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The role of gonadal hormones in neural plasticity remains unclear. This study aimed
to examine the effects of naturally fluctuating hormone levels over the menstrual cycle
in healthy females. Gray matter, functional connectivity (FC) and white matter changes
over the cycle were assessed by using functional magnetic resonance imaging (fMRI),
resting state fMRI, and structural MRIs, respectively, and associated with serum gonadal
hormone levels. Moreover, electrocutaneous sensitivity was evaluated in 14 women
in four phases of their menstrual cycle (menstrual, follicular, ovulatory, and luteal).
Electrocutaneous sensitivity was greater during follicular compared to menstrual phase.
Additionally, pain unpleasantness was lower in follicular phase than other phases while
pain intensity ratings did not change over the cycle. Significant variations in cycle phase
effects on gray matter volume were found in the left inferior parietal lobule (IPL) using
voxel-based morphometry. Subsequent Freesurfer analysis revealed greater thickness of
left IPL during the menstrual phase when compared to other phases. Also, white matter
volume fluctuated across phases in left IPL. Blood estradiol was positively correlated
with white matter volume both in left parietal cortex and whole cortex. Seed-driven
FC between left IPL and right secondary visual cortex was enhanced during ovulatory
phase. A seed placed in right IPL revealed enhanced FC between left and right IPL
during the ovulatory phase. Additionally, we found that somatosensory cortical gray
matter was thinner during follicular compared to menstrual phase. We discuss these
results in the context of likely evolutionary pressures selecting for enhanced perceptual
sensitivity across modalities specifically during ovulation.

Keywords: dorsal attention network, inferior parietal lobule, menstrual cycle, cortical thickness, resting state
functional connectivity, somatosensory sensitivity, pain sensitivity
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INTRODUCTION

Studies of gray matter in the female brain across the natural
menstrual cycle have revealed phase effects in several brain
areas including the hippocampus, fusiform gyrus, amygdala, and
frontal and parietal cortices (Protopopescu et al., 2008; Pletzer
et al., 2010, 2015, 2018; Hagemann et al., 2011; Lisofsky et al.,
2015; De Bondt et al., 2016; Pletzer, 2019). Relatedly, several
studies have reported that estradiol enhances performance on
hippocampal-dependent and prefrontal cortex-dependent tasks
in female rats, mice, non-human primates as well as pre- and
post-menopausal humans (Berman et al., 1997; Daniel et al.,
1997; Luine et al., 1998; Korol and Kolo, 2002; Lacreuse et al.,
2002; Rapp et al., 2003; Li et al., 2004; Sandstrom and Williams,
2004; Luine, 2008; Spencer et al., 2008; Bayer et al., 2015, 2018;
Jacobs et al., 2016; Wei et al., 2018). With accurate assessment
of hormone levels and confirmed ovulation, the menstrual
cycle phase enables the study of estrogens and progesterone on
neurophysiology and cognitive function (Greenspan et al., 2007;
Sundstrom Poromaa and Gingnell, 2014).

Menstrual cycle phase effects on sensory perception have
been demonstrated for over 80 years (Herren, 1933; Kenshalo,
1966). Many studies have reported heightened sensitivity during
follicular or ovulatory phases compared to menstrual or luteal
phases including visual, auditory, olfactory, and somatosensory
stimuli (Diespecker and Kolokotronis, 1971; Diamond et al.,
1972; Friedman and Meares, 1978, 1979; Parlee, 1983; Symons
et al., 1990; Hummel et al., 1991; Guttridge, 1994; Caruso et al.,
2001, 2003; Grillo et al., 2001; Navarrete-Palacios et al., 2003;
Derntl et al., 2013; Renfro and Hoffmann, 2013; Veldhuijzen
et al., 2013; Alves et al., 2017). Significant consistent variation in
perceptual sensitivity to several modalities of sensory stimulation
across the menstrual cycle, particularly during phases with high
estrogens suggests an underlying neurophysiological mechanism
in multimodal sensory cortex.

The effects of ovarian hormones on cortical excitability
measured using transcranial magnetic stimulation include
increased cortical inhibition in luteal compared to follicular phase
and increased excitability associated with late compared to early
follicular or luteal phase (Smith et al., 1999, 2002; Inghilleri et al.,
2004; Hausmann et al., 2006; Hattemer et al., 2007). Furthermore,
the amplitude of visual evoked potentials (VEPs) to sexually
salient stimuli are greatest during ovulatory phase, while effects of
menstrual cycle on VEPs to neutral stimuli are mixed (Johnston
and Wang, 1991; Yilmaz et al., 1998; Tasman et al., 1999; Krug
et al., 2000; Solis-Ortiz et al., 2004; Avitabile et al., 2007; Brotzner
et al., 2015). Several studies report inhibition of alpha EEG power
and driving responses to visual stimuli during late follicular and
ovulatory phase compared to augmentation of alpha measures
during luteal phase (Vogel et al., 1971; Becker et al., 1982; Solis-
Ortiz et al., 1994; Kaneda et al., 1997; Brotzner et al., 2014;
Bazanova et al., 2017).

Studies of resting state fMRI functional connectivity (FC)
provide important information on brain network function
(Buckner and Vincent, 2007). While previous studies have
investigated the menstrual cycle phase effect on changes in FC
networks, most have focused on the hippocampus or found no

effects (Hjelmervik et al., 2014; De Bondt et al., 2015; Syan et al.,
2017). Findings include reports of enhanced FC between the
hippocampus and bilateral superior parietal lobules during late
follicular phase (pre-ovulatory) and that regions in the frontal
and parietal cortex significantly change in FC with the default
mode network (Petersen et al., 2014; Lisofsky et al., 2015). Much
work remains to unravel the complex effects of the menstrual
cycle phase on brain structure and function.

In the present study, gray and white matter morphology
and functional connectivity across the menstrual cycle was
examined. We hypothesized significant variation in gray and
white matter volume measures across the menstrual cycle
in healthy females. Given significant cycle phase effects on
morphometric measures, we additionally determined effects of
estrogen and progesterone concentration at the time of the
scan and correlated these with cortical thickness and white
matter volume. Additionally, we evaluated menstrual cycle effects
on cortical thickness in the bilateral somatosensory cortex as
demonstrated in previously reported menstrual cycle effect on
tactile, thermal, and pressure pain sensitivity (Herren, 1933;
Veldhuijzen et al., 2013; Alves et al., 2017). We complement these
brain morphometric results by showing the effect of menstrual
cycle phase on cutaneous electrical sensitivity and reports of pain
intensity and unpleasantness in response to electrical stimuli.
Finally, we hypothesized modulated FC involving those areas
with significant cycle variation in gray and white matter volume
during the menstrual cycle.

MATERIALS AND METHODS

Participants and Experimental Procedure
Fourteen healthy right-handed women participated in this study.
Eligible participants were women aged 18 to 45 who were
right-handed and spoke English fluently. Participants reported
a normal recurrent menstrual cycle of 25 to 35 days in which
ovulation and menstruation took place. This was documented by
completion of 2 months of daily menstrual cycle diaries before the
start of data collection. Finally, participants were eligible when
they were willing and able to undergo MRI scanning. Exclusion
criteria included: (1) cognitive impairment that prevented
understanding of the consent form or test instructions, which
was assessed by the Mini Mental State Examination; (2) health
problems as assessed by self-report including history of drug
or alcohol abuse, psychiatric disorder or dysfunction requiring
treatment, history of abnormal electrocardiogram, pulmonary
disease, chronic respiratory disease, hypertension, heart or artery
disease including heart failure and stroke, renal disease, seizure
disorders, endocrine disorders such as thyroid and diabetes,
chronic pain, arthritis, insomnia, reproductive system problems
such as endometriosis, carpal tunnel syndrome, undergoing
chemotherapy or radiation treatments; (3) obesity (body mass
index > 30); (4) if the painful stimulation failed to elicit a rating
of 60 on a 0 to 100 visual analog scale (VAS) of pain intensity;
(5) unable to undergo MRI scanning; (6) pregnancy; (7) use
of psychotropic medications during the preceding 6 months;
(8) use of hormone therapy including hormonal birth control
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pills during the preceding month; (9) use of tobacco in the
last 6 months; (10) having experienced any serious injury to
the body regions to be tested; or (11) if regularly exercising
more than 1 h per day, 3 times per week. Prior to the
four planned fMRI scanning sessions, participants filled out
daily menstrual cycle diaries for 2 months demonstrating a
normal recurrent menstrual cycle of 25 to 35 days duration
in which ovulation and menstruation took place. Participants
reported self-assessed ovulation using at-home ovulation test
kits which detect the presence of luteinizing hormone (LH)
in urine. Participants recorded basal body temperature (BBT)
upon wakening every morning. After verifying participants
completed their first month’s diary, we requested them to
maintain this diary for their entire study participation. After
demonstrating two regular complete serial menstrual cycles in
which ovulation could be detected, each woman participated
in four experimental fMRI sessions. These sessions took place
during the menstrual phase (within 2 to 4 days of the onset
of menses), the midfollicular phase (within 6 to 8 days of
onset of menses when estradiol and progesterone levels are
low), the periovulatory period (the day of or the day after the
first positive ovulation test; about 14 days after onset of the
menstrual cycle when estradiol levels are high and progesterone
are low), and the midluteal phase (1 week after ovulation;
about 20 days after onset of menses when both estradiol and
progesterone levels are high) (Veldhuijzen et al., 2013). We
counterbalanced participant order of testing by assigning them
to have their first experimental session in one of the four phases
of the menstrual cycle. The University of Maryland, Baltimore
(UMB) Institutional Review Board for the Protection of Human
Subjects approved the study. All participants provided written
informed consent.

MRI Recording
We recorded MRI data on a 3-T Tim Trio scanner (Siemens
Medical Solutions, Malvern, PA) with a 12-channel head coil
with parallel imaging capability. A gradient echo single-shot
echo-planar-imaging sequence provided a 3.6 mm × 3.6 mm
resolution over a 23-cm field of view. We accomplished T2∗
weighting from this sequence with an echo time of 30 ms
and flip angle of 90◦. We achieved whole brain coverage with
a repetition time of 2000 ms allowing whole brain coverage
with 24 slices of 6 mm thickness acquired in an interleaved
manner without a gap between slices. Each woman provided
171 volumes of T2∗ functional data during a 5 min, 42 s scan.
To allow an anatomical reference to the functional volumes and
for voxel based morphometry and cortical thickness analysis,
we acquired a 3-dimensional T1 magnetization-prepared rapid
gradient echo (MPRAGE) volumetric scan with 3.44 ms echo
time, 2250 ms repetition time, 900 ms TI, flip angle 9◦, 96 slices,
slice thickness 1.5 mm and 0.9× 0.9-mm in-plane resolution over
a 23-cm field of view.

Circulating Sex Hormones
Clinical lab staff drew twenty milliliters of blood before each
imaging session. To verify cycle phase and assess hormone levels,
the blood samples were assayed with radioimmunoassay for

estradiol, progesterone and free testosterone and enzyme-linked
radio immunosorbent assay for LH and follicle stimulating
hormone (FSH) (Veldhuijzen et al., 2013). Hormone assays were
done at Johns Hopkins Medical Institute ICTR Clinical Research
Core Laboratory. For estradiol, the intra-assay coefficient of
variation was 4.2% and inter-assay coefficient of variation was
6.0%. For progesterone, the intra-assay coefficient of variation
was 7.2% and inter-assay coefficient of variation was 9.0%.
The limit of detection for estradiol was 2.2 pg/ml and for
progesterone was 0.05 ng/ml.

Electrical Stimulation
We delivered 20 Hz electrical stimuli to the left foot dorsum
with 2 by 2 inch electrodes that passed a symmetrical biphasic
pulse with a pulse width of 200 µs via a Empi 300PV
Neuromuscular Stimulator (Empi, Clear Lake, SD, United States).
For each participant, we determined a stimulus intensity
for a painful stimulus, which they rated about 60 on a
0 to 100 visual analog scale (VAS) for pain corresponding
to a moderate pain intensity. We determined the specific
electrical stimulus intensity required to evoke a moderate
pain intensity before each MRI session. This allowed us to
match pain intensity across participants. Participants rated
their pain intensity and pain unpleasantness on a 0–100 VAS
with anchors for “no pain”/“not at all unpleasant,” and “most
intense pain imaginable”/”extremely unpleasant.” Additionally,
we assessed each participant’s electrical detection threshold
and electrical pain threshold at each session. We instructed
each participant that she could signal to end the protocol for
any reason. No participant chose to end the protocol before
it was complete.

Voxel Based Morphometry Analysis
To make a first estimate of the whole brain voxel-wise
effect of menstrual cycle phase on potential gray matter
changes we used voxel-based morphometry as implemented in
VBM8 (version r435) using the longitudinal analysis option
(Ashburner and Friston, 2000). After an initial alignment
using DARTEL, the mean of the realigned structural volumes
was calculated (mean) and used as reference image in the
subsequent realignment (Ashburner, 2007). We then bias
corrected the realigned volumes to correct for signal in
homogeneities with regard to the reference structural volume. We
estimated spatial normalization parameters using the structural
segmentations of the mean volume into gray matter, white
matter, cerebral spinal fluid. We applied these normalization
parameters to segmentations of the bias-corrected structural
volumes. The resulting normalized segmentations are then
again realigned.

Freesurfer Cortical Thickness and White
Matter Volume Analysis
The MPRAGE structural volumes were processed to remove
all the skull and extra-cerebral tissue using afni’s 3dSkullStrip
with options to maintain the original intensity of the volumes
and push the strip mask to the edge of the brain. Since the

Frontiers in Neuroscience | www.frontiersin.org 3 December 2020 | Volume 14 | Article 594588

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-594588 December 16, 2020 Time: 15:22 # 4

Meeker et al. Parietal Lobe Menstrual Cycle Variation

primary measure of gray matter change in VBM is amount of
change needed to morph an individual’s brain to a template,
there are no standardized measurements created from the
images (Ashburner, 2007). In order to obtain scalar measures
of relative gray matter volume using an independent method,
we implemented a cortical thickness analysis using Freesurfer.
Each method has particular susceptibilities to T1 signal noise
and methodological variability, therefore we only consider results
which are statistically significant from both analyses on a whole-
brain basis (Rajagopalan and Pioro, 2015; Chung et al., 2017).
After skull-stripping, structural volumes for each subject for
each session were processed using recon-all from Freesurfer
version 5.1.0. Cortical thickness measures for Brodmann areas
and cortical sulcal and gyral parcellations were tabulated and
extracted for analysis in R 3.6.1 (Fischl et al., 2008; Destrieux
et al., 2010). Following the regions found to be significantly
associated with cycle phase during the VBM analysis, we
examined white matter volume in the region of the left parietal
lobe and gray matter thickness in the interparietal sulcus and
transverse parietal sulcus. An additional hypothesis regarding
somatosensory sensitivity being associated with menstrual cycle
phase led us to analyze the menstrual cycle effects on both
left and right BA1, BA2, BA3a, and BA3b analyzed within
the same linear mixed model. The mixed model was specified
to isolate the main effect of menstrual cycle phase from the
known effects of Brodmann area and hemispheric asymmetry
on cortical thickness. Specifically, fixed effects were modeled
as (cycle phase + Brodmann area ∗ hemisphere) with random
effects nested within subject to specify a repeated measures
model (Galecki and Burzykowski, 2013). To display overall
effects of menstrual cycle phase, cortical thickness was averaged
over Brodmann area and hemisphere for each level of cycle
phase. Finally, we tested left and right hemisphere as well
as whole brain cortical gray matter and white matter volume
as well as subcortical gray matter volume, whole brain gray
matter volume and CSF volume for cycle phase effects. We
modeled random effects as a function of session order nested
within subject to specify a repeated measures model accounting
for session order (Galecki and Burzykowski, 2013). Finally,
each model was additionally tested with model weights for
the fixed effect factor as a power function (varPower) of the
phase order. As an additional control we report supplemental
results modeling the weighting of the phase factor as a power
function of the day of the menstrual cycle the session took
place on for each subject. We tested all contrasts for each
significant phase effect with the Holm-Sidak correction for
multiple comparisons which controls family wise error. We
display results as the estimated marginal means and standard
error derived from the described linear mixed model (LMM).
We use the R function anova to provide F-values for ease of
interpretation of overall model significance. These estimations
are likely conservative. The individual contrasts and corrected
contrasts are the most accurate test of effect. Effect sizes were
calculated from the raw data using Cohen’s d. To evaluate the
effects of estradiol and progesterone on cortical thickness and
white matter volume metrics we created trivariate and bivariate
correlation model in the R package ppcor with a post-hoc

correction for repeated measure adjustment of sample size (Kim,
2015; Bakdash and Marusich, 2017). We created zero-order
correlation plots with ggscatter in R.

Functional MRI Analysis
We analyzed functional imaging data with Analysis of Functional
NeuroImages1. One of the 14 participants included in the cortical
thickness and VBM analysis was excluded from the functional
analysis because the resting state scan was not acquired during
one session due to an equipment failure. We removed the
first 4 volumes from the functional scan series to allow for
signal equilibration. We then used afni_proc.py to generate
automated scripts to process the resting functional MRI scans.
We used 3dTshift for slice-timing correction, 3dDespike suppress
spikes in the time voxel time series, and align_epi_anat.py to
align each anatomical volume to the first functional volume
of the scan series. We warped each anatomical volume to
the Talairach normalized icbm452 volume template. We used
3dvolreg to motion correct each sessions’ time series. We
censored functional volumes that were displaced more than
1.8 mm in Euclidean space. There were no censored volumes.
A supplemental analysis showed only 2 volume-to-volume
displacements that were greater than 0.9 mm, out of the 8,632
possible volume-to-volume displacements [13 participants × 4
sessions × (167 volumes-1)]. Once aligned, each structural
volume was segmented into cerebral spinal fluid (CSF), gray
matter (GM), and white matter (WM) segments using 3dSeg.
These masks were projected into functional space (3.5 mm3

voxels) and the CSF and WM masks were eroded. The slice
time corrected, despiked and registered functional time series
were spatially blurred using an 8-mm full-width, half-maximum
Gaussian filter. This FWHM filter was consistent with grand
average blur estimates (x, y, z) = (8.14 mm, 8.32 mm, 7.97 mm).
Then we used 3dBandpass to remove constant, linear and
quadratic trends from the time series and apply a bandpass filter
between 0.008 and 0.1 Hz.

For the subject-level seed-driven functional connectivity
(SDFC) analysis, the peak F-stat voxel of menstrual cycle phase
effect on gray matter volume from the VBM analysis was
used as the initial seed region [Left inferior parietal lobule
(IPL) = −27, −50, 56]. SDFC analysis was derived by extracting
time series from each resting state functional scan from the left
and right IPL (±27, −50, 56) using a spherical seed with a 6-
mm radius. We used both left and right seeds since previous
studies have found cycle phase effects on gray matter metrics
in both left and right IPL and right and left IPL are core nodes
of the dorsal attention network (Buckner and Vincent, 2007;
Protopopescu et al., 2008; Lisofsky et al., 2015). We created
subject-level SDFC maps by regressing the time series for the
left and right IPL to each functional time series while using
WM and CSF time series as well as six demeaned motion
parameters (x, y, z, roll, pitch, and yaw) and their first derivatives
as baseline regressors of no interest. The resultant R2 maps
were converted to R maps and then to Z maps using Fisher’s
R-to-Z transformation.

1http://afni.nimh.nih.gov
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For group-level analysis we used the Z-score maps in a
linear mixed model implemented using afni’s 3dLME (Chen
et al., 2013). The model was specified to generate mean FC
maps for each phase as well as FC collapsed across the
menstrual cycle as well as contrast maps of ovulatory > luteal,
ovulatory > menstrual, ovulatory > follicular, follicular > luteal,
and luteal > menstrual. We used 3dClustSim with an
autocorrelation function estimated as the average from all
functional time series across all menstrual cycle phases (the
acf was estimated as 69.3% Gaussian, with other parameters
of 4.67 and 14.10 generating an effective FWHM of about
12 mm) (Cox et al., 2017). These settings in 3dClustSim,
which address widely publicized vulnerabilities to Type I
error in afni’s analysis framework, determined a cluster-
extent criterion of 643 mm3 for a p-value of 0.001 (Eklund
et al., 2016). This threshold is more than twice the volume
of the minimal suggested cluster volume for whole brain
analyses (Woo et al., 2014). All maps were thresholded using
these parameters. All brain images are depicted in radiologic
convention, where the right hemisphere is on the left of the
image, and vice versa.

Statistical Analysis of Psychophysical
Measures
We evaluated the effect of menstrual cycle phase on EDTs,
pain intensity and pain unpleasantness ratings in an LMM
setting menstrual phase as a control and specifically assessing
contrasts for menstrual phase compared to follicular, ovulatory
and luteal phases. For electrical detection threshold, a measure
of somatosensory sensitivity, we proposed a priori contrasts of
women being more sensitive during ovulation and follicular
phases when compared to luteal and menstrual phases. We report
these results with both Holm-Sidak corrected and uncorrected
p-values. We justify these a priori contrasts by taking into account
previous findings of enhanced sensitivity during ovulation
and follicular phases in several sensory modalities including
visual, olfactory, auditory, and somatosensory (Herren, 1933;
Diespecker and Kolokotronis, 1971; Diamond et al., 1972; Parlee,
1983; Hummel et al., 1991; Guttridge, 1994; Krug et al., 2000;
Caruso et al., 2001, 2003; Grillo et al., 2001; Derntl et al.,
2013; Renfro and Hoffmann, 2013; Veldhuijzen et al., 2013).
We modeled fixed effects as cycle phase with random effects
of session order nested within subject to specify a repeated
measures model using R accounting for session order (Galecki
and Burzykowski, 2013). Finally, we augmented each model
with model weights for the fixed effect factor as a power
function (varPower) of the phase order. As an additional control
we report supplemental results modeling the weighting of the
phase factor as a power function of the day of the menstrual
cycle the session took place on for each subject. We tested all
contrasts for each significant phase effect with the Holm-Sidak
correction for multiple comparisons which controls family wise
error. We display results as the estimated marginal means and
standard error derived from the described LMM. Effect sizes
were calculated from the raw data using Cohen’s d. Zero-order
correlations were calculated using pcor with a post-hoc correction

for repeated measure adjustment of sample size (Kim, 2015;
Bakdash and Marusich, 2017).

RESULTS

Gray Matter Volume and Cortical
Thickness Are Greatest in Menstrual
Phase
A longitudinal voxel-based morphometry (VBM) analysis found
one cluster which had a peak F-value of 15.6 in the left
inferior parietal lobule (IPL) (TLRC coordinate = −27, −50,
56; volume = 2778 mm3), where the main effect of cycle
phase significantly modulated gray matter volume (Figure 1A).
Freesurfer parcellation and cortical thickness estimation showed
that the left intraparietal and transverse parietal sulci were
thickest during menstrual phase (main effect of cycle phase
F-stat = 4.63; p = 0.037) with post-hoc comparisons significantly
favoring thicker cortex during menstrual phase compared to
follicular (z-stat = 3.45; Holm-Sidak-corrected p = 0.0034;
Cohen’s d = 0.86) and luteal phase (z-stat = 2.92; Holm-Sidak-
corrected p = 0.018; d = 0.67), and ovulatory phase (z-stat = 2.50;
Holm-Sidak corrected p = 0.0496; d = 0.70) (Figure 1B).
Furthermore, there was a main effect of cycle phase on white
matter underlying the left IPL (F = 6.89; p = 0.0008) (Figure 1C).
Post-hoc tests showed greater white matter volume during
ovulatory compared to follicular (z-stat = 3.79; Holm-Sidak-
corrected p = 0.0009; d = 0.81) or menstrual phase (z-stat = 3.08;
Holm-Sidak-corrected p = 0.0082; d = 0.73) and greater white
matter volume during luteal compared to follicular phase (z-
stat = 3.23; Holm-Sidak-corrected p = 0.0061; d = 0.93) or
menstrual phase (z-stat = 2.51; Holm-Sidak corrected p = 0.036;
d = 0.87).

To determine the potential effects of estradiol and
progesterone on left intraparietal and transverse parietal
sulci cortical thickness we used a partial correlation model
comparing cortical thickness to estradiol and progesterone, and
simple correlation to estradiol and progesterone concentrations
separately. No correlations of left parietal cortical thickness with
estradiol (R < 0.153) or progesterone (R > −0.065) surpassed
R = 0.153. We repeated this analysis for left parietal white matter
volume. In the trivariate partial correlation model, we found
no significant relationship between left parietal white matter
volume and progesterone (R = 0.036; sample-size corrected
p = 0.83), but a significant relationship between left parietal
white matter volume and estradiol (R = 0.452; sample-size
corrected p = 0.0022). There remained a moderate correlation
between estradiol and left parietal white matter volume in
the zero-order correlation [R = 0.479; sample-size corrected
p = 0.0013 (without outlier: R = 0.396, t-stat = 2.73, sample-size
corrected p = 0.0095)] (Figure 1D).

We sought to evaluate the effect of menstrual cycle
on cortical thickness of the bilateral somatosensory cortex
that may relate to the previously reported menstrual cycle
effect on tactile and thermal sensory sensitivity as well as
pressure pain sensitivity in this particular cohort (Herren, 1933;
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FIGURE 1 | (A) F-map of significant variation in gray matter volume across the menstrual cycle. (B) Cortical thickness across the menstrual cycle in the left inferior
parietal lobule. (C) White matter volume in the left parietal lobe across the menstrual cycle. (D) Positive correlation of left parietal white matter volume with blood
estradiol concentrations across the menstrual cycle. (E) Cortical thickness across the menstrual cycle in the postcentral gyrus bilaterally (average over BA1, BA2,
BA3a, and BA3b). + = 0.08 > p > 0.05, uncorrected; ∗ = p < 0.05; ∗∗ = p < 0.01; ∗∗∗ = p < 0.005, Holm-Sidak corrected.

Kenshalo, 1966; Diespecker and Kolokotronis, 1971; Gescheider
et al., 1984; Teepker et al., 2010; Veldhuijzen et al., 2013; Alves
et al., 2017). We combined measurements from BA1, BA2, BA3a,
and BA3b bilaterally into a linear mixed model isolating the effect
of menstrual cycle phase from effects of Brodmann area and
hemisphere (Fischl et al., 2008). The model revealed a significant
main effect of menstrual cycle phase (F = 3.03; p = 0.029).
Post-hoc corrected contrasts showed primary somatosensory
cortex (S1) was thicker during menstrual phase compared to
follicular phase (z-stat = 2.81; Holm-Sidak-corrected p = 0.030;
d = 0.51). Trends for cortical thickness indicated S1 was also
thicker during menstrual phase when compared to luteal (z-
stat = 2.22; uncorrected p = 0.027; d = 0.36) and ovulatory phase
(z-stat = 1.84; uncorrected p = 0.066; d = 0.30) did not survive
Holm-Sidak correction (Figure 1E).

Control analyses of left and right hemisphere as well as whole
brain cortical gray matter volume did not show a main effect of
menstrual cycle phase (LH: F = 2.47, p = 0.077; RH: F = 0.88,
p = 0.46; whole brain: F = 1.87, p = 0.15) (Table 1). Additional
analyses of right hemisphere mean cortical thickness revealed no
effect of menstrual cycle phase (F = 1.09, p = 0.36). In contrast,

analysis of left hemisphere mean cortical thickness revealed a
significant effect of menstrual cycle phase (F = 3.12, p = 0.037).
Post-hoc contrasts revealed that mean cortical thickness in the left
hemisphere of the cerebral cortex was greater during menstrual
phase compared to luteal phase (z-stat = 2.73; Holm-Sidak-
corrected p = 0.038; d = 0.82). Additionally, there was a trend for
left hemisphere cortical thickness to be greater during menstrual
phase compared to follicular phase (z-stat = 2.33; uncorrected
p = 0.020; d = 0.57). The mean difference of the significant
contrast was 0.02 mm [menstrual phase mean = 2.42 mm (95%
CI 2.37–2.47 mm) versus luteal phase mean = 2.40 mm (95% CI
2.35–2.45 mm)].

To evaluate the effect of estradiol and progesterone
concentrations on cortical gray matter thickness, we evaluated
the partial correlation of left and right hemisphere cortical
thickness, separately, to estradiol and progesterone and simple
correlation of cortical thickness to estradiol and progesterone
concentrations separately. No correlations of cortical thickness
of the left or right hemisphere cortical gray matter thickness with
estradiol (R < 0.155) or progesterone (R > −0.047) surpassed
R = 0.155.
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TABLE 1 | Summary of overall relationships of menstrual cycle phase, estradiol and progesterone with brain morphometry measures.

Effects of menstrual cycle Correlation with estradiol Correlation with progesterone

Whole Brain Cortical Gray Matter Volume No significant cycle phase effect Not significant Not significant

Right Hemisphere Cortical Gray Matter Volume No significant cycle phase effect Not significant Not significant

Left Hemisphere Cortical Gray Matter Volume No significant cycle phase effect Not significant Not significant

Left Hemisphere Cortical Gray Matter Thickness Menstrual > Luteal*
Menstrual > Follicular+

Not significant Not significant

Right Hemisphere Cortical Gray Matter Thickness No significant cycle phase effect Not significant Not significant

Whole Brain White Matter Volume No significant cycle phase effect Not Significant Not significant

Left Hemisphere White Matter Volume No significant cycle phase effect Positive correlation* Not significant

Right Hemisphere White Matter Volume Follicular > Luteal*
Ovulatory > Luteal+

Positive correlation* Not significant

Subcortical Gray Matter Volume No significant cycle phase effect Not significant Not significant

Cerebrospinal Fluid Volume No significant cycle phase effect Not significant Not significant

*significant relationship after post-hoc correction for family wise errors.
+trend relationship after post-hoc correction for family wise errors.

Finally, control analyses of left hemisphere as well as whole
brain white matter volume did not show a main effect of
menstrual cycle phase (LH: F = 1.21, p = 0.32; whole brain:
F = 1.85, p = 0.15). In contrast, the linear mixed model (LMM)
of right hemisphere white matter volume showed a main effect
of menstrual cycle phase (RH: F = 3.69, p = 0.020). Post-hoc
contrasts revealed that mean white matter volume in the right
hemisphere was greater during follicular phase compared to
luteal phase (z-stat = 3.09; Holm-Sidak-corrected p = 0.012;
d = 0.15). Additionally, there was a trend for right hemisphere
white matter volume to be greater during ovulatory phase
compared to luteal phase (z-stat = 2.56; Holm-Sidak-corrected
p = 0.053; d = 0.26).

We evaluated the partial correlation of right hemisphere white
matter volume to estradiol and progesterone as well as the simple
correlation of white matter volume to estradiol and progesterone
concentrations separately. Whereas no relationships between
right hemisphere white matter volume and progesterone
concentrations were significant (R = 0.086, p = 0.586), a positive
relationship between right hemisphere white matter volume
and estradiol was found in both the partial correlation model
controlling for progesterone (R = 0.409, sample size corrected
p = 0.0079), and in the simple correlation with estradiol
concentration [R = 0.414, t-stat = 2.88, sample size corrected
p = 0.0064 (without outlier: R = 0.355, t-stat = 2.40, sample
size corrected p = 0.021)]. Given this evidence of a positive
relationship of estradiol with right hemisphere white matter
volume, we evaluated this relationship with left hemisphere
white matter volume. In this case, a positive relationship
between left hemisphere white matter volume and estradiol
was found in both the partial correlation model controlling for
progesterone (R = 0.420, t-stat = 2.93, sample size corrected
p = 0.0056) and in the zero-order correlation with estradiol
concentration [R = 0.427, t-stat = 2.99, sample size corrected
p = 0.0048 (without outlier: R = 0.363, t-stat = 2.46, sample size
corrected p = 0.018)].

Finally, there was no main effect of phase found for subcortical
gray matter volume (F = 0.11, p = 0.95), whole brain gray matter
volume (F = 1.46, p = 0.24), or CSF volume (F = 0.82, p = 0.49).

These brain-wide morphometric relationships are summarized
in Table 1.

Menstrual Cycle Effects Upon Electrical
Detection and Pain Sensitivity
The finding that cortical thickness was greatest during menstrual
phase led us to evaluate the effect of menstrual cycle on
electrical detection thresholds (EDT), pain intensity and pain
unpleasantness reports to suprathreshold electrical stimulation.
We evaluated the effect of menstrual cycle phase in an
LMM setting menstrual phase as a control and specifically
assessing contrasts for menstrual phase compared to follicular,
ovulatory, and luteal phases. The LMM for menstrual cycle
effect on EDTs revealed that women were significantly more
sensitive to detecting electrical stimulation during follicular
phase (z-stat = 2.16; uncorrected p = 0.031; d = 0.59) and
trended toward greater sensitivity during ovulatory phase (z-
stat = 1.79; uncorrected p = 0.074; d = 0.36) (Figure 2A).
Pain intensity self-report in response to suprathreshold electrical
stimuli did not show an effect of menstrual cycle phase
(F = 1.56, p = 0.21; z-stat < 1.86, p > 0.063). Further,
there was no menstrual cycle phase effect on electrical pain
thresholds (F = 1.06, p = 0.38; t-stat < 1.64, p < 0.10).
In contrast to pain sensitivity measures, pain unpleasantness
ratings were greater during menstrual phase compared to
follicular phase (z-stat = 2.34; uncorrected p = 0.019; d = 0.61)
(Figure 2B). Exploratory contrasts, supported by a significant
main effect of menstrual cycle phase on pain unpleasantness
rating (F = 3.00; p = 0.043), revealed pain unpleasantness
ratings during follicular phase were lower compared to luteal
(z-stat = 2.74; Holm-Sidak-corrected p = 0.037; d = 0.76)
and trended lower compared to ratings reported during
ovulatory phase (z-stat = 1.92; uncorrected p = 0.054;
d = 0.44).

No simple or partial correlation test relationships
between estradiol (−0.219 < R < 0.056) or progesterone
(−0.0168 < R < 0.231) and quantitative sensory test measures
were significant.
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FIGURE 2 | (A) Electrical detection threshold across the menstrual cycle.
(B) Pain unpleasantness ratings in response to suprathreshold electrical pain
stimuli across the menstrual cycle. + = 0.08 > p > 0.05, uncorrected;
∗ = p < 0.05, Holm-Sidak corrected.

Maximal Effects of Menstrual Cycle
Phase on Gray Matter Volume
Correspond With a Central Node of the
Dorsal Attention Network
We used the peak voxel in the left IPL (TLRC coordinate = −27,
−50, 54) from the menstrual cycle phase effect on gray matter
volume to drive seed-based functional connectivity analysis
(Figure 3A). Both the resulting network and the mirrored
network derived from the right IPL (TLRC coordinate = 27,−50,
54) closely resembled the dorsal attention network (DAN), which
involves the frontal eye fields, intraparietal sulcus and bilateral
visual cortex [Figure 3B; (Fox et al., 2006; Laird et al., 2011)].

Dorsal Attention Network Functional
Connectivity Between Right and Left IPL
and Between Left IPL and Visual Cortex
Peaks During Ovulatory Phase
To evaluate the effect of menstrual cycle phase on functional
connectivity, we contrasted all pairwise phase comparisons
from a linear mixed model (Chen et al., 2013). After
a strict cluster-extent-correction, functional connectivity was
significantly greater during ovulatory compared to luteal phase
between the left IPL seed and the right visual cortex (peak
TLRC coordinate = 12, −88, 8; peak voxel t-stat = 4.65; peak
voxel Cohen’s d = 0.98; volume = 686 mm3) (Figure 4A).

Ovulatory phase functional connectivity between left IPL and
right visual cortex was also greater when compared to FC during
menstrual phase, but this cluster did not pass our strict cluster
extent criteria (peak TLRC coordinate = 16, −82, 7; peak voxel
t-stat = 3.50; peak voxel Cohen’s d = 1.07; volume = 172 mm3)
(Supplementary Figure 1A).

Seed-driven FC from the right IPL to the left IPL was
significantly greater during ovulatory compared to follicular
phase (peak TLRC coordinate = −50, −32, 32; peak voxel
t-stat = 5.33; peak voxel Cohen’s d = 1.60; volume = 1200
mm3) (Figure 4B). Further, ovulatory phase FC was also greater
compared to FC during menstrual (peak TLRC coordinate =−54,
−33, 31; peak voxel t-stat = 3.12; peak voxel Cohen’s
d = 0.70; volume = 172 mm3) and luteal phase (peak TLRC
coordinate = −47, −36, 31; peak voxel t-stat = 3.13; peak voxel
Cohen’s d = 0.93; volume = 172 mm3) but neither of these clusters
passed our cluster extent criteria (Supplementary Figures 1B,C).

Finally, seed-driven FC was greater during luteal phase
compared to menstrual phase from the right IPL seed to left
medial prefrontal cortex (BA9) (peak TLRC coordinate = −5,
44, 20; peak voxel t-stat = 4.58; peak voxel Cohen’s d = 1.50;
volume = 858 mm3) (Figure 4C).

DISCUSSION

We hypothesized significant variation in gray matter volume and
cortical thickness across the menstrual cycle in healthy human
females. In a voxel-based morphometry analysis of the whole
brain we found a significant main effect of phase involving the
left IPL (Figure 1A). Cortical gray matter thickness analysis
of the left IPL found that the effect of menstrual cycle phase
was driven by increased cortical thickness during the menstrual
phase compared to follicular or luteal phase as well as a trend
for greater thickness during menstrual compared to ovulatory
phase (Figure 1B). A similar pattern was found bilaterally in the
postcentral gyrus (Figure 1E). Potentially related, women in this
study were more sensitive to detection of electrical stimuli during
follicular phase compared to menstrual phase (Figure 2A). Pain
unpleasantness ratings to fixed intensity painful electrical stimuli
were lowest during follicular phase compared to menstrual,
ovulatory, or luteal phase (Figure 2B). The volume of white
matter in the left parietal lobe was larger during ovulatory
phase compared to follicular and menstrual phases and was
greater during luteal compared to follicular and menstrual
phase (Figure 1C). We also hypothesized that the region of
significant gray matter cycle effects would significantly fluctuate
in functional connectivity (FC) in resting state MRI scans. In
testing our hypothesis, we used the left IPL as a seed for seed-
driven FC. Supporting our hypothesis, we found FC between left
IPL and right visual cortex was greater in ovulatory compared
to luteal phase with a trend toward greater FC in ovulatory
compared to menstrual phase (Figure 4A). Using an IPL seed in
the right hemisphere, we found significantly greater FC between
right IPL and left IPL during ovulatory compared to follicular
phase with a trend toward greater FC during ovulatory compared
to menstrual or luteal phase (Figure 4B). Finally, FC between
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FIGURE 3 | (A) Seed-driven network from the left inferior parietal lobule. (B) Seed-driven network from the right inferior parietal lobule. Cluster-extent corrected at a
p-value of 0.001 and cluster size of 643 mm3.

right IPL and left medial prefrontal cortex (BA9) was greater
during luteal phase compared to menstrual phase (Figure 4C).
These findings support the hypothesis that natural cycle effects
occur in brain matter volume (both gray and white matter) and
in functional connectivity which indicates hormonal influence on
specific brain regions, particularly the IPL.

Functional Connectivity of Dorsal
Attention Network, Sensory Sensitivity
and Menstrual Cycle Influenced Tasks
The IPL is a core node in the dorsal attention network, also
frequently called the task positive network, which is considered
to be responsible for top-down target-directed and sustained

attention (Pardo et al., 1991; Corbetta and Shulman, 2002;
Fox et al., 2006). We found enhanced FC between the right
and left IPL and between the left IPL and the right visual
cortex during the ovulatory phase. Peak sensitivity to a broad
range of stimuli during ovulatory phase, would likely be
evolutionarily advantageous in detection of potential mates and
determination of mate fitness (Jones et al., 2019). Numerous
studies have been dedicated to testing the hypothesis that
male faces communicate potential mate fitness or signs of
testosterone or simply masculinity, which women are most
sensitive to during periods of high fertility (Penton-Voak et al.,
1999; Gildersleeve et al., 2014a,b; Harris et al., 2014; Wood
and Carden, 2014). These findings are generally mixed, specific
for short-term mating contexts, and controversial, with several

Frontiers in Neuroscience | www.frontiersin.org 9 December 2020 | Volume 14 | Article 594588

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-594588 December 16, 2020 Time: 15:22 # 10

Meeker et al. Parietal Lobe Menstrual Cycle Variation

FIGURE 4 | (A) Significant cluster from functional connectivity driven from left inferior parietal lobule from the contrast of ovulatory phase > luteal phase.
(B) Significant cluster from functional connectivity driven from right inferior parietal lobule from the contrast of ovulatory phase > follicular phase. (C) Significant
cluster from functional connectivity driven from right inferior parietal lobule from the contrast of luteal > menstrual phase. Cluster-extent corrected at a p-value of
0.001 and cluster size of 643 mm3.

studies not finding the effect of a preference for masculine or
symmetric faces during ovulatory phase. Sensory perception,
particularly visual and olfactory perception, are frequently
reported as being most sensitive during follicular or ovulatory
phase; while preferences for masculine and feminine faces are
particular to recently developed urbanized cultures (Scott et al.,
2014; Jones et al., 2018). It would be more parsimonious to
hypothesize that the enhanced FC between critical nodes of
the dorsal attention network drive an increase in a broad
range of perceptual sensitivity particularly for evolutionary

salient stimuli (Gould and Lewontin, 1979; Krug et al., 2000;
Pigliucci and Kaplan, 2000). The finding that race bias tracks
conception risk across the menstrual cycle further supports
the view that changes in perceptual sensitivity are co-opted
to serve novel cultural constructs relevant to mating strategies
rather than specific preferences for masculine features being
selected for Navarrete et al. (2009). Furthermore, the proximate
explanation of enhanced perceptual sensitivity and the ultimate,
functional explanation of preference for certain facial features
during ovulation can coexist within an evolutionary framework
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(Scott-Phillips et al., 2011). Enhanced neural plasticity induced
by estradiol in the hippocampus, prefrontal and parietal cortex
during ovulatory phase would enhance adaptivity of females to
changing cultural conceptions of fitness in potential mates (Hao
et al., 2006; Rupp et al., 2009a,b; Wallen and Rupp, 2010; Wang
et al., 2010). It must be noted that we did not replicate reports
of amygdala or hippocampal plasticity across the menstrual cycle
in this cohort likely because of a lack of power (Ossewaarde
et al., 2013; Engman et al., 2018). Therefore, it should not be
concluded that cycle-related neural plasticity in the limbic system
is absent, or even less prominent than that occurring in the
dorsal attention network. Finally, hormone-related fluctuations
of neural plasticity would not only affect potential mechanisms
of mate selection, but would extend to influences on cognition,
emotion processing, motivation and sensitivity to disease (Kibler
et al., 2005; Sundstrom Poromaa and Gingnell, 2014; Albert et al.,
2015; Herzog et al., 2015; Pilarczyk et al., 2019).

Gray Matter Morphology and Sensory
Sensitivity Are Maximally Divergent
During Follicular Phase
In this study, we found that cortical gray matter thickness in
the primary somatosensory cortex was thinnest during follicular
phase, when women showed greatest electrical detection
sensitivity. A previous study found a change in whole brain
volumes with the menstrual cycle, therefore we evaluated whether
the change in left IPL and bilateral somatosensory cortex cortical
thickness was part of a whole brain volume change (Hagemann
et al., 2011). We did not find any significant effects of menstrual
cycle phase on total brain volume. Notably, we were unable
to replicate the previous reports of menstrual cycle phase on
hippocampal volume, after requiring significant effects in both
cortical thickness analysis and VBM and applying a conservative
cluster-size correction to limit the false discovery rate to an
acceptable threshold (Protopopescu et al., 2008; Lisofsky et al.,
2015). The change in cortical thickness and gray matter volume
in the parietal cortex across the menstrual cycle suggests
enhanced plasticity associated with estradiol and progesterone
cycling in the brain (Lord et al., 2010; Thimm et al., 2014;
Lisofsky et al., 2015; Motley et al., 2018).

During the follicular phase, pain unpleasantness ratings
were lowest compared to other cycle phases in response to
painful electrical stimuli while detection sensitivity to non-
painful cutaneous electrical stimuli was greatest. Previous studies
have reported heightened sensitivity to sensory stimuli including
auditory, olfactory, tactile, cool and visual stimuli during the
follicular or ovulatory phase (Diamond et al., 1972; Parlee,
1983; Symons et al., 1990; Hummel et al., 1991; Guttridge,
1994; Caruso et al., 2001, 2003; Grillo et al., 2001; Navarrete-
Palacios et al., 2003; Derntl et al., 2013; Renfro and Hoffmann,
2013; Alves et al., 2017). Previously reported effects of ovarian
hormones showed that healthy females of reproductive age on
anti-androgenic progestin oral contraceptives when compared to
normally cycling controls or females on androgenic progestins
have increased gray matter volume in the bilateral fusiform face
area and parahippocampal place area coupled with enhanced

performance in a face recognition performance task compared
to women during the menstrual phase of their cycle (Pletzer
et al., 2015). In this study we found reduced cortical thickness
associated with increased sensitivity to non-painful cutaneous
electrical stimulation. A recent study evaluating cortical thickness
differences between healthy males and females found that, while
there was large overlap in cortical thickness distributions between
the sexes, once cortical thickness was corrected for intracranial
volume, women had thicker cortical regions in the bilateral
superior and inferior parietal lobules, bilateral paracentral lobules
and left postcentral gyrus (Ritchie et al., 2018). The change in
cortical thickness in the parietal cortex across the menstrual
cycle suggests enhanced plasticity associated with estradiol and
progesterone cycling in the brain may potentially underlie this
sex difference (Protopopescu et al., 2008; Pletzer et al., 2010;
Lisofsky et al., 2015; De Bondt et al., 2016). With relatively few
studies comparing sensory discrimination or task performance in
association with women taking various oral contraceptives and
during different phases of the menstrual cycle, the relationship
between hormone-associated changes in cortical thickness and
perceptual sensitivity or task performance remains unclear.

Potential Cellular Mechanisms of
Morphological Alteration in Gray Matter
Golgi impregnation studies in rats and non-human primates
have demonstrated that estradiol enhances the formation of
dendritic spines and synaptic densities in the hippocampus,
prefrontal and parietal cortices (Woolley et al., 1990; Woolley
and McEwen, 1992, 1993; Choi et al., 2003; Hao et al., 2003,
2006; Chen et al., 2009; Hara et al., 2016, 2018; Motley et al.,
2018). The marginal increase in cortical thickness we found at
the ovulatory phase may be driven by estradiol effects at that
level. The large increase in cortical thickness captured during
the menstrual phase is less likely explained by that mechanism.
However, if the withdrawal of estradiol and progesterone is
associated with the trigging of process of reduction in dendritic
spine and synapse density, it may be that there is an increase
in astroglial cellular activity local to brain areas experiencing
large-scale pruning of nascent synaptic connections (May et al.,
2007; Pfeiffer et al., 2016). Other studies have found evidence
that skill learning in healthy humans increases cortical thickness,
while memory performance positively correlates with gray matter
volume (Draganski et al., 2004, 2006; Schmidt-Wilcke et al.,
2009). This suggests that experience-induced neural plasticity
does indeed induce increases in cortical thickness. Further studies
should examine the exact cellular mechanism underlying the
increase in cortical thickness captured at the menstrual phase.

Estradiol has been known to accelerate developmental
myelination for more than 50 years (Curry and Heim, 1966).
Estradiol promotes neuroprotection of oligodendrocytes and
Schwann cells in cell culture and opposes demyelination
in vivo in rodent models of hypoxia and demyelination by
cuprizone (Gerstner et al., 2007; Acs et al., 2009). Estrogen
replacement therapy in adult ovariectomized rats furthermore
increases the degree and volume of myelination (He et al.,
2018). Both estradiol and progesterone promote expression of
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myelin basic protein in oligodendrocytes and Schwann cells
(Jung-Testas et al., 1994). Membrane-bound estrogen receptors
(mER) α and β are present in oligodendrocytes, mediating
activation of p42/44 mitogen-activated protein kinase (MAPK)
and Akt through phosphorylation (Hirahara et al., 2009).
Additionally, mER has been found in the myelin product of
oligodendrocytes (Arvanitis et al., 2004). These non-genomic
receptors in oligodendrocytes, of course, do not rule out the more
traditional role of estrogen receptor acting as a transcription
factor. In line with these previous findings, oligodendrocyte
derived changes in myelination across the menstrual cycle
may potentially underlie the positive correlation we found
throughout the menstrual cycle between white matter volume
and estradiol concentration that was most prominent in the left
inferior parietal lobule (Figure 1D). These estradiol-associated
menstrual cycle change in white matter volume are consistent
with past observations in rats and across adolescent women
using diffusion weighted imaging and structural volumetric
measurements (Prayer et al., 1997; Herting et al., 2012).

Limitations
The evidence in this report was subjected to rigorous statistical
criteria, but for menstrual cycle studies this study had a relatively
small sample size (n = 14 gray matter; n = 13 functional
connectivity). For example, recent studies evaluating effective
sample sizes for potential facial masculinity preference among
normally cycling women required sample sizes between 55 and 71
for within subjects designs with confirmed ovulation (Jones et al.,
2019). Additionally, this particular cohort of participants were
only tested for electrocutaneous detection and pain perception.
Therefore, these results should be considered preliminary.

Furthermore, extensive research in animal models
demonstrates the importance of local neurosteroidogenesis
in the brain (Rudolph et al., 2016). There is evidence of regional
variation in aromatase concentrations in various areas of
the human brain and neuroactive steroids are clearly locally
produced and metabolized depending on local concentration
of metabolic enzymes, substrates, and products (Takahashi
et al., 2014). Furthermore, sex hormone binding globulin local
concentrations keep readily releasable pools of steroids available
and difficult to measure (Södergård and Bäckström, 1987).
However, it is clear that there is a relationship between blood
serum and cerebral spinal fluid concentrations of neuroactive
steroids and steroids in blood circulation clearly cross the blood
brain barrier in both humans and animal models as demonstrated
by 16a-18F-Fluoro-17b-Estradiol positron emission tomography
(Khayum et al., 2014; Kurland et al., 2020). Furthermore, blood
serum progesterone and estradiol correlations with human
cerebrospinal fluid are relatively rare with one notable study
finding positive correlations of 0.731 for estradiol and 0.913
for progesterone (Bäckström et al., 1976). These correlations
between blood plasma and cerebral cortical tissue in rats was 0.86
for estradiol and 0.46 for progesterone (Caruso et al., 2013).

Conclusion and Future Research
We found a significant effect of cycle phase on gray matter
volume and thickness in the left IPL, which was greatest during

menstrual phase. Further, we found that FC between left IPL and
right IPL as well as left IPL and right visual cortex was enhanced
during the ovulatory phase. These findings are associated with
previous findings of enhanced perceptual sensitivity during
ovulatory phase across multiple sensory domains. Future research
should replicate and extend these results. These significant
fluctuations of neural plasticity and activity across the menstrual
cycle are likely a sexually selected feature which may have a role
in commonly experienced menstrual cycle-associated disorders
such as premenstrual dysphoric disorder, catamenial epilepsy and
migraine disorder (Hattemer et al., 2007; Martin and Lipton,
2008; Vincent et al., 2011; Reddy, 2013; Tu et al., 2013).
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