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Exome sequencing followed by genotyping suggests
SYPL2 as a susceptibility gene for morbid obesity

Hong Jiao*,1, Peter Arner2, Paul Gerdhem3,4, Rona J Strawbridge5, Erik Näslund6, Anders Thorell6,7,
Anders Hamsten5, Juha Kere1 and Ingrid Dahlman*,2

Recently developed high-throughput sequencing technology shows power to detect low-frequency disease-causing variants by

deep sequencing of all known exons. We used exome sequencing to identify variants associated with morbid obesity. DNA from

100 morbidly obese adult subjects and 100 controls were pooled (n=10/pool), subjected to exome capture, and subsequent

sequencing. At least 100 million sequencing reads were obtained from each pool. After several filtering steps and comparisons

of observed frequencies of variants between obese and non-obese control pools, we systematically selected 144 obesity-enriched

non-synonymous, splicing site or 5′ upstream single-nucleotide variants for validation. We first genotyped 494 adult subjects

with morbid obesity and 496 controls. Five obesity-associated variants (nominal P-valueo0.05) were subsequently genotyped in

1425 morbidly obese and 782 controls. Out of the five variants, only rs62623713:A4G (NM_001040709:c.A296G:p.E99G)

was confirmed. rs62623713 showed strong association with body mass index (beta=2.13 (1.09, 3.18), P=6.28×10−5) in

a joint analysis of all 3197 genotyped subjects and had an odds ratio of 1.32 for obesity association. rs62623713 is a low-

frequency (2.9% minor allele frequency) non-synonymous variant (E99G) in exon 4 of the synaptophysin-like 2 (SYPL2) gene.
rs62623713 was not covered by Illumina or Affymetrix genotyping arrays used in previous genome-wide association studies.

Mice lacking Sypl2 has been reported to display reduced body weight. In conclusion, using exome sequencing we identified

a low-frequency coding variant in the SYPL2 gene that was associated with morbid obesity. This gene may be involved in the

development of excess body fat.
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INTRODUCTION

Obesity is a major contributor to the global burden of chronic disease,
such as type 2 diabetes.1 A strong genetic impact on obesity has been
established. However, the identification of specific genes involved in
common forms of human obesity has proven elusive, despite great
efforts made through different approaches, including candidate gene
studies, genome-wide linkage and genome-wide association (GWA)
studies.2,3 So far, GWA studies have identified around 50 obesity-
associated genetic loci. However, these loci together explain only
about 1–2% of body mass index (BMI) variations in the studied
populations.4 Therefore a major question is how the remaining so
called ‘missing’ heritability can be explained.5 There are two principal
concerns about the interpretation of GWA results. First, the approach
is based on the common disease, common variant hypothesis. The
commercial single-nucleotide polymorphism (SNP) arrays used in
GWA studies were designed to cover the common genetic variants
(minor allele frequency (MAF) 45% in populations). Therefore rare
variants could not be directly evaluated using such arrays. Second,
imperfect statistical models, which do not account for gene–gene and
gene–environment interactions, were used in GWA data analyses.6

Recently developed high-throughput sequencing technology com-
plements SNP arrays and shows power to detect rare disease-causing

variants by deep sequencing of all known exons.7–9 This revolution of
technology holds promise to elucidate complex diseases by allowing a
genome-wide search for low frequency and rare and putatively
functional variants. Exome sequencing might be most efficient when
applied to patients with more extreme forms of common diseases,
such as morbid obesity; first, it increases the chances to obtain
significant association for rare variants with high penetrance; second,
genetic variants in the protein coding sequence might be more likely
to have a strong impact on the phenotype than variants in intergenic
regions.
In this study, we employed exome sequencing to detect low

frequency and rare gene variants enriched in adult subjects with
morbid obesity and validated them against never-obese elderly adults.
We reasoned that in this way we would enrich for obesity genes
among cases and filtered away such genes in the controls. Here we
report a low-frequency obesity-associated variant in the coding region
of the synaptophysin-like 2 (SYPL2) gene.

SUBJECTS AND METHODS

Sample selection
The cohorts for genetic studies are described in Table 1. Subjects were recruited

by local advertisement for the purpose of studying genes regulating body weight
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or in association with planned visits to our medical or surgical units for morbid
obesity or scoliosis, respectively. Most of them have been described.10,11 From
the obese subset, we selected, among the 10% with the highest BMI, 100
subjects with extreme obesity for exome sequencing (69 women, 31 men, age
41.5± 11.5 years, BMI 52.2± 3.8 kg/m2). All selected subjects had morbid
obesity defined as BMI440 kg/m2. As controls for the exome sequencing, we
used subjects already collected for an ongoing genetic study on idiopathic
scoliosis (76 women, 24 men, age 24.5± 12.8 years, BMI 21.9± 4.3 kg/m2). For
the first genotyping validation, we selected the 494 morbidly obese subjects with
the highest BMI in the large sample collection described above, including the
100 subjects who had been used for exome sequencing. As controls, we used
496 never-obese subjects with age 440 years and BMI o30 kg/m2. In the
second confirmation, we genotyped remaining 1425 morbidly obese subjects
and 782 never-obese controls with age 440 years and BMIo30 kg/m2.
The non-obese controls for exome sequencing had scoliosis. Otherwise all

other control subjects were healthy according to self-report. There was an
overrepresentation of women in the studied cohorts. Obese women are more
likely to search medical advice for their obesity. Scoliosis is more common
among women. Subjects were of European ancestry and living in Sweden. The
study was approved by the local Ethics Committees, and all subjects gave their
informed consent to participation.

DNA preparation and pooling
Genomic DNA was prepared from PBMCs using the QiAmp DNA blood Maxi
kit (cat no. 51194, Qiagen, Hilden, Germany). DNA purity and quality was
confirmed by A260/280 ratio 41.8 on Nanodrop (Thermo Fisher Scientific
Inc., Waltham, MA, USA) and agarose gel electrophoresis. DNA concentration
was measured by Qubit (Life Technologies, Stockholm, Sweden). Subsequently,
we took 0.8 μg of each DNA sample and randomly divided them into 10 pools,
each containing 10 samples of either obese cases or controls. The concentra-
tions of pooled DNA samples were measured with Qubit, and the samples were
run on agarose gel.

Exome sequencing
Exome sequencing was performed at the Science for Life Laboratory (SciLife-
Lab), Stockholm, Sweden. Each DNA library was prepared from 3 μg of the
pooled genomic DNA. DNA was sheared to 300 bp using a Covaris S2
instrument and enriched by using the SureSelectXT Human All Exon 50Mb
kit and an Agilent NGS workstation according to the manufacturer's instruc-
tions (SureSelectXT Automated Target Enrichment for Illumina Paired-End
Multiplexed Sequencing, version A, Agilent Technologies, Santa Clara,
CA, USA).
The clustering was performed on a cBot cluster generation system using a

HiSeq paired-end read cluster generation kit according to the manufacturer’s
instructions (Illumina, San Diego, CA, USA). The samples were sequenced on
an Illumina HiSeq 2000 as paired-end reads to 100 bp/read (Illumina). All lanes
were spiked with 1% phiX control library, except for lane 8, which had 2%
phiX. The sequencing runs were performed according to the manufacturer’s
instructions. Base conversion was done using Illumina’s OLB v1.9 (Illumina).

Sequencing read mapping, variant calling and functional
annotation
Sequencing reads were aligned to the current human reference sequence
(assembly hg19, NCBI build 37) (http://hgdownload.soe.ucsc.edu/goldenPath/

hg19/chromosomes/) by using Burrows-Wheeler Aligner (BWA version 0.6.1,
http://bio-bwa.sourceforge.net/, Li and Durbin12) with a read trimming
parameter –q of 20. Sequence variants were called by using the multi-way
pileup function of samtools-0.1.18 (http://samtools.sourceforge.net/), with a
minimum mapping quality of 20 and minimum read depth of 5× for filtering.
PCR duplicates were removed using samtools prior to variant calling. For
functional annotation of sequence variants, we employed annovar (http://www.
openbioinformatics.org/annovar/, Wang et al13) to integrate information
from a variety of databases in public domains, such as gene reference
(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt, 2013),
dbSNPs (SNP135, http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/
snp137.txt.gz) and the 1000 Genome project (http://www.1000genomes.org/).

Variant filtering and enriching for obesity
We used the following filtering criteria to select low-frequency and rare single-
nucleotide variants (SNVs) from exome sequencing data. Those SNVs enriched
in morbidly obese subjects were taken forward for validation (Figure 1). First,
we filtered for variants with a depth of 5× and mapping quality (MQ) ≥ 20.
Then we looked for putatively functional variants, that is, variants from exonic
regions, splicing sites or 5′ upstream regions. In the next step, we compared the
occurrences of a variant between obese and control pools. Only variants called
in ≥ 2 obese pools, but with no call or called once in control pools, were used
in the further filtering step; this step was applied to avoid potential false-positive
variants. The last filtering was based on allele frequency. We looked for low-
frequency and rare SNVs, that is, variants that were not found in public
databases or known SNPs with a MAF≤ 5% in general populations (1000
Genomes project 2011 May release).

Variant validation by genotyping
Variant validation was focused on SNVs enriched by the above filtering steps
that could fit into a manageable genotyping panel and was carried out in two
steps. First, all selected variants were genotyped in 494 obese subjects and
496 controls (Table 1 and Figure 1) using the Illumina GoldenGate assay
performed at the SNP/SEQ Technology Platform at Uppsala University, Sweden
(http://www.molmed.medsci.uu.se/SNP+SEQ+Technology+Platform/Genotyping/,
Fan et al14). Secondly, genotyped variants showing nominal significant
association with obesity were genotyped in an additional 1425 obese and 782
controls. Genotyping was performed using matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (SEQUENOM, Agena Bioscience,
San Diego, CA, USA) at the Mutation Analysis core Facility (MAF) at
Karolinska Institutet, Sweden.15 Multiplexed assays were designed using the
MassARRAY Assay Design v4.0 Software (Agena Bioscience). Protocol for
allele-specific base extension was performed according to Agena Bioscience’s
recommendation. All genetic association results in validation cohorts 1 and 2
have been submitted to GWAS Central.

Statistical analysis of association
Subjects were characterized by BMI, and values are reported as mean± SD for
obese and controls separately. Genetic association analysis and odds ratio
calculation were performed using PLINK (http://pngu.mgh.harvard.edu/~
purcell/plink/, Purcell et al16). Hardy–Weinberg equilibrium (HWE) of the
genotype frequencies among cases and controls were checked separately for
each run of validations prior to association analysis. A HWE nominal P-value of

Table 1 Clinical information on samples used for exome sequencing and variant validation

Obese cases Controls

Nationality Female/male BMI (kg/m2) Age (years) Nationality Female/male BMI (kg/m2) Age (years)

Discovery by exome sequencing Swedish 69/31 52.2±3.8 41.5±11.5 Swedish 76/24 21.9±4.3 24.5±12.8

First validation Swedish 357/137 51.1±3.7 40.9±11.6 Swedish 351/145 24.4±2.7 55.1±5.8

Second confirmation Swedish 1068/357 43.1±2.5 42.3±11.6 Swedish 696/86 23.8±2.9 44.3±4.4

Total 1494/525 1123/255

Values for BMI and age are mean±SD. Controls used in the first validation and second confirmation were non-obese.
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0.01 in controls was used as a cutoff for exclusion of variants from further
analysis. BMI was analyzed using standard linear regression implemented in
PLINK. Sex and age were used as covariates to evaluate their influence on the
association of a variant with BMI.

RESULTS

Discovery of rare variants by exome sequencing
To identify potential functional low-frequency and rare variants
associated with extreme obesity, we performed exome sequencing
on pooled DNA from 100 subjects (10 pools) with severe morbid
obesity and 100 control subjects (10 pools). Thus there was DNA from
10 subjects in each pool. The characteristics of subjects for the exome
sequencing are shown in Table 1. The obese subjects were older than
the controls, whereas the gender distribution was similar between
cohorts, with an overrepresentation of women. In total, we obtained
4100 million reads from each pool (Supplementary Table S1). After
trimming low-quality reads and removing PCR duplicates, 95% of
reads were mapped to the current human genome reference (assembly
hg19, NCBI build 37) except for one control pool that had a little
lower mapping rate. The vast majority of reads were uniquely mapped
on the same chromosome for both paired reads. Discordance between
paired reads was rare. Reads were paired with higher rates (97%) in
obese pools than in control pools (80–95%) (Supplementary Table S1).

More than 92% of target regions were covered by 5× reads, and
480% of target regions were covered by 30× reads (Supplementary
Table S2).
Potentially interesting variants were identified through several

filtering steps (Figure 1). All variants were called using a depth of
5× and MQ≥ 20 as the first filtering criteria. In total, we got 114
034–190 130 variants from each of the 20 pools. About 95% of
variants were known SNPs, that is, SNPs with rs numbers. The
majority of variants were located in exons, introns or intergenic
regions, whereas others were in nearby slicing sites or in regulatory
regions (Table 2). We focused on putatively functional variants, that is,
variants from exonic regions (excluding synonymous variants), spli-
cing sites or 5′ upstream. We obtained 31 520 such variants in obese
pools and 26 565 in non-obese pools. Those variants were found in at
least one obese pool or control pool, respectively. In all, 20 652
(65.5%) potentially functional variants were present in both obese and
control pools, and 10 868 (34.5%) were singletons for obesity. Next we
looked for variants appearing more often in obese pools. At this step,
there were 5788 variants left, and they were detected in ≥ 2 obese
pools but did not appear or appeared just once in control pools.
Finally we filtered for low-frequency and rare SNVs, that is, SNVs that
were not found in public databases or SNPs with a MAF≤ 5% in

Discovery stage
Exome sequencing of 100 obese and 100 controls by pooling  

(10 samples in each pool)

Criteria for filtering
1) With 5 X depth and MQ ≥ 20

2) Functional (e.g. missense mutation) 

4) Unpublished SNVs or dbSNPs with MAF ≤ 0.05

Yes

The 1st validation in 990 samples (494 obese and 496 controls) 

144 sequence variants, by genotyping

Associated with obesity
(p <= 0.05)

Yes

The 2nd validation in 2207 samples (1425 obese and 782 controls)
5 SNPs, by genotyping

Final analysis in total 3197 individuals (1919 obese and 1278 controls)
5 SNPs

3) Shared by obese pools & not present or appearing
once in control pools

Figure 1 Overview of working processes. Unpublished SNVs: variants that are not included in SNP135.
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general populations (1000 Genome project, http://www.1000genomes.
org/) were taken forward. With these criteria, 1032 obesity-associated
SNVs were obtained.

SNV validation and association analysis
From the 1032 SNV, we excluded insertion or deletion variants to
avoid potential technical difficulties in genotyping. Then we filtered
for SNVs shared by at least two obese pools with the highest yield.
After manually checking alignments of reads carrying the variants by
using the IGV software (http://www.broadinstitute.org/igv/) to exclude
potential artifacts, we selected 144 SNVs for genotyping (142 dbSNP
and 2 unknown SNVs). Sequencing depths and numbers of shared
obesity pools of the 144 SNVs are shown in Supplementary Table S3.
Most SNVs were found in two (83) or three (31) pools. Ten SNVs had
difficulties in primer design for genotyping and were replaced with
singleton SNVs.
SNV validations were divided into two steps. First, the 144 SNVs

were genotyped in 494 morbidly obese subjects, including the 100
exome-sequenced obese subjects, and 496 non-obese controls
(Table 1). Genotyping of 20 SNVs failed. The average per SNV call
rate for the remaining 124 SNVs was 97.95%. The concordance rate of
MAFs estimated from exome sequencing data and the MAF based on
genotype results was 0.83 (Supplementary Figure S1). Among the
successfully genotyped SNVs, 21 were monomorphic. The remaining
103 variants were used for association analysis. HWE was checked
prior to association analysis. After removal of 5 additional SNVs due

to an HWE P-valueo0.01, 98 SNVs were used in further association
analysis.
Five out of the 98 SNVs showed significant allelic association with

obesity with a nominal P-value 0.05 (Table 3, Supplementary Table S4).
These five SNVs were subsequently subjected to the second run of
genotyping for confirmation in a large case–control cohort consisting
of 1425 morbidly obese subjects and 782 never-obese controls. Only
one SNV, rs62623713 (NM_001040709:c.A296G:p.E99G), consistently
displayed a significant association with obesity (Table 3). However, in
the final joint analysis of all genotyped subjects two SNVs, rs62623713
and rs35923425 (NM_024727:c.G1134C:p.L378F), showed nominally
significant association with obesity in 1917 morbid obese and 1278
never-obese controls, with a P-value of 0.0063 (odd ratio (OR)= 1.32,
MAF 0.081 in obese and 0.063 in controls) or a P-value of 0.004
(OR= 1.35, MAF 0.076 in obese, 0.058 in controls), respectively
(Table 3). rs62623713 located at 110 019 439 base pair (bp) on
chromosome 1 (hg19) is a missense variant in exon 4 of the SYPL2
gene. rs35923425 located at 169 569 432 bp on chromosome 3 is also a
missense variant in exon 7 of the leucine-rich repeat containing 31
(LRRC31) gene.
By quantitative trait analysis in all genotyped subjects, rs62623713

showed strong association with BMI assuming an additive genetic
model (beta 2.13, P-value of 6.28× 10− 5, Table 4). The variant
explained 0.5% BMI variation in genotyped subjects. Homozygous
subjects for the rs62623713*G allele had higher BMI (mean= 45.56
kg/m2) when compared with subjects who were heterozygous or
homozygous for the rs62623713*A allele (Supplementary Table S5).

Table 2 Summary of variants with at least 5× depth and MQ 420 found in pools

Genome region Pool_1 Pool_2 Pool_3 Pool_4 Pool_5 Pool_6 Pool_7 Pool_8 Pool_9 Pool_10

Obese pools
Downstream 1041 1509 1031 906 1013 1150 1140 1864 1405 1073

Exonic 22 598 22 619 20 867 22 697 22 622 22031 22 134 21 244 21 387 22 505

Exonic;splicing 339 309 303 341 322 312 311 298 306 324

Intergenic 25 008 18 871 22 830 22 817 25 879 29673 28 890 30 407 34 951 26 365

Intronic 90 832 110 903 91 629 85 416 93 314 100064 99 213 122 534 109 572 95 353

Splicing 103 127 113 99 110 100 105 124 107 104

Upstream 1570 3399 1622 1448 1658 1871 1818 4082 2222 1665

Upstream;downstream 101 219 121 79 94 107 103 228 132 90

UTR3 4077 6094 4074 3907 4235 4529 4493 6414 5262 4295

UTR5 1523 2737 1511 1394 1510 1643 1617 2931 1776 1522

UTR5;UTR3 4 7 3 4 3 3 5 4 3 3

Total 147 196 166 794 144 104 139108 150760 161483 159 829 190 130 177 123 153 299

Control pools
Genome regiona

Downstream 1024 1047 901 1024 721 762 727 612 662 776

Exonic 21 755 20 916 21 605 21 259 20 885 21415 21 831 21 913 20 981 21 608

Exonic;splicing 310 305 312 304 306 312 307 316 300 297

Intergenic 29 501 35 161 28 299 31 790 23 043 27455 23 063 22 350 22 527 26 235

Intronic 92 012 88 906 83 922 90 250 70 290 74229 75 347 63 912 69 481 74 572

Splicing 97 98 95 94 88 91 96 88 98 91

Upstream 1628 1546 1398 1654 1120 1170 1159 917 1077 1224

Upstream;downstream 94 89 86 91 58 69 64 47 53 65

UTR3 4018 3881 3746 3934 3124 3348 3440 2886 3126 3256

UTR5 1510 1405 1303 1461 1198 1235 1175 990 1147 1220

UTR5;UTR3 3 2 3 2 1 2 2 3 1 4

Total 151 952 153 356 141 670 151863 120834 130088 127 211 114 034 119 453 129 348

aOutput from annovar. http://www.openbioinformatics.org/annovar/annovar_gene.html.
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The G allele is overrepresented in our obese subjects (MAF 8%),
especially in the homozygous form (12 obese to 2 controls). The same
tendency of associations was shown in females (beta 1.99, P-value
0.001), males (beta 2.42, P-value 0.016), obese subjects (beta 3.39,
P-value 0.0007) and non-obese subjects (beta 2.16, P-value 0.031)
(Table 4). rs35923425 in LRRC31 was also associated with BMI (beta
1.5, P-value 0.60× 10− 3). However, significant association was seen in
females only.
The significance of associations of 5 SNVs with either obesity or

BMI in the first and the final analysis were not influenced when we
excluded 100 subjects used in exome sequencing for analyses
(Supplementary Tables S6 and S7).
To further evaluate any confounding effect of age or gender, we

added these variables as covariates in regression models and tested
their individual effects separately. rs62623713 maintained strong
associations with BMI after adjustment for age or gender
(Supplementary Table S8). The association between rs35923425 and
BMI disappeared after adjustment for age. Furthermore, we also
performed a variety of tests to adjust for the analysis of multiple
genetic variants. The association of rs62623713 with BMI was still
significant with a Bonferroni adjusted P-value of 3.0 × 10− 4 and a
genomic-control corrected P-value of 0.05. The association of
rs35923425 became non-significant with genomic controls, whereas
the Bonferroni corrected P-value was 0.029 (Supplementary Table S9).

DISCUSSION

Using exome sequencing followed by large-scale genotyping, we
identified a low-frequency coding variant, rs62623713 (E99G) in exon
4 of the SYPL2 gene, consistently showing association with morbid
obesity. rs62623713 has a MAF of 2.9% for the G allele in the general
populations according to 1000 Genomes. The variant is overrepre-
sented among our obese subjects (MAF 8%). rs62623713 was not
covered by Illumina or Affymetrix genotyping arrays used in previous

GWA studies, and no other variants on those arrays was in strong
linkage disequilibrium with rs62623713.
To the best of our knowledge there are only three reports of obesity-

associated variants detected by exome sequencing.9,17,18 Albrechtsen
et al17 analyzed a cohort with the metabolic syndrome and examined
multiple metabolic phenotypes. The study by Huang et al18 primarily
analyzed type 2 diabetes. Gill et al9 identified novel LEPR variants in
severe childhood onset obesity using exome sequencing.
The hypothesis underlying our study is that more severe forms of

common obesity might be due to low-frequency or rare variants with
a larger impact on the phenotype. A minor portion of morbidly obese
cases has been shown to be due to genetic variants with high
penetrance. Variants in the melanocortin 4 receptor (MC4R) gene
explain a few percentage of childhood obesity,19 and a copy number
repeat on chromosome 1620 has a high penetrance in a few
percentages of morbidly obese subjects with cognitive defects. We
did not detect any variants in exonic or nearby upstream regions of the
MC4R in our exome sequencing data, which may be due to the low
number of investigated subjects. Our results, that is, the detection of
one SNP in SYPL2 remaining significantly associated with obesity after
adjustment for multiple testing, support the notion that low-frequency
and rare variants contribute to morbid obesity. However, the present
study lacks power to estimate to what extent rare genetic variants
cause morbid obesity in the population.
The approach we report using pooled DNA for exome sequencing

to get obesity-associated variants, which was followed by genotype
validation, is a cost-effective method. Our study has its limitations. We
did not have access to a reliable family history of our patients and
therefore do not know whether their obesity displays patterns of
monogenic inheritance. On the other hand, as obesity is common,
pedigree information might be difficult to interpret due to hetero-
geneity, that is, different causes of obesity in different family members.
We only genotyped validated variants detected in more than one
sequencing pools to limit the number of false positives. Although by

Table 3 Associations of five SNVs with obesity in the first and second runs of validation and in the final analysis

CHR SNP A1 Freq_case Freq_control A2 P-value OR L95 U95 Gene

First validation
1 rs62623713 G 0.100 0.077 A 0.044 1.38 1.01 1.88 SYPL2
1 rs41280330 T 0.017 0.0061 C 0.021 2.88 1.13 7.33 GNAT2
3 rs35923425 G 0.082 0.050 C 0.0042 1.70 1.18 2.45 LRRC31
14 rs34106261 A 0.054 0.033 G 0.0184 1.71 1.09 2.67 RIPK3
19 rs45546534 G 0.061 0.039 A 0.021 1.63 1.07 2.47 TMPRSS9

Second validation
1 rs62623713 G 0.077 0.054 A 0.0049 1.44 1.12 1.86 SYPL2
1 rs41280330 T 0.0075 0.0089 C 0.61 0.84 0.43 1.63 GNAT2
3 rs35923425 G 0.074 0.063 C 0.15 1.19 0.94 1.52 LRRC31
14 rs34106261 A 0.034 0.038 G 0.57 0.91 0.64 1.28 RIPK3
19 rs45546534 G 0.044 0.040 A 0.52 1.10 0.82 1.50 TMPRSS9

Final analysis
1 rs62623713 G 0.081 0.063 A 0.0063 1.32 1.08 1.61 SYPL2
1 rs41280330 T 0.0094 0.0079 C 0.51 1.20 0.69 2.08 GNAT2
3 rs35923425 G 0.076 0.058 C 0.0040 1.35 1.10 1.66 LRRC31
14 rs34106261 A 0.038 0.035 G 0.58 1.08 0.82 1.44 RIPK3
19 rs45546534 G 0.047 0.040 A 0.18 1.19 0.92 1.52 TMPRSS9

Abbreviations: A1, minor allele (observed allele); A2 alternative allele (reference allele), see Supplementary Table S3 for more information about SNPs; CHR, chromosome; Freq, frequencies of
minor allele A1; OR: odds ratio; L95 and U95, the upper and lower 95% confidence intervals.
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genotyping variants detected in one sequencing pool only we might
have discovered additional rare obesity-associated variants, we did not
apply this strategy because of lower sequencing overage in some
regions and risk of false-positive variants. However, with the applied
strategy we were able to detect true low-frequency SNVs (about 30%
of SNVs with a MAF≤ 0.05 and 460% with a MAF≤ 0.10) in obese
pools. Estimated MAFs in exome sequencing data correlated
with those based on individual sample genotyping (Supplementary
Figure S1). In our study, failure in validation by genotyping seemed
not due to low depth as major failed SNVs had an average depth
≥ 20× (Supplementary Table S3). Imperfect primer designs in
multiplex genotyping could be a major cause of genotyping failure.
SYPL2 (also called MG29) is expressed in the adipose tissue, brain,

kidney, heart and cerebellum. Functionally, the SYPL2 protein has
been proposed to participate in cellular calcium ion homeostasis.21

The protein is expected to be involved in transporter activity and to
localize in various compartments, such as synaptic vesicle.22

Interestingly, mice lacking Sypl2/Mg29 exhibit reduced body weight,
abnormal skeletal muscle membranes and irregular skeletal muscle
contractility.23 How the gene might influence adipose tissue formation

and its potential role in obesity development is unclear and needs
further investigation, which is beyond the scope of this study.
In previous reports, SYPL2 was associated with major depressive

disorder in European population.24 An association between obesity
and depression has repeatedly been established. In a meta-analysis,
obesity was found to increase the risk of depression. In addition,
depression was found to be predictive of obesity.25 Another study
found that the association of obesity with depression was mainly
confined to persons with severe obesity.26

SYPL2 belongs to the synaptophysin family. Synaptophysin regulates
activity-dependent synapse formation in cultured hippocampal
neurons,27 and it is required for kinetically efficient endocytosis of
synaptic vesicles in cultured hippocampal neurons.28 Food intake is
subject to a complex regulation by the hypothalamus and other brain
centers, including the brain stem and the hippocampus. Thus one
could hypothesize that SYPL2 is involved in the central regulation of
food intake possibly affecting the central reward systems and the
hedonic effects of food.
In conclusion, we identified a low-frequency obesity-associated

coding variant in the SYPL2 gene using exome sequencing with pooled
DNA from 100 morbidly obese and 100 non-obese subjects, which
was followed by genotype validation in 3197 case–control subjects.
Our results provide evidence of the existence of a coding variant
associated with obesity although further functional studies of this
genetic variant remain to be performed.
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