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Type I interferons (IFN-I) were first discovered as an antiviral factor by Isaacs and
Lindenmann in 1957, but they are now known to also modulate innate and adaptive
immunity and suppress proliferation of cancer cells. While much has been revealed about
IFN-I, it remains a mystery as to why there are 16 different IFN-I gene products, including
IFNb, IFNw, and 12 subtypes of IFNa. Here, we discuss shared and unique aspects of
these IFN-I in the context of their evolution, expression patterns, and signaling through
their shared heterodimeric receptor. We propose that rather than investigating responses
to individual IFN-I, these contexts can serve as an alternative approach toward
investigating roles for IFNa subtypes. Finally, we review uses of IFNa and IFNb as
therapeutic agents to suppress chronic viral infections or to treat multiple sclerosis.
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INTRODUCTION

Type I interferons (IFN-I) are monomeric cytokines that are best known for their antiviral activity
but that also suppress proliferation of cancer cells and modulate innate and adaptive immune
responses. IFN-I were first discovered as an antiviral factor by Isaacs and Lindenmann in 1957 and
were subsequently revealed to include IFNb and multiple subtypes of IFNa (1, 2). We now know
that human type I IFNs comprise a family of 17 functional genes and 9 pseudogenes clustered on
chromosome 9 (3) that encode 16 proteins: IFNb, ϵ, -k, -w, and 12 subtypes of IFNa (Figure 1).
Since protein sequences for mature IFNa1 and IFNa13 are identical, we will collectively refer to
them as IFNa1.

IFNb may be considered the “primary” IFN-I because it is expressed by all nucleated cells and
may be expressed in isolation of all other IFN-I (except IFNa1, discussed below). Two IFN-I genes
are selectively expressed in specific organs or by specific cell types: IFNϵ is hormonally regulated and
primarily expressed in the female genital tract (4) and has recently been reviewed elsewhere. IFNk is
primarily expressed by keratinocytes (5) where it has recently been shown to have a role in
protection against cutaneous herpes simplex virus (6), papilloma virus (7), and cutaneous lupus
erythematosus (8). Like IFNϵ, IFNk is constitutively expressed (9). By contrast, IFNk expression is
activated and suppressed by TGFb and ERK1/2 kinases, respectively (7, 10).

While IFNw is the least studied IFN-I in human biology, feline IFNw is well characterized and
licensed as a veterinary antiviral therapeutic. In felines, IFNw is leukocyte specific (11, 12). While
little is known about IFNw expression patterns, the presence of neutralizing autoantibodies is
org January 2021 | Volume 11 | Article 6056731
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indirect proof that it is expressed and suggest a role in human
disease. For example, in 2006, Meager et al. reported that 100% of
AIRE-deficient patients with the autoimmune polyendocrinopathy
syndrome have high titers of neutralizing autoantibodies against
both IFNw and IFNa (13). More recently, Bastard et al. reported
that ~1% of patients with severe Covid19 has selective neutralizing
auto-antibodies against IFNw (14), suggesting that the importance
of this type I IFN is in viral infections is underappreciated.

Mature IFNb and eleven of the 12 IFNa subtypes are 166 a.a.
in length (IFNa2 is 165 a.a. due to deletion of D44) with a MW
of ~20 kD. IFNϵ and IFNw are 187 a.a. and 174 a.a., respectively,
both due to an elongated carboxy-terminal, while IFNk is
179 a.a. due to an insertion following residue 116. As shown in
Supplemental Figure 1 (15), IFNb and IFNw share 31%–38%
and 55%–60% identity with all IFNa subtypes, respectively,
whereas identity among the IFNa subtypes ranges from 76%–
96%. IFNb, IFNw, and two IFNa subtypes are glycosylated; IFNb
at N80 (16), IFNw at N78 (17), IFNa2 at T108 (18), and IFNa14
at N72 (19).

Despite sharing only ~30% identity across all IFN-I, the three-
dimensional structures are remarkably similar (20, 21). The
salient structural features of all IFN-I, which are reviewed in
detail by Walter et al. in this series include: 1) cylindrical proteins
that consist of five 11-24 residue a-helices (labeled A–E), each
parallel to the long axis of the cylinder; 2) Loops that connect the
helices, of which the AB loop is relatively long and includes three
short 310 helices (22, 23); 3) conserved bonding including
disulfide bridges (one in IFNb, two each in IFNw and all IFN
subtypes) and a network of hydrogen bonds to form and stabilize
the tertiary structure; 4) IFNAR2 binding residues in Helix A, the
AB loop and Helix E, and IFNAR1 binding sites spaced among
helices B–D and the CD loop (21).

All IFN-I signal through a heterodimeric receptor that is
comprised of two subunits, IFNAR1 and IFNAR2. In the classical
model of IFN signaling, IFN first binds IFNAR2 forming a high-
affinity binary complex which then recruits IFNAR1 to form a
functional ternary structure that triggers phosphorylation of Jak1
and Tyk2-initiating “canonical” signaling (24). In canonical
IFN-I signaling (Figure 2), activation of Jak1 and Tyk2 is
followed by phosphorylation of STAT1 and STAT2, which
trimerize with IRF9 to form the transcription factor interferon-
stimulated growth factor-3 (ISGF3) (25). Once assembled, ISGF3
translocates to the nucleus and binds to interferon stimulated
response elements (ISRE) to promote transcription of interferon
stimulated genes (ISGs). Through this canonical pathway, many
genes are highly susceptible to shifts in expression with small
amounts of IFN-I, thus earning the label of “robust” ISGs (26).
Frontiers in Immunology | www.frontiersin.org 2
Robust ISGs include most antiviral effectors from which the
name “interferon” was derived.

Non-canonical IFN-I signaling includes cell-specific pathways
such as those mediated by STAT1 homodimerization, other STAT
family members, and MAP- or PI3-kinases (Figure 2). To better
characterize these pathways, Urin and colleagues used HeLa cell
signaling-component deletion mutants to show that except for the
formation of STAT1 homodimers or STAT2/IRF9 heterodimers,
non-canonical signaling depends on phosphorylation of both
STAT1 and STAT2 (27). For the most part, non-canonical
signaling induces “tunable” ISGs (26), which exhibit gradual
rather than steep dose-response curves, and higher IFN
concentrations for peak expression (26). Non-canonical pathways
such as suppression of cell proliferation best correlates with the
stability of the IFN/IFNAR1/IFNAR2 ternary complex [defined as
(IFN-I KD IFNAR1* IFN-I KD IFNAR2)] (24). Non-canonical
signaling also mediates expression of chemokines and cytokines
that modulate innate or adaptive immunity, transcription factors
that modulate cell phenotype, and some antiviral responses. As
examples, APOBEC3, a cytidine deaminase that blocks HIV
replication in macrophages, and IRF1, a transcription factor that
mediates IFN-dependent and -independent viral immunity (28–
31), share characteristics of tunable ISGs. While IFNAR2-
independent signaling has been reported in mice (32), there are
no data to controvert the current model that both IFNAR1 and
IFNAR2 are necessary for signaling in humans.

Why there are so many IFN-I genes, and specifically so many
IFNa subtypes, remains a mystery. As would be predicted by
their common use of a shared receptor, evidence to date points to
quantitative rather than qualitative differences among the IFN-I.
In other words, differences in gene expression, antiviral, or
antiproliferative activity at subsaturation are equalized by dose
adjustments or in the extreme, by receptor saturation. Thus,
while their evolutionary history and expression patterns suggest
that at least some IFN-I serve specific functions, very few have
been defined. Here, we focus on differences among IFNb and the
IFNa subtypes to propose a model by which patterns of
expression mirror their evolutionary history, and thus provide
an alternative approach toward deciphering their roles in
human biology.
EVOLUTION OF TYPE I INTERFERONS

Types I and III IFNs evolved from a common ancestor gene that
shares the 5-exon/4-intron organizational structure of the IL-10
FIGURE 1 | Gene map of the human IFN-I gene cluster. Above the line are pseudogenes for IFNn (NNP), IFNa subtypes, IFNw, and for the functional KLHL9 gene.
On the line are the 17 functional type I IFN genes. Genes for IFNa subtypes are labeled only by number.
January 2021 | Volume 11 | Article 605673

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wittling et al. IFNb and IFNa Subtypes
family of cytokines. The intronless IFN-I genes of all higher
order primates evolved and diversified from those of
cartilaginous and bony fish. As shown in Figure 3A, IFNk was
the first to evolve from the “most recent common ancestor”
(MRCA), followed by IFNb. Both were present ~200 million
years ago (MYA) before eutherians and marsupials diverged.
IFNe arose from IFNb, which later duplicated to give rise to
IFNw and the IFNa genes (15). Primate IFN-I are highly
divergent from other mammals. For example, in bats and
ungulates, IFNw emerged as a multigene subtype (33) while
primates have one functional IFNw gene and multiple
IFNa subtypes.

The first IFNA gene appeared 95–105 MYA, which through
duplication and conversion gave rise to an expanded set of IFNa
subtypes in a subset of placental mammals (15). IFNA gene
duplication and conversion that occurred before speciation gave
rise to a conserved cluster of IFNa subtypes that are dissimilar, but
that are shared across species. Conversely, duplication after
speciation gave rise to variant clusters that are highly similar
within each species but are not shared across species. As shown in
Frontiers in Immunology | www.frontiersin.org 3
Figure 3B, the first IFNa subtypes that are present in humans and
simiiforms—IFNA13, -A2, -A8, and -A21—were present before
the divergence of new world and old world monkeys (NWM and
OWM) 65-47 MYA. NWM have one gene each for IFNA13
(syntenic with IFNA13 in monkeys and apes), IFNA2 and
IFNA21, and two genes each that are similar to IFNA8 and
IFNA5 in higher order primates. Subsequently, IFNA13
duplicated to give rise to IFNA1 (present in OWM and apes),
and IFNA5, IFNA6, and IFNA14 arose to complete the set of IFNA
subtypes that are conserved during primate evolution (Figure 3B,
blue background). The subset of human IFNA subtypes that are
variant among primates (pink background) arose after orangutans
and the other great apes diverged. It has been proposed that
IFNA4, IFNA10, IFNA17 are products of partial conversions from
IFNA14 or IFNA21 (IFNA4, -A10, and -A17) (15) and that IFNA10
may have converted IFNA7 or vice versa (34).

Based upon a detailed analysis of human polymorphisms in
sub-Saharan African, Asian, and European populations, Manry
et al. (35) found the fewest polymorphisms in IFNA6, -A8, -A13,
and -A14. Exclusion of IFNA1 from this group appeared to be
FIGURE 2 | Canonical and noncanonical IFN signaling. IFN first binds to IFNAR2 after which the IFN/IFNAR2 binary complex recruits IFNAR1 to form a functional
ternary signaling complex (IFN/IFNAR1/IFNAR2). Following that, Jak1 and Tyk2 kinases, which are pre-associated with IFNAR2 and IFNAR1 respectively,
phosphorylate each other and tyrosine residues on each receptor (red dots) upon which STAT (signal transducers and activators of transcription) family members
dock. Canonical signaling consists of a trimer of pSTAT1, pSTAT2, and IRF9 which is referred to as ISGF3 (interferon-stimulated gene factor 3). ISGF3 translocates
to the nucleus to bind ISRE (interferon-stimulated response elements) to stimulate transcription of robust ISGs. There are many non-canonical signaling pathways,
one of which is formation of phosphorylated STAT1 homodimers that bind to GAS (gamma activation site) promoter elements. ka and kd are association and
disassociation rates, respectively. KD is the equilibrium disassociation constant (kd/ka). kp and kdp are rates of phosphorylation and dephosphorylation, respectively.
KB and KT refer to binary (IFN/IFNAR2) and ternary (IFN/IFNAR2/IFNAR1) complexes, respectively. This figure was adapted from Figure 1 of (24).
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based on the A137V substitution (residue 114 of the mature
peptide), that is predicted to have no damaging effects, and in our
experience, is not functionally different from A137 IFNa1 (36).
Manry et al. concluded that these evolutionarily conserved
subtypes have have undergone selection against nonsynonymous
variants. Taken together, the conserved cluster may have evolved
to counter pathogens common that threatened the MRCA to
OWM and great apes, and there is a selective advantage for having
two genes, IFNA1 and IFNA13, that express IFNa1.
Frontiers in Immunology | www.frontiersin.org 4
REGULATION OF TYPE I INTERFERON
EXPRESSION BY IRF3 AND IRF7

Comparing promoter regions and transcription factor usage provides
insight toward specialized roles for the different IFN-I. The interferon
regulatory factor (IRF) family members are the dominant
transcription factors that regulate IFN-I expression. While IRF1, -2,
-5, and -8 have been shown to regulate IFN-I expression, this review
will focus on the two most important members, IRF3 and IRF7.
A

B

FIGURE 3 | Evolution of IFN-I. (A) Simplified evolution of type IFN-I in mammals adapted from Krause and Petska. The most recent common ancestor (MRCA) gave
rise to IFNk and a progenitor for IFNb. A duplicate of the IFNb progenitor gave rise to IFNϵ, IFNn (a pseudogene in mammals), and a progenitor for IFNw. The IFNw
progenitor gave rise to the remaining subtypes. In simiiforms, IFNaw is deleted and IFNd is a pseudogene. (B) Evolution of IFN subtypes from simians to homininae
showing conserved (blue) and variant (orange) subtypes. Figure adapted from: http://humanorigins.si.edu/evidence/genetics.
January 2021 | Volume 11 | Article 605673
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IFNb is expressed after stimulation of pattern-recognition
receptors (PRRs) such as RIG-I-like receptors (RLRs) and toll-
like receptors (TLRs) by pathogen-specific molecular motifs
referred to as pathogen associated molecular patterns (PAMPs)
[reviewed in (37)]. Once activated, PRRs trigger signaling
cascades that activate assembly of the “enhanceosome,” which
Frontiers in Immunology | www.frontiersin.org 5
consists of the transcription factors ATF-2/c-Jun, NFkB (p50/65
heterodimer) and two interferon response factor (IRF) dimers
[Figure 4 (39)] that bind to four promoter regulatory domains
(PRDs). Based primarily on mouse models, it was initially
thought that PRDs III and I required either IRF7 homodimers
or IRF3/IRF7 heterodimers for a functional enhanceosome (40).
A

B

D E

F

C

FIGURE 4 | IFNB1 and IFNA gene transcription is controlled by IRF3 and IRF7. (A) Promoter region of IFNB1 gene showing the four promoter regulatory domains
(PRD), all of which must be engaged for gene transcription. (B) Promoter regions of IFNA1, IFNA16, and IFNA2 aligned with the promoter region of IFNB1 showing
the three IRF regulatory modules and their relative sensitivity to IRF3 and IRF7. Differences from IFNA1 promoter are shown in red. The promoter region of IFNA16 is
representative of IFNA21 and the variant subtypes (IFNA17, IFNA16, IFNA10, IFNA7, and IFNA4). The IFNA2 promoter region is representative of all IFNA−1/13

conserved subtypes except IFNA21. (C–E) Model of differential regulation of human IFNA genes. Blue and orange shading show evolutionarily conserved and variant
IFNa subtypes, respectively, IFNA genes expressed in response to increasing levels of activated IRF3 alone (C), IRF7 alone (D), or IRF3 and IRF7 together (E) as
described by Genin et al. (38). (F) Proposed model of IFNa subtype expression in the context of initial activation of IRF3 followed by IRF7 expression (and
subsequent activation) in response to a forward feedback loop initiated by IFNb.
January 2021 | Volume 11 | Article 605673
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In most cells, however, basal IRF7 expression is low while IRF3 is
ubiquitously expressed. Thus, in most cells, viral PAMPs trigger
activation of IRF3, which homodimerizes to complete the
functional enhanceosome and initiate transcription of IFNb.
Subsequently, autocrine/paracrine IFNb increases expression of
IRF7 (a robust ISG) in infected and bystander cells—a well-
documented critical step in a forward feedback loop for IFNb to
enhance its own expression (41).

The critical importance of IRF3 toward initiating IFN
expression is emphasized by the number of pathogens with
gene products that antagonize its activation (41) and by
reports that cells from IRF3-deficient patients express little or
no IFNb (42, 43). The critical importance of the IRF7-mediated
forward feedback loop is supported by an in vitro study in which
the percentage of IFNb-expressing cells after viral infection was
dependent on cell density, and secretion of IFNb (44), and
reports that IRF7 deficient patients poorly express IFNb (45,
46). By contrast, cells that constitutively express IRF7, as is the
case for macrophages and plasmacytoid dendritic cells (pDC)
(47) highly express IFN-I in response to synthetic ligands
(imiquimod or CpG oligonucleotides) or pathogens such as
influenza (48, 49). Taken together, the IFNb-IRF7 forward
feedback loop is a sentinel at the early stages of viral infection
in local environments that enhances the antiviral state of
common target cells for viral infection such as respiratory or
gastrointestinal epithelium.

After the crystal structure of the IFNB1 enhanceosome was
published, Genin et al. described promoter regions of the IFNA
genes (38) and modulated cellular expression of IRF3 and IRF7
to determine their effects on IFNa subtype expression. Figure 4A
shows the promoter region of IFNB1, and Figure 4B shows the
IFNB1 promoter region aligned to representative IFNA subtypes
up to −30 bp from the transcription start site. Overall, the IFNA
promoter regions align well to that of IFNB1 with 95% identity
excluding several insertions and three short deletions. As shown
in Figure 4B, the insertions into the IFNA promoters shift the
IRF binding sites, referred to as modules B, C, and D, 5’ from the
transcriptional start site such that the B module ends half-way
through IFNB1 PRDIII, the IFNA C module straddles IFNB1
PRDIII and PRDI, and the IFNA D module straddles IFNB1
PRDI and PRDII (to which NFkB binds in the IFNB1 promoter).
Among the three modules, only module B, which is equally
responsive to IRF3 and IRF7, is essentially identical among all the
subtypes. By contrast, module C, which preferentially binds to
IRF3, is functional only in the IFNA1 (and IFNA13) promoter.
Module D also differs between IFNA1/13 and the other subtypes.
For IFNA1, module D binds equally to IRF3 and IRF7, while for
all the other IFNA subtypes, module D preferentially binds to
IRF7. Binding of IRF3 to IFNA1 promoter modules C and D
explains why IFNA1 and IFNB1 can be co-expressed in the
absence of any other IFNA subtypes (38, 49–51).

The promoter regions of the IFNA subtypes other than IFNA1
(which we will refer to as IFNA−1/13 or IFNa−1/13 for the gene
and protein, respectively) cluster into two groups. The first
cluster consists of IFNA4, -A7, -A10, -A16, -A17, and -A21,
(represented by IFNA16 in Figure 4B). Note that this set
Frontiers in Immunology | www.frontiersin.org 6
includes all the evolutionarily variant IFNA subtypes (15)
along with IFNA21, from which the variant subtypes may have
arisen. The substitutions in the C modules of these subtypes
renders them nonfunctional, and the 73G/A substitution in their
D modules renders them more sensitive to IRF7. The B, C, and D
modules are identical among the IFNA subtypes in this cluster.

The second cluster of IFNA−1/13 subtypes is represented by
IFNA2 and includes IFNA5, -A6, -A8, and -A14. These are all
evolutionarily conserved subtypes. The C module for this cluster
is also non-functional, and their D modules include the 73G/A
substitution that renders them more sensitive to IRF7. Unlike the
cluster represented by IFNA16, however, there are substitutions
in the B and Dmodules that may affect their relative sensitivity to
IRF3 and IRF7 (52).

Based on analysis of the IFNA promoter regions and
expression studies with EBV-transformed B cells, Genin et al.
proposed a model for differential regulation of the IFNA genes by
either activation of IRF3 or IRF7, or by co-activation of both
IRF3 and IRF7 Genin, 2009 #71} (15, 52). In this model, low
activation of IRF3 is sufficient to induce expression of IFNa1,
while increased IRF3 activation may induce expression of IFNa2,
-a5, and -a8 (Figure 4C). Similarly, increasing levels of IRF7
activation will first induce expression of IFNa21 and the
evolutionarily variant subtypes followed by the remaining
subtypes (Figure 4D). Co-activation of IRF3 and IRF7 at low
levels induces expression of all subtypes, but coactivation
increases, IRF3 inhibits IRF7 and thus limits the number of
subtypes expressed (Figure 4E).
PATTERNS OF HUMAN TYPE I
INTERFERON EXPRESSION IN RESPONSE
TO SYNTHETIC LIGANDS AND VIRAL
INFECTION

To characterize expression patterns of IFNa subtypes in
response to synthetic ligands or viral infection, transcripts are
usually measured with RT-qPCR. Table 1 summarizes human
IFNb and IFNa subtype expression patterns reported in the
literature. As predicted by Genin et al., IFNa1 is co-expressed
with IFNb after activation of IRF3 with poly I:C. Additionally,
when potently stimulated, pDC (which constitutively express
IRF7) express all IFNa subtypes, while weaker stimulation of
IRF7 with CpG B class oligodeoxynucleotides (ODN) induced
expression of a set of IFNa subtypes that share the IRF7-sensitive
promoter region exemplified by IFNA16 (Figure 4B). By
contrast, stimulation of cells that do not constitutively express
IRF7 with viral RNA or the synthetic analog poly I:C primarily
induces expression of a core set of conserved subtypes. Table 1
also suggests the possibility that specific pathogens such as
influenza virus, HIV, or hepatitis C may preferentially
induce IFNa5.

Of particular interest is the report by Zaritsky et al., who
infected the U937 histiocytic cell line with Sendai virus at low
and high multiplicity of infections (MOI). While the U937 cells
January 2021 | Volume 11 | Article 605673

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wittling et al. IFNb and IFNa Subtypes
expressed all IFNa subtypes after infection at low MOI,
expression was limited almost exclusively to the conserved set
after infection at a high MOI. Furthermore, while IFNAR2
blockade (which repressed the IFNb-IRF7 forward feedback
loop) did not affect the expression pattern in the high MOI
infection, it significantly repressed all subtypes except IFNa1,
-a2, and -a8 after low MOI infection (60). Taken together, these
studies support the model of Genin et al. in which activated IRF3
alone induces expression of conserved IFNa subtypes (Figure
4C), and IRF7 alone first induces IFNa21 and variant subtypes
and subsequently induces expression of all subtypes (Figure 4D).
In the context of the IFNb-IRF7 forward feedback loop, however,
Table 1 suggests that conserved subtypes are first expressed,
followed by variant subtypes (Figure 4F).

It is important to note that the evolutionarily conserved or
variant IFNa subtype clusters are not expressed en bloc. One
possible explanation is that unlike the variant subtypes, the B and
D promoter modules vary by one or two bp, which may affect
their relative sensitivity to IRF3 or IRF7 (52). Another factor is
that IRF3 and IRF7 are not the only mediators of subtype
expression. For example, a set of IFNA transcripts is regulated
by a competing endogenous RNA (ceRNA) network. Kimura
Frontiers in Immunology | www.frontiersin.org 7
and colleagues first described stabilization of IFNA1 transcripts
by a natural antisense transcript (NAT) that spans the coding
region and extends well beyond the 3’ poly-A UTR (61). They
subsequently determined that the IFNA1 NAT includes binding
sites for microRNA-1270 (i.e., a microRNA response element)
which otherwise represses IFNA1 transcript levels. Additionally,
NAT for IFNA8, -A10, -A14, and -A17 (Kimura et al., personal
communication) also sequester miRNA-1270 to enhance their
transcript levels (62).
IFNb, THE HIGH-AFFINITY SENTINEL

In addition to its evolutionary emergence as the first non-tissue
specific IFN-I and its high sensitivity to IRF3/IRF7, IFNb also
has exceptionally high affinities for IFNAR1 and IFNAR2 (KD =
0.1 uM and 0.1 nM, respectively). As estimated by the product of
IFNAR1 and IFNAR2 affinities (KD IFNAR1 * KD IFNAR2), the
stability of the IFNb/IFNAR1/IFNAR2 ternary complex is 10-
fold higher than for IFNw and at least 50-fold higher than the
highest affinity IFNa subtypes, IFNa14 and IFNa6 (Figure 5).
TABLE 1 | Reported expression patterns of human IFN-I.

Cell type Stimulus Conserved cluster Variant cluster CC Reference

b a1 a8 a2 a6 a5 a14 a17 a16 a10 a7 a4 a21

PBMC poly I:C X X X X X (49)
CpG B-D class X X X X X X X X X (53)
Imiquimod X X X X (53)
Sendai Virusa nd X X X X X X (19)
Hepatitis C virus X X (54)

Mo poly I:C X X X (49)
MDM poly I:C X X X (49)

CpG D class X X X

M. tuberculosis X X (50)

MDDC poly I:C X X (49)
RSV X X X X X X (55)

pDC poly I:C, LPS X X X X (49)
Imiquimod X X X X X X X X X X X X X

CpG A, C, D X X X X X X X X X X X X X

CpG B class nd X X X X (48)
IAV H1N1 nd X X X X X X X X X X X X (48)
HIV nd X X X X X X X X X X X X (56)
HIV nd X X X X X (57)

Calu3b IAV H5N1 IAV pH1N1 SARS-CoV MERS-CoV X X (58)
BEAS2B RSV X X (51)
Lung explants IAV H3N2 nd X X X X X X (59)
U937c Sendai Virus (low MOI) X X X X x x x x x x x x x (60)

Sendai Virus (high MOI) X X X X X X X X
January 2021 | Volum
e 11 | A
aExpression patterns determined by mass spectrometry.
bExpression patterns determined by RNAseq, which may be insensitive to detecting highly identical transcripts.
cLower case “x” refers to the IFNa subtypes that were not expressed after IFNAR2 blockade (see text).
PBMC, peripheral blood mononuclear cells; Mo, monocytes; MDM, monocyte derived macrophages; MDDC, monocyte derived dendritic cells; pDC, plasmacytoid dendritic cells; poly I:C,
polyinosinic-polycytidylic acid; CpG, CpG oligodeoxynucleotides; HIV, human immunodeficiency virus; SARS-Cov, Severe adult respiratory syndrome coronavirus; MERS-CoV, Mideast
respiratory syndrome coronavirus; MOI, multiplicity of infection. Blue and orange shading show evolutionarily conserved and variant IFNa subtypes, respectively.
rticle 605673

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wittling et al. IFNb and IFNa Subtypes
As reviewed elsewhere in this series, a consequence of its high
affinity is more effective internalization of ternary receptor
complexes (66) into early endosomes where signaling may be
amplified and prolonged, or more rapidly terminated due to
shuttling of IFNAR1 to proteasomes for degradation (67).

A second consequence of the high affinity that IFNb has for
the receptor is that unlike the other IFN-Is, signaling is
unaffected by ubiquitin-specific protease-18 (USP18). USP18 is
a deubiquitinating enzyme that deconjugates the ubiquitin-like
interferon-stimulated gene-15 (ISG15) from its target proteins
(68). Conversely, ISG15 prevents ubiquitination and proteolytic
degradation of USP18, thus stabilizing its expression (69).
Unrelated to its enzymatic function, USP18 is shuttled by
STAT2 to IFNAR2, which sterically blocks binding of Jak2 to
interfere with recruitment of IFNAR1 to assemble a stable
ternary complex (68, 70, 71). Since USP18 is an ISG (72), this
inhibitory function is considered a negative feedback regulator of
IFN signaling. Due to its very high affinity for IFNAR1, however,
IFNb can override USP18 and recruit IFNAR1 to form a ternary
complex to initiate signaling (70). Thus, the negative feedback
regulation by USP18 is selective and is presumed to affect all
IFN-I other than IFNb. To our knowledge, selective inhibition
has been demonstrated by comparing IFNb induced signaling
with that of IFNa2, but not higher affinity IFNAR1 ligands such
as IFNa6 or -a8, or those with higher IFNAR1 × IFNAR2 KD

products such as IFNw or IFNa14 (Figure 5). The critical
importance of USP18-mediated inhibition of IFN signaling is
exemplified by pseudo-TORCH syndrome, a severely
incapacitating or fatal “interferonopathy” in patients deficient
in ISG15, USP18, or with a mutation to the STAT2 binding site
for USP18 (69, 73, 74).

Two additional qualities of IFNb bear discussion. First, in
addition to IFNk (9), IFNb also binds to highly sulfated
proteoglycans (PG), proposed to be mediated through a
Frontiers in Immunology | www.frontiersin.org 8
heparin binding site in an arginine-rich region of IFNb that
spatially separates the binding sites for IFNAR1 and IFNAR2
(75). PG binding of IFNb may sequester it to buffer IFN-I
signaling, which can be reversed by desulfation or shedding the
IFNb-bound PG (75) which may result in a depot effect. Second,
amino acid residues 25-27 uniquely contain the sequence motif
NGR which binds CD13. Asparagine residues undergo
spontaneous deamidation, which may be increased during
oxidative conditions. Deaminated NGR gives rise to DGR,
which binds to aVb3 and possibly other integrins that similar
to CD13, are expressed in blood vessels during angiogenesis (76)
and by some cancer stem cells (77) and mediates tumor invasion
(78). It is proposed that CD13 or aVb3 in tumors or tumor
vasculature may sequester IFNb and thus limit its antiproliferative
effects (79). In addition to these biologic effects, binding of IFNb
to abundant PG and integrins (in addition to its propensity to
stick to plastic) may limit its detection in biological fluids or tissue
culture supernatants.
IFNa1, THE LOW-AFFINITY SUBTYPE

As discussed above, IFNa1 stands apart from the IFNa−1/13

subtypes for its responsiveness to IRF3, for having two genes
(IFNA1 and IFNA13) on chromosome 9, and for the low
frequency of polymorphisms in either of those genes. Most
remarkable, however, is the low affinity of IFNa1 for IFNAR2,
at least 100-fold lower than most other IFNa subtypes while it
binds with relatively high affinity to IFNAR1 (Figure 5). Figure 6
shows the protein sequences of the IFNa subtypes aligned to
IFNa1, with secondary structures and receptor contact points.
Residues 20-35 cover most of the AB loop, including two 310
helices. In this span, two substitutions in IFNa1 contribute to the
low affinity of IFNa1 for IFNAR2: F27S, which decreases its
A B

FIGURE 5 | Binding affinities of IFN-I. (A) Equilibrium disassociation constants for the IFN-I. IFNa subtypes are from (63); IFNb from (64), and IFNϵ, -k, and -w from
(65). (B) Product of KD for IFNAR1 and IFNAR2, normalized to IFNa2. Highlighting and bar colors indicate conserved (blue) and variant subtypes (orange).
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affinity for IFNAR2 by 4-fold as the polar side chain of serine is
predicted to disrupt the hydrophobic interaction otherwise
stabilized by phenylalanine (80), and R22S, which together
with S27 decreases affinity by ~14-fold (65). Although not a
contact point, the substitution K31M in IFNa1 may also
contribute to its decreased affinity for IFNAR2 by disrupting
the second 310 helix.
Frontiers in Immunology | www.frontiersin.org 9
While the low affinity of IFNa1 for IFNAR2 suggests the
possibility of a qualitative difference in signaling or functional
outcome, the evidence to date only supports a quantitative
difference. Reports of IFNAR2-independent signaling in mice
(32) have not been replicated in human cells, for which it has
been reported that both IFNAR1 and IFNAR2 are essential for
signaling and gene expression (27). Additionally, while IFNa1
FIGURE 6 | Amino acid sequence of human IFNa subtypes. IFNa subtypes are shown in order of arrangement on chromosome 9 with evolutionarily conserved and
variant subtypes highlighted in blue and pink respectively. Secondary structure and IFNAR1/2 contact residues, labeled 1 and 2 respectively, are shown in the gray
and blue highlighted text. Amino acids are shown with IFNa1 as the comparator, showing those that are unique to IFNa1 and otherwise identical among all the
IFNa−1/13 subtypes, or otherwise varies among the other IFNa1/13 subtypes. * and † indicate cysteine disulfide bonds. Figure modified from (80).
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also has unique substitutions at contact points for IFNAR1 that
may affect its conformation at the SD2-SD3 hinge that affect
binding affinity (81), conformational changes do not necessarily
indicate an effect in IFN signaling (25).

The substitutions that decrease the affinity of IFNa1 for
IFNAR2 also decrease its affinity for B18R, a soluble receptor
antagonist encoded by vaccinia virus. According to this model,
secreted B18R (or other poxvirus orthologues) block high affinity
IFN-I from binding their receptors, while leaving these low
affinity IFNs relatively unaffected (65). Similarly, the organ-
specific IFN-I, IFNk, and IFNϵ also bind to IFNAR2 and B18R
with low affinity. While IFNk and IFNϵ may protect against
poxviruses that infect local environments (skin and female
reproductive tract), IFNa1 may defend against invasive strains
such as variola. It is intriguing to speculate that the low frequency
of polymorphisms in human IFNA1 and IFNA13 (35) is a
consequence of a selective advantage toward surviving smallpox.

Among the IFNa−1/13 subtypes, there are fewer substantial
differences in their peptide sequences. Figure 6 shows the shared
residues that account for the high levels of identity among the
evolutionarily conserved subtypes (Supplementary Figure 1) and
differences in the unstructured C-terminal tail that contribute to
higher antiviral and antiproliferative potencies of IFNa8 (82). Since
the receptor contact points are conserved, variation in their binding
affinities is apparently due to substitutions in adjacent residues.
THERAPEUTIC USES OF TYPE I
INTERFERON

The antiviral and antiproliferative activities of interferons led to
the development of their use as therapeutics. In 1986, IFNa2b
(Intron A®, Merck Sharp & Dohme) was the first IFN-I approved
for use in the United States (83). The current U.S. market for
interferons, including IFNg for chronic granulomatous disease and
Frontiers in Immunology | www.frontiersin.org 10
malignant osteopetrosis, has grown to $5B per year. Table 2 shows
the nine IFN-I licensed in the United States along with indications
for use. As discussed elsewhere in this series of reviews (84), there
are several ongoing clinical studies to test efficacy of IFN-I and
IFN-III to treat Covid19.

IFNa2a or IFNa2b, which differ only at residue 23 (lysine or
arginine, respectively), are prescribed for their antiviral or
antiproliferative activity. These products are injectable preparations
of either native or pegylated IFN proteins. Pegylation is modification
of proteins with linear or branched polyethylene glycol to retards
degradation and increase its serum half-life (85). While IFNa2 was
used to treat chronic hepatitis C, it has been replaced with the highly
specific inhibitors of HCV NS3/4A, NS5A, and NS5B proteins,
which may be curative and are associated with fewer adverse
events (86).

IFNb was first approved for treatment of relapsing remitting
multiple sclerosis in 1993 after showing an 18-34% reduction in
relapse rate. The efficacy for IFNb was considered to be due
suppression of viral infections that are associated with relapses
and to direct immunomodulatory effects that include reduction
of pathogenic Th1 and Th17 CD4+ T cells, and to increases in
IL-10 producing Treg cells (87). All these may be mediated by
increased expression of PD-L1 (CD274), an ISG that in mice is
more responsive to IFNb due to its high receptor affinity (88).

Therapeutic IFN-I has severe adverse events that are an
obstacle to their use as therapeutics. The package inserts for
pegylated IFNa includes black box warnings for the potential
development of neuropsychiatric, autoimmune, ischemic, or
infectious disorders. The package inserts also warn that
treatment symptoms such as fever, fatigue, headache, myalgia,
and nausea, which are usually associated with viral infections, are
common side effects. More serious side effects can include
cardiovascular and neurologic disorders, bone marrow, hepatic,
and renal toxicity, and hypersensitivity reactions. Additionally,
IFNb for MS is associated with seizures, depression, suicide, and
TABLE 2 | Licensed IFN-I in the United States.

Proprietary
Name

Proper
Name

Dosage Form Dosage Route Indication Expression
System

Avonex IFNb-1a 30 µg/0.5 ml 30 µg per week IM Multiple sclerosis including relapsing-remitting and secondary
active disease

CHO cells
Rebif IFNb-1a 8.8 µg/0.2 ml

22/44 µg/0.5 ml
22 or 44 µg 3 times per week SC CHO cells

Plegridy IFNb-1a 63/94/125 µg/
0.5 ml

125 µg every 14 days SC CHO Cells

Betaseron IFNb-1b 0.3 mg 0.25 mg every other day SC E. coli
Extavia IFNb-1b 0.3 mg 0.25 mg every other day SC E. coli
Pegasys Peg

IFNa2a
180 µg Adult: 180 ug per

week Pediatric: 180 ug/1.73
m2

SC Chronic Hepatitis C, Chronic Hepatitis B E. coli

Pegintron Peg
IFNa2b

50/80/120/150
µg/0.5 ml

Adult: 1.5 ug/Kg/
week Pediatric: 60 ug/m2/
week

SC Chronic Hepatitis C in patients with compensated liver disease E. coli

Intron A IFNa2b 10/18/25 MIU Diagnosis Dependent IV, IM,
SC, IL

Hairy Cell Leukemia, Malignant Melanoma, Follicular Lymphoma,
Condylomata Acuminata, AIDS-related Kaposi’s Sarcoma,
Chronic Hepatitis C, Chronic Hepatitis B

E. coli

Sylatron Peg
IFNa2b

200/300/600 µg 6 ug/Kg/week for 8 weeks then
3 ug/Kg/week for up to 5 years

SC Melanoma with metastasis to lymph nodes–to begin within 84
days of surgical resection

E. coli
January 2021 | Volume 11 | A
Peg, polyethylene glycol; MIU, million international units; BSA; IM, intramuscular; IV, intravenous; IL, intralesional; SC, subcutaneous; CHO, Chinese hamster ovary cells.
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other psychiatric disorders. It is therefore not too surprising that
as more selective therapeutic agents have been developed and
licensed, use of IFN-I has become adjunctive rather than a
primary treatment for chronic viral infections, cancer, or MS.
CONCLUSIONS

As reviewed here, most if not all reported biological differences
among IFN-I are quantitative rather than qualitative. While the
antiviral subtype that most potently neutralizes infection in vitro
may vary according to pathogen (57, 59, 89, 90), these differences
may be overcome by increasing doses (57, 91). Similarly, differences
in antiproliferative activity are largely dose dependent (92). While
this may also be true for modulation of cytokine expression (36),
immunosuppressive activity (i.e., induction of PD-L1) may be
dependent on the exceptionally high affinity of IFNb for IFNAR1/2.

As for the IFNa subtypes, other than escape from poxvirus
soluble receptor antagonists (such as B18R by IFNa1), any
suggestion of specialized roles is inferred from their evolutionary
history or expression patterns. It is therefore possible that the
primary role of IFNa is to prolong or amplify the effects of IFNb
and that multiple IFNa subtypes simply provide multiple layers of
redundancy, albeit with a range of receptor affinities. However, it is
also possible that unique functions for IFNa subtypes have not
been revealed because the common experimental approach of
comparing treatment with individual IFN-I does not reflect the
biological context in which defined patterns of IFNa are co-
expressed together and with with IFNb. These patterns are likely
most relevant at sub-saturating doses, which may more accurately
reflect the environment of structural cells where organ specific
immune responses are initiated (93).
Frontiers in Immunology | www.frontiersin.org 11
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