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Magnetic resonance imaging (MRI)-based semi-quantitative (SQ) methods applied to knee 
osteoarthritis (OA) have been introduced during the last decade and have fundamentally changed 
our understanding of knee OA pathology since then. Several epidemiological studies and clini-
cal trials have used MRI-based SQ methods to evaluate different outcome measures. Interest in 
MRI-based SQ scoring system has led to continuous update and refinement. This article reviews 
the different SQ approaches for MRI-based whole organ assessment of knee OA and also discuss 
practical aspects of whole joint assessment.
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Introduction
Over the last two decades magnetic resonance imag-

ing (MRI) has increasingly established itself as the most 
important imaging modality in assessing joint pathology 
in the clinical and research environment.1 Initially, carti-
lage was in the focus of clinical and epidemiological stud-
ies applying MRI for the assessment of knee osteoarthritis 
(OA),2–4 and semi-quantitative (SQ) scoring methods were 
introduced for that purpose for both cross-sectional and 
longitudinal evaluations.5–7 However, the potential of 
MRI for the assessment of other joint structures was soon 
recognized.8–11 Validated tools for whole-organ assess-
ment of the OA joint were subsequently introduced to 
better reflect the complexity of interaction of different 
joint components in knee OA.6,12,13 These tools have since 
been applied to several OA studies, which greatly added 
to the understanding of the pathophysiology and natural 
history of knee OA as well as the clinical and prognostic 
implications of structural changes assessed.14–25

MRI-based SQ assessment is based on multi-feature 
grading of the knee joint using conventional acquisition 
techniques that are applied in a clinical environment. 
Scores are visually (semi-quantitatively) assigned by 
expert readers to a variety of features believed to be 

relevant to the functional integrity of the knee, or poten-
tially involved in the pathophysiology of OA, or both. 
These features include cartilage damage, subarticular 
bone marrow lesions (BMLs) (or bone marrow edema- 
pattern), subchondral cysts, subarticular bone attrition, 
marginal and central osteophytes, medial and lateral 
meniscal tears and extrusions, anterior and posterior cru-
ciate ligaments damage, medial and lateral collateral lig-
ament damage, synovitis and effusion, and intra-articular 
loose bodies, as well as periarticular cysts and bursitis.

The first comprehensive MRI-based SQ scoring 
system was published in 2004, and named Whole Organ 
Magnetic Resonance Score (WORMS).6 WORMS has 
been extensively used in OA studies worldwide. Since 
then three more additional scoring systems have been 
introduced; the Knee Osteoarthritis Scoring System 
(KOSS), the Boston Leeds Osteoarthritis Score (BLOKS), 
and the MRI Osteoarthritis Knee Score (MOAKS).12,13,26

In this article, we aim to review the different SQ 
approaches for MRI-based whole organ assessment of 
knee OA and also discuss practical aspects of whole 
joint assessment.

Technical Considerations
Since OA affects several joint structures, and is 

believed to progress through multiple pathogenic 
pathways, the MRI sequence protocol has to support 
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multi-feature structural assessment of the knee. An 
optimal protocol includes the minimum number of 
sequences possible without compromising the integrity 
of whole-organ assessment of most articular features. 
Intermediate weighted “fluid-sensitive” fat-suppressed 
fast spin echo (FSE) sequences (applying a frequency- 
selective saturation pulse) are particularly important and 
should be acquired in three different orthogonal planes 
(axial, sagittal, and coronal) for accurate localization 
and volume estimation of BMLs in different joint 
compartments.27 As an alternative, short tau inversion 
recovery (STIR) sequences or similar inversion recov-
ery sequences may be applied, as these are very robust 
especially concerning susceptibility artifacts.28 Other 
methods of fat suppression such as water excitation 
(e.g., fast low angle shot, FLASH) are less suited as these 
depict BMLs inferiorly and are prone to susceptibility 
artifacts.29 Standard FSE fat suppressed sequences are 
also optimal for assessment of focal cartilage defects.30 
On the other hand, gradient echo sequences, such as 
dual-echo steady state (DESS), fast low-angle shot 
(FLASH), and spoiled gradient-recalled (SPGR), have 
been shown to be insensitive for BML detection,27,31 
but are well suited for cartilage evaluation, especially 
for quantitative analysis such as measurement of 
volume and thickness.32 Gradient-echo sequences are 
particularly prone for susceptibility artifacts, which 
are likely to represent vacuum phenomenon within 
the OA joints.33 Sagittal or coronal three-dimensional 
(3D) high-resolution GRE sequences help in the opti-
mal evaluation of articular cartilage and osteophytes, 
and offer the possibility of three-plane reconstruction. 
A sagittal or coronal T1-weighted spin echo sequence 
may be added for better visualization of osteophytes, 
loose bodies, and sclerosis.27

Designing an optimal pulse sequence protocol 
depends on the structures/features that will be included 
in the assessment and the measurement methods 
applied, e.g., SQ and/or quantitative analyses, as well 
as the convenience and cost. Recommendations for 
choosing appropriate MRI protocols for assessment of 
OA features have been published.34 Suggested pulse 
sequences for optimum SQ evaluation of knee OA 
include “fluid-sensitive” FSE sequences (2D) in three 
orthogonal planes. Axial images are optimal for the 
study of effusion/synovitis, popliteal cysts, and different 
OA features of the femoropatellar and posterior femoral 
compartments. Sagittal and coronal images are helpful 
in assessing the central femoro-tibial compartment, as 
well as the menisci. The study of ligaments requires the 
use of all three orthogonal planes. 3D high-resolution 
MR sequences can be obtained in any plane and refor-
matted in two other orthogonal views. These volumet-
ric images contribute to optimal evaluation of cartilage 
and osteophytes. Sagittal/coronal T1-weighted images 

are helpful for osteophyte and meniscus evaluation.27,35 
Recently, 3D FSE fat suppressed sequences have been 
introduced that allow triplanar reformation with acqui-
sition of a single sequence to achieve similar imaging 
characteristics as with three orthogonal 2D sequences. 
Drawback is blurring, which has hindered wide spread 
application in OA research. One study showed compa-
rable results for 2D vs. 3D FSE sequences for SQ OA 
assessment.36

SQ Assessment of Knee Joint in Osteoarthritis
Whole joint assessment on knee MRI

MRI-based whole organ scoring of different joint 
structures has shown adequate reliability, specificity, 
sensitivity, and responsiveness.6,12,13,17,37 Since the pub-
lication of the MRI-based comprehensive SQ scoring 
system by Peterfy et al. in 2004,6 named WORMS, 
three additional whole-organ systems for the knee have 
been introduced: KOSS,13 BLOKS.12 and MOAKS.26

All the SQ scoring systems described in this review 
are publicly available; however images should be read 
by trained readers for accurate and reliable grading.

In 2011, a study comparing SQ and quantitative 
approaches for the assessment of cartilage damage and 
BML showed that quantitative analyses are more sen-
sitive to change during a 24-month observation period 
than SQ scoring.38 The relative lack of sensitivity to 
change is a potential weakness of semi-quantitative 
approaches when compared to quantitative methods. 
Therefore, scoring “within-grade” changes between 
time points have been introduced to increase longitudi-
nal sensitivity.39 These within-grade changes designate 
a definite change from the previous visit that does not 
fulfill the criteria of a full grade change as defined by 
the scoring system. Also, clinical relevance of with-
in-grade changes has been established as they were 
shown to be associated with known OA risk factors 
and outcomes.39 Scoring within-grade change is partic-
ularly useful in clinical trials, since full-grade changes 
may not occur within a relatively short follow-up of  
<1 year40 in a typical clinical trial of OA. 

When deciding which scoring system should be 
applied for the assessment of a given study, different 
aspects have to be considered such as the outcome 
measures that are relevant to the study, the resources, 
and the available image data set.1

Whole Organ Magnetic Resonance Imaging 
Score (WORMS)

Peterfy et al. published WORMS in 2004.6 Many epi-
demiologic studies and clinical trials have used WORMS 
to semi quantitatively assess several OA features of the 
knee.14,41,42 To date, WORMS is the most widely cited 
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MRI-based SQ scoring system for knee OA with 197 
citations in a “PUBMED” search as of May 2015. In  
the WORMS protocol, a complex system for division  
of the knee is used, based on a subregional rather  
than lesion-oriented approach to scoring, especially for 

cartilage (Fig. 1), BMLs, and cysts. The advantage of 
the subregional approach is that for each subregion mul-
tiple lesions are evaluated together, which facilitates 
interpretation and subsequent analysis of data (Figs. 2, 3). 
Defining the exact number of lesions can be difficult 

Fig. 1.  Typical image examples for different types of cartilage damage. (A) A focal superficial defect (arrow) not reaching the 
subchondral plate is shown in this coronal intermediate-weighted MRI (arrow). Lesion will be coded as a grade 1.0 lesion in 
MOAKS or as grade 2 in WORMS. (B) Coronal intermediate-weighted MRI shows a focal defect (arrow) that reaches the sub-
chondral plate and is consequently defined as a grade 1.1 lesion using MOAKS. In WORMS this lesion would be scored as a 2.5 
lesion. A 2.5 lesion is not a reflection of a within-grade coding but a distinct grade by itself. (C) Sagittal intermediate-weighted 
fat-suppressed MRI depicts diffuse full thickness cartilage damage in the central subregion of the medial femur and the cen-
tral medial tibia (large arrows) representing grade 2.2. lesions in MOAKS, and grade 5 lesions in WORMS. There are associ-
ated subchondral bone marrow lesions (small arrows). MOAKS, MRI Osteoarthritis Knee Score; MRI: magnetic resonance 
imaging; WORMS, Whole Organ Magnetic Resonance Score.

Fig. 2.  Example of longitudinal assessment of bone marrow lesions (BMLs) in the lateral tibio-femoral compartment. (A) 
Baseline sagittal intermediate-weighted fat-suppressed MRI shows a grade 2 MOAKS/grade 3 WORMS BML in the ante-
rior lateral femur displaying high signal intensity, comprised of an ill-defined (edema-like) component (large arrows) and a 
well-defined cystic component (small arrows). In addition, there are small cystic BMLs in the subchondral anterior and pos-
terior lateral tibia (small arrows). (B) Follow-up MRI 1 year later shows slight decrease of overall lesion size (within-grade 
change for MOAKS, and change from grade 3 to grade 2 for WORMS) in the femur (large arrows, black-filled) but increase 
of size of femoral cystic component (small arrows). Note regression of cystic lesion in the posterior lateral tibia and increase 
of ill-defined (edema-like) portion of BML in the anterior lateral tibia (large arrow, gray-filled). MOAKS, MRI Osteoarthritis 
Knee Score; MRI: magnetic resonance imaging; WORMS, Whole Organ Magnetic Resonance Score.
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since these can merge or split over the course of longi-
tudinal studies. Furthermore, WORMS is the only SQ 
scoring system that assesses subchondral bone attrition, 
defined as flattening or depression of the articular sur-
face unrelated to trauma. 

KOSS
Kornaat et al. introduced KOSS in 2005.13 Although 

it covers similar OA features to those analyzed using 
WORMS (Table 1), cartilage status, BMLs, and cysts 
are scored individually for each subregion in KOSS 
(rather than additively in WORMS). The different 
BML grades are differentiated by the size of the lesion. 
Synovitis is scored present or absent on T1-weighted 
gradient-recalled echo images. Scoring of meniscal 
tear is more complex than WORMS, but does not 
take into account the regional subdivision, nor does it 
score partial or complete maceration. Meniscal sub-
luxation is scored in addition to meniscal morphology. 
Furthermore KOSS uses a different subregional divi-
sion than WORMS.

BLOKS
The BLOKS scoring system was introduced by 

Hunter et al. in 2008.12 BLOKS divides the knee joint 
into weight bearing vs. patello-femoral compartments, 
similar to KOSS. The patellar surface is divided into 
lateral and medial facets, as in WORMS. BMLs and 
cysts are scored in a complex manner taking into 

account the size of the BML, percentage of involved 
subchondral surface area of the BML, and percentage 
of the BML that is cyst. Therefore, cysts are scored as 
cystic portion of BML, not separately as in WORMS 
and KOSS.1 The lesional approach used in BLOKS 
to score BMLs, allows superior longitudinal analyses 
of individual lesions especially with regard to change 
in cystic/non-cystic components. Indeed, a compar-
ison of BML scoring according to associations with 
pain and cartilage loss performed during the original 
BLOKS study found that BLOKS performed better 
than WORMS for assessment of these lesions.12 On the 
other hand, the definition of each lesion is time-con-
suming and differentiation among individual lesions 
can be uncertain because of the ill-delineated nature of 
the lesions. 

BLOKS assigns a score for the amount of BML that 
is adjacent to the subchondral plate allowing for differ-
entiation of depth of BMLs with regard to the subchon-
dral plate.1 Two scores are reported for cartilage. The 
first refers to the percentage of any cartilage loss in the 
subregion and the percentage of full-thickness carti-
lage damage for the same subregion. The second score 
describes the cartilage status on specific landmark-
defined image sections and differentiates partial and 
full thickness cartilage loss. 

MOAKS
There are limited studies directly comparing KOSS, 

WORMS, and BLOKS in the literature. In 2011, two 

Fig. 3.  Longitudinal evaluation of BMLs. Relevance of lesional vs. subregional scoring. (A) Baseline sagittal intermediate-weighted 
fat-suppressed MRI shows two distinct ill-defined BMLs at the central subregion of the medial femur (arrows). Overall lesion 
size in subregion qualifies as a grade 1 MOAKS/grade 2 WORMS lesion. (B) Follow-up MRI 1 year later shows within-grade 
increase in overall subregional lesion size in the same subregion. In contrast to image A, now three distinct lesions are observed 
(arrows). The single anterior lesion has split into two lesions with a decrease in lesion size, while the previous posterior lesion 
shows now an increase in lesion size. (C) Two-year follow-up MRI shows a decrease in overall femoral BML size with now a 
total subregional score of 1 using WORMS and MOAKS. There are two distinct lesions now with the most anterior lesion from 
image B showing complete regression. No cystic component of any of the lesions is observed. There is a large (grade 3 
WORMS and MOAKS) incident lesion in the posterior medial tibia. BML, bone marrow lesion; MOAKS, MRI Osteoarthritis 
Knee Score; MRI: magnetic resonance imaging; WORMS, Whole Organ Magnetic Resonance Score.
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studies compared WORMS and BLOKS on a limited 
sample of 115 knees with radiographic OA from the 
osteoarthritis initiative (OAI). Although both systems 
had high reliability, Felson et al. recommended that 
both methods should be combined as BLOKS per-
formed better for menisci, while WORMS was supe-
rior for analysis of BMLs.43,44 For example, WORMS 
meniscal scoring mixes multiple different constructs, 
while BLOKS clearly differentiates different tear types 
from intramensical signal changes and substance loss, 
i.e. meniscal maceration. BML scoring in BLOKS is 
complex due to the different dimensions and particu-
larly due to the lesional approach that makes applica-
tion in longitudinal studies challenging as lesions may 
merge and split over time. Limitations of both methods 
urged investigators to develop a new scoring instrument 
that integrated the advantages of both WORMS and 
BLOKS but minimizing the drawbacks of both systems.

The same year a new scoring system was developed 
and introduced, mainly based on experts’ experience of 
existing scoring tools and the available comparative data, 
termed MOAKS.26 MOAKS refined scoring of BMLs 
and elements of meniscal morphology (Fig. 4), added 
subregional assessment, and omitted some redundancy 
in BML and cartilage scoring. Regarding osteophyte 
scoring, MOAKS uses a four-scale grading system as in 
BLOKS (Fig. 5). Scoring of effusion remained same as 
the previous systems (Fig. 6). 

While MOAKS is the newest of the four systems 
described in this review and requires further validation, 
it has been used in large-scale studies including the 
multicenter randomized controlled MeTeOR (Meniscal 
Tear with Osteoarthritis Research) trial, which exam-
ined whether arthroscopic partial meniscectomy 

resulted in better functional outcomes than non-op-
erative therapy,45 and the OAI.446,47 A recent publica-
tion using data from the latter study demonstrated that 
severity of structural damage can be used as predictor 
of knee replacement a year later and also predicts the 
radiographic onset of OA.25

Synovitis-specific SQ Scoring Systems
All whole joint scoring systems have in common the 

non-inclusion of contrast-enhanced images. However, 
signal changes detected in Hoffa’s fat pad on “fluid-
sensitive” sequences only have been shown to be 
non specific, although sensitive, finding for synovi-
tis48 (Fig. 7). In fact, other conditions lead to similar 
changes such as chronic fibrotic changes.48,49 It has 
been shown that only contrast-enhanced (CE) MRI-
detected synovitis correlates with histological find-
ings.50,51 Therefore, CE-MRI is the only method that 
accurately assesses the true extent of synovitis in knee 
OA52 (Fig. 8). Three different scoring systems to assess 
synovitis on the basis of CE-MRI have been published. 
The grading system developed by Guermazi et al.53 is 
a three-scale scoring system assessing 11 sites, and has 
high intra- and inter-reader agreement. In a recent pub-
lication it has been shown that CE-MRI-detected syno-
vitis strongly correlates with tibiofemoral radiographic 
OA and MR-detected widespread cartilage damage.54

Conclusion
SQ assessment of knee OA on MRI is a valid, reli-

able, and responsive tool for the understanding of the 
natural history of OA and the evaluation of therapeutic 

Fig. 4.  Meniscal maceration is commonly observed in OA knees. (A) Baseline coronal dual echo at stead state (DESS) 
image shows a normal body of the medial meniscus without evidence of a tear of substance loss but little extrusion (arrow; 
grade 1 MOAKS). (B) Two years later, there is evidence of substance loss (arrow) in the central part of the body region (also 
referred to as the “white zone”). This finding is also termed partial meniscal maceration. MOAKS, Magnetic Resonance 
Imaging Osteoarthritis Knee Score, OA: osteoarthritis.
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Fig. 5.  Osteophytes are one of the hallmark features of OA on imaging and part of the disease definition on X-rays. While 
WORMS uses a complex approach of osteophytes scoring on a 0–7 scale at 16 articular anatomical locations, MOAKS 
applies a somewhat simplified scheme on a 0–3 scale at only 12 different locations omitting the scores of the anterior and 
posterior medial and lateral tibia. (A) Sagittal fat-suppressed intermediate-weighted image of the lateral tibio-femoral com-
partment shows a moderate sized MOAKS grade 2/WORMS grade 4 osteophyte at the anterior femur, a MOAKS grade 3/
WORMS grade 5 osteophyte at the posterior femur (short white-filled arrows), and a WORMS grade 5 osteophyte (long 
black-filled arrow) at the anterior lateral tibia (location not considered in MOAKS). (B) Marginal osteophytes in the coronal 
plane are similarly considered in MOAKS and WORMS. Example shows femoral osteophytes (small arrows; MOAKS grade 
2/WORMS grade 4 medial; MOAKS grade 3/WORMS grade 6 lateral) and a moderate osteophyte at the medial tibia (large 
arrow; MOAKS grade 2/WORMS grade 4). There is diffuse cartilage loss at the central lateral tibial and femur with moderate 
lateral tibial plateau remodeling (attrition). (C) Sagittal dual-echo at steady-state (DESS) MRI of the medial tibio-femoral 
compartment shows moderate-sized (MOAKS grade 2/WORMS grade 3) osteophytes at the anterior and posterior medial 
femur (small white-filled arrows). At the tibia (large white-filled arrows) there is a tiny anterior osteophyte (WORMS grade 
1) and a moderate-to-large sized posterior osteophyte (WORMS grade 5). Tibial locations are not scored in the sagittal plane 
using MOAKS. MOAKS, MRI Osteoarthritis Knee Score; MRI: magnetic resonance imaging; OA: osteoarthritis; WORMS, 
Whole Organ Magnetic Resonance Score.

Fig. 6.  MRI of markers of inflammation in OA. Fluid sensitive sequences are capable of delineating intraarticular joint 
fluid. However, a distinction between true joint effusion and synovial thickening is not possible as both are visualized as 
hyperintense signal within the joint cavity. For this reason the term effusion-synovitis has been introduced, which is scored 
based on the distension of the joint capsule for both systems, WORMS and MOAKS, and is graded collectively from 0 to 3 
in terms of the estimated maximal distention of the synovial cavity with 0 = normal, grade 1 = <33% of maximum potential 
distention, grade 2 = 33–66% of maximum potential distention, and grade 3 = >66% of maximum potential distention. Axial 
dual-echo at steady-state (DESS) MR images show (A) grade 1 effusion-synovitis, (B) grade 2 effusion-synovitis (asterisk), 
and (C) grade 3 effusion-synovitis (asterisk). MOAKS, MRI Osteoarthritis Knee Score; MRI: magnetic resonance imaging; 
OA: osteoarthritis; WORMS, Whole Organ Magnetic Resonance Score.
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possibilities. SQ scoring systems have been applied in 
large-scale, multi-center epidemiological studies, as well 
as interventional clinical trials.  Considering the ongoing 
effort for deeper understanding of OA and the develop-
ment of disease-modifying drugs for knee OA, iterative 
refinement of SQ scoring systems will also continue. 
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Fig. 7.  Signal changes in Hoffa’s fat pad are commonly used as a surrogate for synovitis on non-contrast-enhanced MRI. 
While these structural changes have been used for a long time they have not been described in the WORMS system but 
have been incorporated in the MOAKS system. Although synovitis can only be visualized directly on contrast-enhanced 
sequences, it has been shown that Hoffa’s signal changes are a sensitive but non-specific surrogate of synovitis. (A) Sagittal 
proton density-weighted MRI shows a discrete ill-defined hyperintense signal alteration in Hoffa’s fat pad consistent with 
grade 1 Hoffa-synovitis (arrow). (B) A grade 2 signal change within the fat pad is shown in this example (arrows). (C) Severe, 
grade 3 signal alterations almost occupying the entire fat pad are seen in this image (arrows). MOAKS, MRI Osteoarthritis 
Knee Score; MRI: magnetic resonance imaging; WORMS, Whole Organ Magnetic Resonance Score.

Fig. 8.  Comparison of inflammatory manifestations of disease using non-enhanced and contrast-enhanced sequences. (A) 
Axial intermediate-weighted fat-suppressed MRI shows homogeneous hyperintensity within the joint cavity consistent with 
grade 2 effusion-synovitis by MOAKS and WORMS (asterisk). Note BML in the posterior lateral femoral condyle consistent 
with traction edema at the insertion of the anterior cruciate ligament (arrows). (B) Corresponding T1-weighted fat-suppressed 
image after intravenous contrast administration clearly differentiates between intraarticular joint fluid depicted as hypointen-
sity (asterisk) and true synovial thickening visualized as hyperintense contrast enhancement of the synovial membrane (large 
arrows). Note that BMLs are similarly depicted on T2-weighted fat-suppressed and T1-weighted contrast-enhanced fat-sup-
pressed MRI (small arrows). BML, bone marrow lesion; MOAKS, MRI Osteoarthritis Knee Score; MRI: magnetic resonance 
imaging; WORMS, Whole Organ Magnetic Resonance Score.
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