study of pheno-

typic distribution presented in this paper.

E. coli strain sampling simulations

The purpose of our sampling method is to evaluate the phenotypic distribution of E. coli using

in silico strains reconstructed to represent the diversity of naturally occurring strains. We

assume that adaptation is achieved through gradual accumulation of large amounts of muta-

tions that emerge independently, each with a random small effect on the affected genes. To

simulate the genome-scale consequence of this long-term dynamic evolutionary process and

estimate its fitness effect, we design a two-step process: 1) select genes for mutation according

to the probability of observing a mutation in each gene, and 2) determine the molecular effect

of the mutation on the corresponding gene.

In the first step, we analyzed the genetic variations of 1,765 E. coli strains collected from 1)

the PATRIC database [66], 2) the Ecoref strain panel [67], and 3) a manually curated set of

adherent-invasive E. coli (AIEC) strains. We compiled protein sequences for the 1,566 protein-
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coding genes present in the FoldME model, and performed pairwise sequence alignments of

the protein from each strain against its homologous sequence in E. coli K12 MG1655 [68]. We

found a total of 266,940 coding region mutations, including 245,635 non-synonymous SNP,

16,591 deletions and 4,714 insertions. Then we defined the probability of observing a mutation

in a gene as the number of all observed mutations in that gene over the total number of coding

region mutations. Next, we need to determine which genes harbor mutation in each sample.

To do that, we generated a random number between 0 and 1 for each gene. If the random

number is smaller than the gene’s mutation frequency, the gene is mutated; otherwise, the

gene is left in its wild-type form. As such, we reproduced the probability of observing a muta-

tion in a gene in the naturally occurring E. coli strains (S2 Fig).

In the second step, we perturbed the catalytic efficiency and the thermo-stability of the

enzymes selected for mutation in the first step. The beneficial and deleterious effects of muta-

tions were known to distribute exponentially, with many small-effect mutations and fewer lar-

ge-effect ones [69, 70]. To reflect the exponential distribution of beneficial effect at the gene

level, we scaled the in vivo turn-over rate (keff) of the affected enzyme with an exponentially

distributed random number between 0.5 and 2. In the same time, we perturbed the enzyme’s

thermo-stability (free energy of unfolding ΔG) by a random amount between -2 to 2 kcal/mol

to account for (de)stabilizing mutations with a small effect. The direction of change in the

enzyme efficiency and stability was assumed to be opposite considering the pleiotropic effects

of mutations [71], such that if the enzyme’s efficiency increased, its stability decreased, and

vice versa.

Finally, to introduce environmental stresses, we simulated 100 strain samples at each tem-

perature from 25 to 46˚C, resulting in a total of 2,200 simulations.

To test the robustness of this sampling process, we performed additional sets of simulations

with the following modifications: 1) fixed the number of mutated genes to 10%, 20%, or 30%

of the total number of modeled genes, and selected mutations assuming uniform mutation fix-

ation frequency for all genes; 2) perturbed only the keff or the stability of the enzymes selected

for mutation; 3) used a different wild-type keff profile according to the recent machine learning

study [72]; and 4) perturbed the keff of the mutated enzyme with larger scaling factors. None of

these modifications in the sampling procedure changed our main conclusion regarding a strat-

ified phenotypic landscape determined by the multimodal distribution of fATPS. As an example,

we showed the result for sampling simulations in which keff was scaled between 0.1 to 10 fold,

and 0.01 to 100 fold (modification #4, S9(C) Fig). In both cases, fATPS distributed around the

same locations as shown in Fig 1C and S9(B) Fig, with differences only in the relative ampli-

tude of the fitness peaks. Therefore, we considered our current choice of sampling procedure

and parameters capable of generating robust phenotypic predictions with evolutionarily mean-

ingful genotypes.

Sampling simulations with fixed fATPS
To confirm the relationship between the multimodal distribution of fATPS and the stratified

structure of the phenotypic fitness landscape, we performed sampling simulations where fATPS
was constrained to its five most likely values: 0, 0.37, 0.53, 0.64, and 0.71. The constraint was

formulated as followed:

ð1 � pÞ � VATPS4rpp ¼ p � ðVPGK þ VACKr þ VPYK þ VPPKr þ VPPK2r þ VSUCOAS þ VPRPPSÞ ð1Þ

where Vreaction_name denoted the flux of the corresponding reaction and p was the value that

fATPS was constrained to. For every fATPS value, 24 sampling simulations were performed at

each temperature from 25 to 46˚C. However, this strong constraint caused many
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incompatibilities with the sampled genotype, resulting in a final 2,237 feasible and optimal

solutions reported in S8 Fig.

Sampling simulations at fixed growth rate

Difference in growth temperature gave rise to systematic changes in protein stability and in

vivo turnover rate of the enzymes, consequently different growth rates [33]. To rule out the

possibility that the multimodal distribution of fATPS was a result of the bias induced by growth

rate difference at different temperatures, we performed additional sampling simulations at one

particular temperature. In the same time, it was desirable to cover as much on the rate-yield

space as possible. Thus, we examined the accessible range of qglc and Y (i.e., values that render

feasible solutions for cell growth) at each temperature in the previously described 2,200 sam-

pling simulations (S9(A) Fig). In general, below the optimal growth temperature, accessible

ranges of qglc and Y both decreased as temperature increased, favoring the choice of lower tem-

perature. Then, we considered the overlap with the most populated experimental phenotype

range (S1(A) Fig), where qglc varied approximately in the range between 5 to 15 mmol/gDW/h

and Y between 0.3 to 0.55 gDW/g. Combining both criteria, we fixed the second set of sam-

pling simulation at 30˚C (S9(A) Fig, red).

Next, to maximize instances in every discrete fATPS regime and enable direct comparison in

metabolic fluxes, we focused sampling along a few μ-isoclines. We chose six growth rates (val-

ues reported in relative to the WT growth rate at 37˚C): 3 around the average growth rate at

30˚C (0.36, 0.44, 0.47), one close to the upper limit for growth at 30˚C (0.65), and two slightly

lower than the lower bound (0.18, 0.22). Simulation at higher fixed growth rate generated large

number of infeasible solutions, thus were not included. The results confirmed that at each sim-

ulated growth rate, fATPS showed similar multiple Gaussian distribution that differed only in

the relative weight of each Gaussian. Because of the same number of peaks and the mean val-

ues, we reported in S9(B) Fig the collective result for all six growth rates together.

Fitting the multimodal distribution of fATPS
We assumed the fATPS value for each aero-type to be normally distributed. It followed that

fATPS calculated from the sampling simulations should be fitted to a mixture of multiple Gauss-

ian distributions, each representing one aero-type. The number of Gaussian distributions

(peaks) should be chosen as the number of aero-types determined based on the distinguishable

metabolic (Fig 1) and proteomic states (Fig 2). Therefore, we consider fATPS = 0 (the fully fer-

mentative phenotype) as one “peak”, and fitted the remaining data with four Gaussians using

Matlab.

To check whether our choice for the number of peaks was consistent, we compared distri-

butions generated from many separate sets of sampling simulations, including those using dif-

ferent sampling strategies for sensitivity analysis. The fATPS distribution constantly showed five

peaks, although the heights of the peaks varied. Peaks around 0.0, 0.37 and 0.53 were clearly

present throughout all data sets, whereas peaks around 0.64 and 0.71 could be blurred under

certain conditions. This final uncertainty likely came from unresolved proteome complexity of

the highly respiratory phenotypes, which should not impair the validity of the fitting and the

sampling process.

Bacterial strains

The E. coli electron transport chain contains two types of enzymes: a dehydrogenase that oxi-

dizes an electron donor and a cytochrome oxidase that reduces the electron acceptor (S10(A)

Fig). To create mutant strains that are constrained to a particular aero-type, we choose two
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enzymes from each category to be removed from the genome: NADH dehydrogenase I

(NuoABCDEFGHIJKLMN) and NADH dehydronase II (Ndh) for the dehydrogenase; cyto-

chrome bo oxidase (CyoABCD) and cytochrome bd-I oxidase (CydAB) for the cytochrome

oxidase.

Three of the chosen ETC enzymes are multi-protein complexes, and we aim to choose the

gene that maximally disrupts the function of the whole enzyme. For NADH dehydrogenase I,

all subunits are required for the assembly or stability of a functional enzyme [73]. The subunit

encoded by the gene nuoB contains the N2 4Fe-4S cluster, which may play a role in proton

translocation activity of the enzyme [74]. For cytochrome bd-I oxidase, although both subunits

are required for binding of the heme b595 and heme d components of cytochrome bd-I, subunit

II encoded by gene cydB binds a structural ubiquinone-8 cofactor that may have a role in the

dimer assembly [75]. Similarly, deletion each gene in the cyo operon results in nonfunctional

enzymes, yet we choose to disrupt cyoB because it encodes subunit I which is involved in pro-

ton translocation [76].

The four single-ETC-gene-knockout and four double-ETC-gene-knockout strains were

constructed with the P1 phage transduction method [77], using E. coli K-12 MG1655 (ATCC

700926) as the recipient strain. Keio collection strains were used as donor strain for the genera-

tion of gene knockout cassettes containing a kanamycin resistance marker [78]. Knock-outs

were confirmed by PCR and DNA resequencing (S3 Table).

E. coli phenotype characterization

Characterizations were performed fully aerated, at 37˚C, in 15 mL working volume tubes con-

taining M9 glucose medium, as described in LaCroix et al. [34]. Cultures were initially inocu-

lated from frozen glycerol stocks, and grown overnight. Physiological adaptation was achieved

by growing exponentially over 2 passages for 5 to 10 generations. Cultures were then passaged

to a fresh tube, and spectrophotometer optical density (OD) readings were periodically taken

at a wavelength of 600 nanometers (Thermo Fisher Scientific, Waltham, MA) until stationary

phase was reached.

Samples were filtered through a 0.22 micrometer filter (MilliporeSigma, Burlington, MA) at

the same time OD measurements were taken, and the filtrate was analyzed for glucose concen-

trations using a high-performance liquid chromatography system (Agilent Technologies,

Santa Clara, CA) with an Aminex HPX-87H column (Bio-Rad Laboratories, Hercules, CA).

Glucose uptake rates in exponential growth were determined by best-fit linear regression of

glucose concentrations versus cell dry weights, multiplied by growth rates over the same sam-

ple range.

The oxygen uptake rate of each aerobic culture was determined by measuring the rate of

dissolved oxygen depletion in an enclosed respirometer chamber using YSI 5300A Biological

Oxygen Monitor System that utilized Clark type polarographic oxygen probes (Cole-Parmer

Instruments, Vernon Hills, IL).

DNA resequencing

To determine the mutations emerged during adaptive laboratory evolution of the pgi-deficient

E. coli strain, growth-improved clones along the ALE trajectory were isolated and grown in

M9 minimal medium supplemented with 4g/L glucose. Cells were then harvested while in

exponential growth and genomic DNA was extracted using a KingFisher Flex Purification sys-

tem previously validated for the high throughput platform mentioned below [79]. Shotgun

sequencing libraries were prepared using a miniaturized version of the Kapa HyperPlus Illu-

mina-compatible library prep kit (Kapa Biosystems). DNA extracts were normalized to 5 ng
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total input per sample using an Echo 550 acoustic liquid handling robot (Labcyte Inc), and

1/10 scale enzymatic fragmentation, end-repair, and adapter-ligation reactions carried out

using a Mosquito HTS liquid-handling robot (TTP Labtech Inc). Sequencing adapters were

based on the iTru proptocol [80], in which short universal adapter stubs were ligated first and

then sample-specific barcoded sequences added in a subsequent PCR step. Amplified and bar-

coded libraries were then quantified using a PicoGreen assay and pooled in approximately

equimolar ratios before being sequenced on an Illumina HiSeq 4000 instrument.

RNA-Seq data acquisition and analysis

Total RNA was sampled from duplicate cultures. All strains were grown in M9 minimal

medium supplemented with 4g/L glucose. 3 mL of cell broth (taken at OD600 * 0.6) was

immediately added to 2 volumes Qiagen RNAprotect Bacteria Reagent (6 mL), vortexed for 5

seconds, incubated at room temperature for 5 min, and immediately centrifuged for 10 min at

17,500 RPMs. The supernatant was decanted, and the cell pellet was stored at -80˚C. Cell pel-

lets were thawed and incubated with Readylyse Lysozyme, SuperaseIn, Protease K, and 20%

SDS for 20 minutes at 37˚C. Total RNA was isolated and purified using the RNeasy Plus Mini

Kit (Qiagen) columns following vendor procedures. An on-column DNase treatment was per-

formed for 30 minutes at room temperature. RNA was quantified using a spectrophotometer

(NanoDrop 1000, Thermo Fisher Scientific, Waltham MA) and quality was assessed by run-

ning RNA electrophoresis on the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara

CA). The rRNA was removed using Illumina Ribo-Zero rRNA Removal Kit (Gram-Negative

Bacteria). Stranded RNA-Seq Kit (Kapa Biosystems) was used following the manufacturer’s

protocol to create sequencing libraries with an average insert length of around *300 bp.

Libraries were sequenced on an Illumina HiSeq 4000 instrument.

Raw sequencing reads were obtained as described above, and mapped to the reference

genome NC_000913.3 using Bowtie 2.3.4.3 [81] with the following options “-X 1000 -N 1 -3

3”. Transcript abundance was quantified using summarizeOverlaps from the R GenomicA-

lignments package, with the following options “mode=“IntersectionStrict”, singleEnd =

FALSE, ignore.strand = FALSE, preprocess.reads = invertStrand” [82]. Transcripts per Million

(TPM) was calculated by DESeq2, and log-transformed TPM (log2(TPM+ 1)), referred to as

log-TPM, was taken for the downstream analysis. The log-TPM values of the two biological

replicates were highly correlated (R2 > 0.97), expect for the ΔndhΔcydB mutant (R2 = 0.91).

Uncertainty of the ΔndhΔcydB mutant might come from partial knockout for one of the repli-

cates, which showed relatively high expression of the cydB gene. We considered the aero-type

assignment and other quantifications for this mutant to be less reliable compared to others.

Principal component analysis (PCA) of the log-TPM showed that the first four components

could explain 84% of the variations throughout the expression profile. The first principal com-

ponent was highly correlated with exchange rates such as the glucose/oxygen uptake rate and

the acetate production rate, and the second with growth rate. These components, although

highly explanatory, were enriched in gene clusters (e.g., chemotaxis, flagellum biosynthesis,

amino acid metabolism, sugar transport, etc.) that were non-specific to the conditions and

phenotypes that we were interested in. Alternatively, the fourth component, explaining 5.4%

of the overall variation, was highly enriched in genes involved TCA cycle, anaerobic respira-

tion and ETC activity. Consequently, we considered selecting genes most representative for

aero-type for subsequent hierarchical clustering analysis. First, we calculated the Spearman

correlation between five phenotypic parameters (μ,Y ,qglc,qO2
, qac) and our aero-type definition

in the sampling simulations. It turned out that only qac(Spearman correlation = -0.9; P-

value = 4e-143) and Y (Spearman correlation = 0.87; P-value = 4e-120) showed significant
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correlation. Then, we computed the Pearson correlation between log-TPM and experimentally

measured phenotypic parameters, and selected genes that were highly correlated with qac and

Y (P-value<0.01), but not with μ. This process resulted in a set of 391 genes, which were used

for generating the clustering diagram shown in Fig 3B. As expected, this set was enriched in

genes involved in oxidative phosphorylation (17 out of 94, one-sided binomial test P-

value = 0.004) and TCA cycle (7 out of 27, one-sided binomial test P-value = 0.009). The clus-

tering pattern qualitatively resembled that generated using all genes in the expression profile

(4314 genes in total), yet it maximized signal of interest for easy analysis and interpretation.

Supporting information

S1 Text. Comparison between “aero-type” and P/O ratio as phenotypic descriptors for E.
coli.
(PDF)

S2 Text. Dynamics of bacterial adaptive evolution on the stratified phenotypic landscape.

(PDF)

S1 Fig. Phenotypic data of E. coli measured in experiments. (A) Visualization of a compen-

dium of 199 experimental measurements. Contours of the phenotype density are overlaid on

top of the experimental data (gray circles). (B) Experimental phenotypic distribution visualized

by whether measurements are taken for WT or evolved E. coli strains (top left), for WT or

strains with gene knockout (top right), under different nutrient conditions (bottom left), and

for different E. coli strains (bottom right).

(TIF)

S2 Fig. Probability of observing a mutation in a gene in the naturally occurring E. coli
strains is captured in the sampling simulations. Comparison between the distributions of

the number of observed mutations per gene for the 1,765 naturally occurring E. coli strains

(left) and frequency of mutations per gene in the 2,200 sampling simulations (right).

(TIF)

S3 Fig. Principal component analysis for forty-three reactions in central metabolism

depicted in Fig 1B. The figures illustrate the observed correlation between phenotypic state

and the metabolic fluxes, yet they can be best understood with the definition of “aero-type”

introduced in later sections. (A) The metabolic states of the five aero-types can be clearly sepa-

rated by the first principal component (PC1), representing 61.1% of the data variations. PC2

further decomposes metabolic states into sub-types. (B) PC1 is the only component that’s cor-

related (Pearson correlation = 0.97) with the flux through ATP synthase (ATPS4rpp, shown in

red). Therefore data variations contained in PC1 best represent the observed differences in

metabolic states between different aero-types. For example, the fluxes through the TCA cycle

are positively correlated with PC1, hence the flux through ATP synthase. This correlation indi-

cates that as the biomass yield (Y) decreases along the μ-isocline (aero-type decreases from v to

i), flux through TCA cycle also decreases. Similarly, fluxes through acetate overflow are nega-

tively correlated with PC1, hence as Y decreases, flux through acetate overflow increases. The

opposite sign of correlation between fluxes through the two branches of glycolysis pathways

nicely captures the trend that the glycolysis flux slowly switches from oxPPP to EMP as aero-

type decreases from v to i. PC2 (and the principal components thereafter) are not correlated

with the flux through ATP synthase, and are not discussed in further details for the purpose of

this paper. The name of the reactions are standard reaction IDs available for search on the

BIGG database (http://bigg.ucsd.edu/). oxPPP: oxidative pentose phosphate pathway; EMP:
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Embden–Meyerhof–Parnas pathway; ED: Entner-Doudoroff pathway.

(TIF)

S4 Fig. Experimental evidence for the correlation between biomass yield and pathway

usage. (A) Phenotypic data of 20 E. coli strains under glucose minimal medium are highlighted

on the rate-yield space. Data includes two wild-type strains at 37˚C (blue circle, labeled with

“wt”), one wild-type strain at 42˚C (red circle, labeled with “wt”), 7 strains evolved at 37˚C

(blue circles, labeled with “ale” and the strain number), and 10 strains evolved at 42˚C (red cir-

cles, labeled with “ale” and the strain number). (B) Mass fraction of the representative pathway

is calculated using all genes involved in the corresponding pathway. The Pearson correlation

between the biomass yield and the mass fraction of each pathway is shown. Usage of three

pathways that are related to aerobic respiration is significantly correlated with biomass yield

(shown in bold, with their P-values listed). (C) Biomass yield plotted against the mass fraction

of genes involved in oxidative phosphorylation. Each point corresponds to a strain, labeled as

in (A). (D) Biomass yield plotted against the mass fraction of genes involved in TCA cycle.

(TIF)

S5 Fig. The ATP production reactions and their contribution to phenotypic distance esti-

mated by sampling simulations. (A) Detailed information for the ATP-producing reactions

in E. coli. Short and full name for the metabolites are listed as follows. 13dpg: 3-Phospho-D-

glyceroyl phosphate; 3pg: 3-Phospho-D-glycerate; actp: acetyl phosphate; pyr: pyruvate; pep:

phosphoenolpyruvate; succoa: succinyl-CoA; coa: coenzyme-A; prpp: 5-phospho-alpha-D-

ribose 1-diphosphate; r5p: alpha-D-ribose 5-phosphate. The fraction of total ATP produced by

each reaction varies significantly. The range of variation in the sampling simulations is indi-

cated in the “Fraction” column. (B) Fraction of variations in the rate-yield phenotypic space

explained by the indicated ATP-production reactions. 89.5% of the variations in phenotypic

distance can be explained by the first six ATP-producing reactions. Among them, oxidative

phosphorylation reactions ATPS4rpp and PPKr contributed the most. (C) Comparison

between the actual phenotypic distance on the rate-yield plane and that reconstructed from

the six ATP-producing reactions. A simulated phenotype is determined by a four-element vec-

tor containing the glucose uptake rate, acetate production rate, growth rate and biomass yield.

Other typical phenotypic measurements are highly correlated with one or more chosen quanti-

ties, and are thus not included in the calculation. Then phenotypic distance is calculated as the

Euclidean distance of this vector with respect to that of the wild-type solution at 37˚C. Predic-

tors of the stepwise linear regression are taken as the fraction of ATP produced by each reac-

tion listed in (A).

(TIF)

S6 Fig. Linear relationship between fATPS and the rate-yield phenotype at each specific

growth rate. (A) Fitness distribution of the 2,200 simulated strains on the rate-yield plane

(same as shown in Fig 1A). Simulated strains along six μ-isoclines, which are used in the subse-

quent analysis shown in panel B, are highlighted. Growth rates shown on the μ-isoclines are

computed relative to the wild-type growth rate calculated at 37˚C. (B) Along each μ-isocline,

the calculated fraction of total cellular ATP produced by ATP synthase (fATPS) is linearly corre-

lated with biomass yield (Y, top) and glucose uptake rate (qglc, bottom), with a positive and

negative slope, respectively. The intercepts of these linear fitting at the minimum and maxi-

mum values of fATPS (0 and 0.83, respectively) provide a way to estimate the feasible range of

qglc and Y. The estimations at each growth rate can be connected to draw the boundary of the

rate-yield plane (gray shaded area in panel A). The accessible range of the phenotypic space
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generated this way encompasses the majority of data points from both experiments and model

simulations.

(TIF)

S7 Fig. ATP production through the ATP synthase is determined by the aero-type. (A)

ATP yield through the ATP synthase is positively correlated with fATPS (hence positively corre-

lated with the aero-type as defined in the later Results sections), but not with the mass fraction

of the ATP synthase in the proteome. (B) Expression of the ATP synthase is a function of the

growth rate and temperature.

(TIF)

S8 Fig. Finer structure on the fitness landscape. (A) Topography of the fitness landscape

reconstructed from constrained sampling simulations at 5 most likely fATPS values: 0, 0.37,

0.53, 0.64 and 0.71. (B) Once fATPS is determined in the energy production strategy, finer struc-

tures can be seen on the phenotypic landscape. The distributions of fPGK, fACKr, and fPYK at

each fixed fATPS value also show distinct multimodal distributions. The pie charts show the

allowable energy production strategy that represents over 95% of the solutions at each fixed

fATPS, all fractions shown have standard deviations smaller than 0.02. (C) At fixed fATPS, bio-

mass yield is negatively correlated with the ratio fACKr/fPGK. Because acetate is secreted through

the ACKr flux and no biomass is made, increase in fACKr reduces biomass yield. (D) At fixed

fATPS, the overall ATP yield is positively correlated with the ratio (fACKr + fPYK)/fPGK. This ratio

reflects the relative efficiency of all ATP-producing reactions in terms of ATP production per

unit of substrate. The more inefficient reaction PGK is used (2 ATP per glucose uptake, which

is reflected in the value of the fitting curve at
ðfACKrþfPYK Þ

fPGK
¼ 0 and fATPS = 0), the lower the overall

ATP yield is. As the yield of oxidative phosphorylation is much higher (*34 ATP per glucose),

the overall ATP yield increases with fATPS at fixed (fACKr + fPYK)/fPGK ratio.

(TIF)

S9 Fig. Consistency in the fATPS distribution from different sets of strain sampling simula-

tions. (A) The phenoptypic variations at each temperature. On this plot, the average values of

Y and qglc calculated for the sampled strains at each temperature are denoted by a circle, then

the range of accessible values indicated by horizontal and vertical lines going through the aver-

age. For T = 25˚C, 30˚C, 37˚C and 40˚C, the optimal wild-type phenotype (square) is shown

for reference. For T = 25˚C, 30˚C, and 40˚C, shift in the preferred aero-type is shown by the

difference in fATPS distribution. Eight μ-isoclines are drawn, each labeled with the relative

growth rate with respect to the simulated optimal WT growth rate at 37˚C. Distribution of

fATPS at 30˚C best captures the features of the full distribution, thus we select this temperature

for the down-stream analysis. (B) The fATPS distribution of the 368 sampling simulations per-

formed at 30˚C and selected growth rate. Fitting to a mixture of four Gaussian distributions

shows consistency with the observed stratified distribution shown in Fig 1C. (C) fATPS value

shows a similar multi-modal distribution as the maximum fold change in enzyme efficiency

increases to 10 and 100 fold in the sampling simulation.

(TIF)

S10 Fig. Comparison of the computed E. coli aero-type and P/O ratio. (A) Major protein

complexes involved in quinone turnover in the sampling simulations. Formate dehydrogenase

N and O catalyze the same reaction, hence are designated to the same complex (FDN/O) for

simplicity. Box plot of the normalized expression for the indicated protein complexes shows

differential usage of the ETC enzyme between different aero-types. To enable direct compari-

son, the calculated mass fraction of the enzyme complexes is normalized by the total mass
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fraction of all ribosomal proteins to remove bias coming from different growth rates. The cen-

tral red line of the box plot shows the median, the bottom and top edges indicate the 25th and

75th percentiles, and whiskers extend to 1.5 times the interquartile range. Sample size in each

aero-type is the same as in Fig 3D. (B) The activated ETC reactions in the 368 sampling simula-

tions are shown with their relative contributions to the quinone reduction flux and quinol oxi-

dation flux. The calculated biomass yield and acetate production rate are shown to the right, to

represent the corresponding simulated phenotype. (C) fATPS and the P/O ratio are tentatively

binned into five separate groups based on their multimodal distribution, and mapped to the

optimal solutions shown in panel B. (D) Comparison of the experimental and simulated rela-

tive abundances of selected genes (ndh, cyoB) with respect to the ATP synthase. Length of the

bar and error bar represent the average ratio and standard deviation for each aero-type as

defined in Fig 4B for experiment, and in panel C for simulations.

(TIF)

S11 Fig. Growth characterizations for the ETC knock-out strains at three different temper-

atures. The ΔndhΔcydB, ΔcydB mutants were chosen to represent the higher aero-types v/iv,

and the ΔnuoBΔcyoB mutant was chosen to represent a lower aero-type ii. Growth data at

30˚C and 37˚C nicely recapitulates the expected trend such that ΔndhΔcydB and ΔcydB stay in

the region for aero-type iv and ΔnuoBΔcyoB in the region for aero-type ii. At 42˚C, all three

strains generate a lower biomass due to the temperature stress. However, they maintain well

separated on the rate-yield plane representing the aero-type constraints caused by the removal

of the respective ETC genes. Thus, the presented data supports the notion that the differential

usage of the ETC genes determines the phenotypic aero-type of a cell.

(TIF)

S12 Fig. Phenotypic outcomes of an ALE experiment on the stratified fitness landscape.

(A) The schematic of the proposed hierarchical energy production strategy. Blue and red

arrows correspond to the thermodynamic and respiration-fermentation tradeoff, respectively.

(B) A coarse-grained representation of the fitness landscape on the rate-yield plane. Color gra-

dient indicates the level of proteome complexity, where blue represents the simpler proteome

and red is the more complex proteome. (C) An example adaptive trajectory during the evolu-

tion of a pgi-deficient strain. (D) Intermediate evolutionary states were chosen at the indicated

stages and characterized on the rate-yield plane. Four distinct genotypes were identified along

the adaptive trajectory, indicated by red, blue, yellow, and green circles, respectively. Error

bars indicate standard deviation of the biological duplicates.

(TIF)

S1 Table. Protein complexity for selected metabolic pathways.

(PDF)

S2 Table. Phenotype comparison of the ETC knock-out strains.

(PDF)

S3 Table. Sequence of the confirmation primers.

(PDF)
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