
Mice with Alopecia, Osteoporosis, and Systemic
Amyloidosis Due to Mutation in Zdhhc13, a Gene Coding
for Palmitoyl Acyltransferase
Amir N. Saleem1,2., Yen-Hui Chen1,3., Hwa Jin Baek4., Ya-Wen Hsiao1,3, Hong-Wen Huang3, Hsiao-Jung

Kao1, Kai-Ming Liu1, Li-Fen Shen1, I-wen Song1, Chen-Pei D. Tu1,5, Jer-Yuarn Wu1, Tateki Kikuchi1,3,

Monica J. Justice4, Jeffrey J. Y. Yen1,3*, Yuan-Tsong Chen1,6*

1 Institute of Biomedical Sciences, Academia Sinica, Nankang, Taiwan, 2 Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of

Mosul, Mosul, Iraq, 3 Taiwan Mouse Clinic–National Phenotyping Center, National Research Program for Genomic Medicine, National Science Council, Taipei, Taiwan,

4 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America, 5 Department of Biochemistry and Molecular

Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America, 6 Department of Pediatrics, Duke University Medical Center, Durham, North

Carolina, United States of America

Abstract

Protein palmitoylation has emerged as an important mechanism for regulating protein trafficking, stability, and protein–
protein interactions; however, its relevance to disease processes is not clear. Using a genome-wide, phenotype driven N-
ethyl-N-nitrosourea–mediated mutagenesis screen, we identified mice with failure to thrive, shortened life span, skin and
hair abnormalities including alopecia, severe osteoporosis, and systemic amyloidosis (both AA and AL amyloids
depositions). Whole-genome homozygosity mapping with 295 SNP markers and fine mapping with an additional 50 SNPs
localized the disease gene to chromosome 7 between 53.9 and 56.3 Mb. A nonsense mutation (c.1273A.T) was located in
exon 12 of the Zdhhc13 gene (Zinc finger, DHHC domain containing 13), a gene coding for palmitoyl transferase. The
mutation predicted a truncated protein (R425X), and real-time PCR showed markedly reduced Zdhhc13 mRNA. A second
gene trap allele of Zdhhc13 has the same phenotypes, suggesting that this is a loss of function allele. This is the first report
that palmitoyl transferase deficiency causes a severe phenotype, and it establishes a direct link between protein
palmitoylation and regulation of diverse physiologic functions where its absence can result in profound disease pathology.
This mouse model can be used to investigate mechanisms where improper palmitoylation leads to disease processes and to
understand molecular mechanisms underlying human alopecia, osteoporosis, and amyloidosis and many other
neurodegenerative diseases caused by protein misfolding and amyloidosis.
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Introduction

Proteins can be modified by a variety of lipids, including myristate

(C14), farnesyl (C15), palmitate (C16), geranylgeranyl (C20) and

glycosylphosphatidylinositol (GPI). Palmitoylation is one of the most

common post-translational lipid modifications that involve the

addition of palmitate to specific cysteine residues of proteins via a

thioester linkage [1–3]. Although most of the lipid modifications are

irreversible, protein S-palmitoylation can be either permanent or

transient, which allows it to dynamically regulate protein function

[1,4]. Numerous soluble and integral membrane proteins have been

shown to be palmitoylated including signaling proteins, enzymes,

scaffolding proteins, ion channels, cell adhesion molecules and

neuronal proteins. Specific examples are oncogenic Ras proteins,

trimeric G protein a subunit, Rap2b, RhoB, eNOS, SNAP-25, PSD-

95 postsynaptic scaffolding protein, huntingtin and anthrax toxin

receptor [1,2,5–8].

Palmitoyl post-translational modification has recently emerged

as an important mechanism for modulating protein targeting,

trafficking, stability and protein-protein interactions, and plays

roles in numerous cellular processes, including signaling, apoptosis

and neuronal transmission [1,3].

Although palmitoylation was first described over 30 years ago,

the genes coding for enzymes involved in protein palmitoylation,

the palmitoyl acyltransferase (PATs), have only recently been

discovered [7,9]. To date, at least 23 members of PATs have been

identified in the mammalian genome [9,10]. This family of

proteins contains a cysteine-rich domain (CRD) with a core Asp-

His-His-Cys (DHHC) motif that is essential for PAT activity

[7,9,11]. The presence of so many PATs in a single organism
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could be due to differences in substrate specificities, intracellular

localizations or tissue distributions. For example, DHHC2 and

DHHC15 are more specific to PSD-95 and GAP-43, DHHC9 and

DHHC18 are specific to H-Ras and N-Ras, while DHHC3 and

the closely related DHHC7 have broad substrate specificities [2,8].

In neuronal tissue, DHHC13 and 17 modulate huntingtin

palmitoylation and DHHC8 modulates paralemmin-1 [11]. The

substrate specificity appears to be determined by the regulatory

domains outside the DHHC domains of the enzymes [8,11].

Despite the functional importance of protein palmitoylation at

the cellular and biochemical levels, its physiological role and its

relevance to disease processes is not clear. Oncogenic Ras proteins

and huntingtin are direct targets for palmitoylation thus, they may

be involved in the disease process. Disregulation of DHHC2 may

be involved in cancer metastasis [12]. The sole mouse model of

DHHC deficiency is the Zdhhc8 knockout; these mice have a mild

behavior phenotype with a decrease in exploratory activity and a

deficiency in prepulse inhibition. These behavioral changes are

only observed in female mice. The phenotypes together with

genetic evidence may support the hypothesis that DHHC8 is a risk

factor for schizophrenia [13]. Systematic knockdown of the Zdhhc

genes has not been done, which could provide some unexpected

physiological roles for DHHC proteins. Here we report on mice

with a mutation in the Zdhhc13, a gene coding for palmitoyl

acyltransferase, which catalyzes the reaction of protein palmitoyla-

tion [11]. Mutant mice exhibit a severe phenotype and profound

pathology involving multi-organ/systems. These mice, developed

cachexia, alopecia, osteoporosis, systemic amyloidosis, failed to

thrive and succumbed to early death.

Results

The mutant mice were analyzed either on a C57BL/66129S6/

SvEv or C57BL/66129S6/SvEv 6 C3H mixed genetic back-

ground. The phenotypes described herein are all penetrant in both

genetic backgrounds.

Clinical Phenotypes
General appearance. Affected mice appeared normal at

birth, but by postnatal day 7 were small in size and developed

hypotrichosis; these features differentiated affected from normal

siblings. The affected male mice had poor weight gain and

weighed 50% less than the unaffected siblings (Figure 1A). Affected

females mice also showed similar poor weight gain (data not

shown). In addition, these mice, regardless of sex, had a shortened

life span; about 50% died before 7.5 months of age and only 20%

survived beyond one year of age (Figure 1B). Furthermore, the

affected mice showed generalized hypotrichosis and hair loss

particularly certain body parts, some hairs remained over the head

and back, although, they were thin, short and had decreased luster

(Figure 2). Skin was loose with wrinkling and folding (Figure 2C).

Kyphosis was evident beginning at day 28 (Figure 2, also shown in

Figure 3A). When the gene responsible for these phenotypes was

identified as Zhddc13 (see below under Identification of the

mutated gene), it was clear that only homozygous Zdhhc13 -/-

Author Summary

Palmitoylation, the addition of palmitate (a fatty acid) to
protein, is one of the most common post-translational lipid
modifications and has recently emerged as an important
mechanism for modulating protein targeting, trafficking,
stability, and protein–protein interactions. However, its
physiological role and its relevance to the disease
processes are not at all clear. Here we reported that mice
with mutation in Zdhhc13, a gene coding for palmitoyl
acyltransferase that catalyzes the reaction of protein
palmitoylation, exhibited a severe phenotype and pro-
found pathology involving multi-organ/systems. These
mice showed wasting, weight loss, hair loss (alopecia),
reduced bone mineral density (osteoporosis), and gener-
alized amyloid deposition, which resulted in early death.
Our results established a direct link between protein
palmitoylation and regulation of the important diverse
physiological functions and indicated that its absence can
result in profound disease pathology. This mouse model
will be useful for further understanding the molecular
mechanisms underlying human alopecia, osteoporosis,
and many other neurodegenerative diseases caused by
protein misfolding and amyloid deposition.

Figure 1. Body weight and life span of the affected mice. (A) Body weights of affected male mice compared to their unaffected male siblings
(n = 10 each). Values are expressed as mean 6 SE. (B) Life span of the affected mice compared to their unaffected siblings (n = 10 each).
doi:10.1371/journal.pgen.1000985.g001

Model of Zdhhc13 Mutation Causing Severe Phenotype
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exihibited abnormal phenotypes, while heterozygous Zhddc13 +/2

displayed normalcy like the wild-type (+/+).

Hematology and blood chemistry. Complete blood counts

obtained from affected mice at 4 weeks and 30 weeks of age were

comparable to the wild-type, except that adult mutant mice showed

neutrophilia (mutant = 58.862.24 and unaffected = 38.564.13,

P,0.05) and lymphocytopenia (mutant = 33.161.86 and

53.864.88 unaffected) despite normal WBC counts (Table S1).

Blood biochemistry revealed elevations in AST and ALT enzymes in

the adult (ALT in mutant = 100.6615.3 and in unaffected =

52.865.07, AST in mutant = 44.567.18 and in unaffected =

24.862.72, P,0.05). However, at 4 weeks of age only AST was

elevated (mutant = 101.6615.6 and unaffected = 56.463.09,

P,0.05) (Table S2). About 10% of adult mice also showed

Figure 2. General appearance of the affected mice. Note the size difference of affected versus unaffected sibling (A). Affected mice at different
ages, 4 weeks (B), kyphosis with sharper spine angle in affected mouse and patchy alopecia (C), at 6 months of age (D) and just before death at 7.5
months of age (E).
doi:10.1371/journal.pgen.1000985.g002

Figure 3. Skeletal abnormalities in the affected mice. (A) Radiographs of affected mouse and unaffected sibling at 26 weeks of age. Yellow
bars indicate the position of spine. Scale bar = 1 cm. (B) Micro–CT imaging of the femur trabecular bone in the wild-type and skcm04Jus mice taken at
26 weeks of age. The 3D images of trabecular bone were reconstructed as described in Materials and Methods; scale bar = 1 cm.
doi:10.1371/journal.pgen.1000985.g003

Model of Zdhhc13 Mutation Causing Severe Phenotype
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elevations in BUN (up to 180 mg/dl), CPK and total bilirubin. Serum

calcium, magnesium and C-reactive protein were all within normal

limits in the affected mice at both 4 weeks and 30 weeks of age.

Bone studies. Radiographic examinations showed severe

kyphosis with marked increased spinal angle in the affected mice

(Figure 3A). Osteoporosis was also profound, as evidenced by a

decrease in the trabecular number of femur (Figure 3B and

Table 1) and by other trabecular bone parameters, including a

decrease in bone volume density (BV/TV) and bone mineral

density (BMD), along with an increase in the structure model

index (SMI), which indicated an abundance of rod-like trabeculae

(Table 1). These features of osteoporosis could be seen as early as 4

weeks of age (data not shown).

Histopathological analyses. Post mortem examinations

revealed hepatosplenomegaly (2-3 times normal), severe muscle

wasting and reduced white and brown adipose tissue. Skin

histopathology of the affected mice showed hyperkeratosis and

epidermis hyperplasia with thin dermis and scanty adipose tissue

(Figure 4A). Hair follicles in different stages, such as anagen, catagen,

and telogen, could be observed in wild-type mice (Figure 4D), while

mutant mice had significantly fewer active hair follicles with most

remaining in the late telogen phase. There were no hair shafts in the

affected hair follicles and the upper portion was dilated (Figure 4C).

Amyloid deposition was observed in the entire dermis in the affected

mice as homogenous eosinophilic substances by H&E stain

(Figure 5A). This was confirmed by Congo red stain as pink-red

deposits (Figure 5B) and under a polarizing microscope as yellow-

green birefringence (Figure 5C).

Amyloid depositions were also found in most of the other major

organs examined, except for muscle. Amyloids were seen in liver,

spleen, kidney, adrenal gland, pancreas, salivary glands, heart,

lung, intestine and brain. The amyloids deposited in organs and

their severity in young (4 weeks) and older animals (20–32 weeks)

are summarized in Table 2. In general, there was a progressive

increase of amyloid with age.

In the liver, amyloid deposits were observed mainly in sinusoids

around perivascular areas (Portal and central veins) (Figure 6A).

Enlarged Kupffer cells containing amyloid substance were also

seen and in severe cases, massive amyloid deposits disrupted the

hepatic architecture (data not shown). Mild amyloid deposition in

the space of Disse or sinusoid was also found in young mice as

early as 4 weeks of age (Table 2).

In the spleen, accumulations of amyloid appeared in peri-white

pulp, connective tissue frameworks of red pulp and central arterial

walls of white pulp (Figure 6B). Mild amyloid deposition was also

observed in young animals; however, the arterial wall findings

were not detectable in young mutants (Table 2).

In the kidney, amyloid accumulated in the glomerulus (Figure 6C),

renal tubules (Figure 6D) and perivascular areas. Thickenings of the

basement membranes of glomerular capillaries and mesangial matrix

were common lesions in mutants. In the advanced stage, the

glomerular capillaries were obliterated, and the glomerular structures

were completely destroyed. The renal tubules became dilated with

large amounts of filtrated substances (as an eosinophilic substance,

presumably albumin that is observed as a result of a glomerular

filtration defect) and some tubular epithelial cells showed atrophy. In

young animals, renal amyloidosis was milder, but could be seen in

both glomerulus and tubules (Table 2).

Massive amyloid deposits were also observed in the adrenal

glands in adult mice. Amyloid accumulated in the zona fasciculate,

zona reticularis, and in part of the zona glomerulosa and medulla

(Figure 6E).

In the pancreas, amyloid accumulated in both exocrine

pancreatic tissues and islet of Langerhans (Figure 6F) and, in the

advanced stage, acinar cells were degenerated and completely

replaced by amyloid. Acinar cells in salivary glands were also full

of amyloid (Figure 6G).

In the heart, amyloid deposition could be seen in the blood

vessel walls, and only in severe cases, amyloid was observed in the

myocardium (Figure 6H). Small amounts of amyloid deposits

could also been found in other organs such as lung, intestine and

brain. No amyloid deposition was found in skeletal muscle.

Immunohistochemistry Staining
Immunohistochemistry staining was performed using anti-

amyloid A, anti-kappa light chain and anti-lambda light chain to

confirm the amyloidosis and to differentiate AA and AL type of

amyloidosis. In liver, amyloid AA and AL k were the major

amyloid detected, primarily in sinusoids and around the portal

vein, while the amount of AL l amyloid was less (Figure 7, upper

panel). A similar pattern was also observed in kidney glomerulus

and tubular cells in which AA and AL k were the predominant

amyloids (Figure 7, lower panel). Both AA and AL k could also be

detected in the kidneys of the young animals (Table 2).

Identification of the Mutant Gene
To map the gene responsible for these abnormal phenotypes,

affected mice in the B66129 mix background were out-crossed to

C3H/HeJ mice to generate N1 (B6 and C3H hybrid) affected

offspring, then were intercrossed. The offspring of this intercross

(N1F1) were used in the genomic analysis. Whole genome SNP

homozygosity mapping revealed one region located between 46.4

and 64.7 Mb (18.3 Mb) of chromosome seven with 90% B6

homozygosity in consecutive SNPs (Figure 8A). Fine mapping

narrowed down the candidate region to within 2.4 Mb (between

53.9 and 56.3 Mb) on chromosome 7 (Figure 8B). This region

contained 64 genes. Because our affected mice showed generalized

amyloidosis, we concentrated on the amyloid related genes located in

this region which included Saa1l (serum amyloid A-like 1), Saa3

(serum amyloid A 3), Saa4 (serum amyloid A 4), Saa1 (serum amyloid

A 1), Saa2 (serum amyloid A 2) and Zdhhc13 (zinc finger, DHHC

domain containing 13). Direct DNA sequencing of genes in affected

mice revealed a homozygous A to T substitution in exon 12 of

Zdhhc13 (c.1273A.T) (Figure 8C). The parents were heterozygous

for this mutation. Further study showed that the homozygous

c.1273A.T mutation (2/2) completely segregated with the

abnormal phenotypes. Siblings, as well as parents, that were

heterozygous for this mutation (+/2) were phenotypically normal.

This A to T substitution resulted in a stop codon (AGA.TGA) (arg-

425-stop codon) and predicted a truncated protein. No other

mutations were found in the remaining exons of gene Zdhhc13 or in

Table 1. Structural parameters for trabecular bone.

Mouse genotype Wild type (+/+) Affected (2/2)

BV/TV (%) 9.5863.22 2.9661.21**

Tb.Th (mm) 0.0760.01 0.0760.002

Tb.Sp (mm) 0.4460.03 0.660.11

Tb.N (1/mm) 1.3760.33 0.4560.18**

SMI 0.6960.3 1.4460.25**

BMD (g/cm3) 0.5360.003 0.4260.02**

**P,0.01 BV, trabecular bone TV, tissue volume; Tb.Th, trabecular thickness;
Tb.Sp, trabecular separation; Tb.N, trabecular number; SMI, structure model
index; BMD, bone mineral density.
doi:10.1371/journal.pgen.1000985.t001

Model of Zdhhc13 Mutation Causing Severe Phenotype
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its promoter region. All other amyloid-related genes in the candidate

region were also normal without detectable mutations.

Real time RT-PCR showed that the tissue expression of Zdhhc13

mRNA was significantly reduced to 26.23% in the liver and 15.59%

in the kidney of the affected mice compared to the wild type, (Table 3).

The decreased mRNA indicated nonsense RNA decay due to the

premature stop codon in our mutant Zdhhc13 mice.

To confirm that we had identified the correct gene, we obtained

a gene trap allele in Zdhhc13 from the SIGTR. This allele

produced the same phenotype as the ENU-induced allele, with the

Figure 4. Skin histopathology of the affected mice. Skin of an affected mouse at age 16 weeks showed hyperkeratosis (arrow) and hyperplasia
of the epidermis and thin dermis layer with scanty subcutaneous adipose tissue (A) when compared to a wild-type mouse (B). The hair follicles
contained no hair shafts and their upper portions were dilated and filled with keratinized materials in a mutant mouse (C) as compared to the normal
hair follicles in a wild-type mouse (D). (H&E, Bar = 200 mm in A and B; 100 mm in C and D).
doi:10.1371/journal.pgen.1000985.g004

Figure 5. Histopathology analysis of amyloid in skin of an affected mouse. Skin sections were stained with H&E (A) and Congo red (B); and
the latter stained section was also observed using a polarizing microscope (C). Note that amyloid deposits appeared eosinophilic by H&E stain, pink-
red in Congo red stain, and showed yellow-green birefringence under a polarizing microscope.
doi:10.1371/journal.pgen.1000985.g005

Model of Zdhhc13 Mutation Causing Severe Phenotype
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exception of pink-eyes and a dilute coat color, which are associated

with the closely linked Oca2 locus carried in the 129/Ola gene trap

ES cells. The skin which showed abnormal hair follicles, lack of

hair and thickened epidermis (Figure 9E) which are similar to the

mutant mice identified by the ENU mutation.

Expression of Zdhhc13
We carried out Northern analysis of a variety of tissues to

determine where Zdhhc13 is expressed. We found that Zdhhc13 is

expressed in most adult tissues, but at low levels in the liver, skin,

and lung (Figure 9A). We hypothesized that Zdhhc13 may be

needed most during development of these tissues, so we analyzed

expression of Zdhhc13 in liver, skin, lung and brain at three

different time points: postnatal day (P) 2, P8 and P30. Zdhhc13 was

expressed most highly in the liver, lung, and brain at P2, showing

that transcripts are developmentally regulated (Figure 9B). In

contrast, Zdhhc13 is expressed most highly in skin at P8, when hair

follicles are maturing. We examined the gene trap allele, which

contains a lacZ reporter gene, for expression of Zdhhc13 in the skin,

and found that it is expressed in the epithelium surrounding the

hair follicles, consistent with a role in hair growth (Figure 9).

Mutation in Zdhhc13 Affects Protein Palmitoylation
Huntingtin is a known substrate of Zdhhc13 [11]. To

demonstrate the palmitoylation defect caused by the mutation,

HEK 293 T cells were co-transfected with huntingtin-myc and

Zdhhc13-flag (WT and mutant). We examined the palmitoylation

levels using acyl-biotin exchange assay after immunoprecipitation

of huntingtin with anti-myc antibody and found that the

huntingtin was palmitoylated by the wild-type Zdhhc13. The

ability of mutant Zdhhc13 to palmitoylate huntingtin was greatly

reduced by the mutant Zdhhc13, to a level indistinguishable from

the endogenous palmitoyl activity present in the control

(Figure 10A).

Moreover, when we examined the IgG light chain purified from

serum of wild and mutant mice, we observed much less

Table 2. Distributions and amyloid type in various tissues of the affected mice using Congo-Red Stain and immunohistochemistry.

Organ Tissue 2/2 age(24±1.85) (n = 10)* 2/2 4 weeks (n = 2)

CR AA ALl ALk CR AA ALl ALk

Liver Sinusoid ++ ++ + ++ + - 6 6

portal vein ++ ++ + ++ + - - -

central vein ++ 6 - 6 - - - -

spleen red Pulp + + + + + - 6 6

white Pulp ++ - - - + - - -

central artery ++ 6 6 6 - - - -

kidney glomerulus ++ + + ++ + + + +

Tubules ++ + + ++ + - 6 -

perivascular tissue + + 6 6 - - - -

Skin hair follicle + - - - + - - -

dermis and epidermis ++ ++ ++ + + 6 6 6

subcutaneous tissue + + + + - 6 6 6

Adrenal gland Cortex ++ - - - 6 ND ND ND

Medulla ++ ++ - ++ - ND ND ND

Pancreas Acini ++ ND ND ND 6 ND ND ND

Islets of Langerhans ++ ND ND ND 6 ND ND ND

perivascular tissue + ND ND ND 6 ND ND ND

Salivary gland acini cells ++ ND ND ND + ND ND ND

blood vessel wall ++ ND ND ND + ND ND ND

Heart cardiac myocyte + + 6 6 - - - -

perivascular tissue ++ + 6 + - - - -

Lung Alveoli + ND ND ND - ND ND ND

perivascular tissue + ND ND ND - ND ND ND

Intestine Velli + 6 6 6 - - - -

lamina properia + 6 6 6 - - - -

perivascular tissue + 6 6 6 - - - -

Brain Cerebellum + - - - - - - -

perivascular tissue + - - - - - - -

Cerebrum 6 - - - - - - -

Bone bone marrow 6 ND ND ND - ND ND ND

Muscle myofibril - ND ND ND - ND ND ND

(* Zdhhc132/2 adult mean age, (mean6SE) week, (- negative, 6 Uncertainty + mild, ++ severe ND: not done).
doi:10.1371/journal.pgen.1000985.t002

Model of Zdhhc13 Mutation Causing Severe Phenotype
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Figure 6. Histopathological analysis of amyloids in different organs of the affected mice. Amyloid deposition in sinusoids and around the
portal vein in liver (A); in red pulp and peri-white pulp area in spleen (B). In kidney, amyloid was found in glomerulus (C) and renal tubules (D).
Amyloid was also found in adrenal cortex and medulla (E), islet of Langerhans and around the acinar cells of pancreas (F), salivary glands (G) and
myocardium (arrows in H). All sections were stained with Congo red; amyloid deposits appeared pink-red color with this staining. Bar = 100 mm.
doi:10.1371/journal.pgen.1000985.g006

Model of Zdhhc13 Mutation Causing Severe Phenotype
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palmitoylated signals in the mutant mice as compared to the wild

type mice (Figure 10C).

Discussion

Using ENU-mutagenesis, we have identified mice with severe

phenotypes manifested by failure to thrive, alopecia, osteoporosis,

systemic amyloidosis and early death. We found that a nonsense

mutation (R425X) in Zdhhc13 was the cause of these abnormal

phenotypes. To ensure that other mutations induced by ENU

would not confound the observed phenotypes, mice examined

after 6 generations of outcross breeding continued to show 100%

phenotype and genotype correlations [14]. Further, a gene trap

allele of Zdhhc13, which contains a vector inserted into the first

intron, exhibits the similar phenotypes (data not shown).

Zdhhc13, also named huntingtin-interacting protein-like

(HIP14L), shares 51% identity and 69% similarity with hunting-

tin-interacting protein-14 (HIP14) or Zdhhc17 between #45 and

#611 of the 622 residues [15]. Both Zdhhc13 and 17 belong to a

family of enzymes that are involved in attaching lipids to proteins,

Figure 7. Immunohistochemistry of amyloidosis in affected mice. Immunohistochemistry analysis of amyloids in liver (upper panel) and in
kidney (lower panel) of an affected mouse. Antibodies against AA amyloid (AA), k light chain (ALk), and l light chain (AL l) were used to differentiate
types of amyloid; note progressively increase of amyloid deposition with age. Bar = 50 mm.
doi:10.1371/journal.pgen.1000985.g007

Model of Zdhhc13 Mutation Causing Severe Phenotype
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the palmitoyl acyltransferases (PATs). Zdhhc13, in addition to being

a PAT, is also a mediator of Mg2+ transport. Inhibition of

palmitoylation by 2-bromopalmitate (2BP) diminished Mg2+

transport by about 50% [16]. The causal mutation (R425X) in

Zdhhc13 mice would predict the synthesis of a truncated protein

lacking the zinc-finger DHHC-CRD domain (#426-476) and the

active site (C456) for the formation of an S-palmitoyl cysteine

intermediate (Figure S1). Thus, it is unlikely that this truncated

protein can perform any palmitoylation function, consistent with

the similarity of phenotypes with the gene trap allele. Because our

mutant mice had normal serum magnesium and calcium levels

and demonstrated no clinical evidence of magnesium deficiency,

we propose that the observed phenotypes originated from the loss

of the enzymatic function of Zdhhc13 as a PAT. Indeed, we have

shown that mutation in the Zdhhc13 affects the protein

palmitoylation.

The exact mechanism by which the mutation of Zdhhc13

resulted in such diverse pathologies is not clear. Amyloidosis is a

devastating group of disorders in which normally soluble proteins

are misfolded and aggregate to form insoluble amyloid fibrils with

Figure 8. Mapping and molecular analyses of the gene responsible for the phenotypes. (A) Whole chromosomal mapping using 295 SNP
markers. High homozygosity region is circled comprised of consecutive SNPs between SNP rs30814649 (46468726 bp) to SNP rs32491610
(64723695 bp) on chromosome 7. (B) Fine mapping of the candidate region using 52 SNPs on chromosome 7. Complete homozygosity is located
between rs32116930 (53918742 bp) and rs32209625 (56317368 bp) (circled area). (C) DNA sequence analysis of mouse Zdhhc13 gene. Nucleotide
sequences in exon 12 showing that affected mouse was homozygous for T at position c.1273 (arrow); unaffected parent was heterozygous A/T and
wild-type was A/A at the same position.
doi:10.1371/journal.pgen.1000985.g008

Table 3. Real-time quantitative RT–PCR of Zdhhc13 mRNA in mouse tissues.

Tissue Liver Kidney

mRNA Control ±SD Affected ±SD Control ±SD Affected ±SD

Ct1 (Zdhh13) 24.7560.11 27.1560.18 23.260.24 25.1160.21

Ct1 (B-actin) 20.5560.39 20.8560.16 20.4360.34 19.6660.21

DCt2 4.3760.13 6.360.09 2.7760.11 5.4560.04

DDCt3 0 1.93 0 2.68

2(DDCt) 4 100% 26.23% 100% 15.59%

1 Ct, cycle threshold. Values represent triplicates of 3 wild type and 3 affected animals.
2 DCt = Ct (Zdhhc13)- Ct (B-actin).
3 DDCt =DCt (Affected) - DCt (Control).
4 2(DDCt) represents relative expression level of Zdhhc13 in affected mouse tissues as compared to control.
doi:10.1371/journal.pgen.1000985.t003
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a b-sheet structure and presumably trigger an unfolded protein

response (UPR) and its downstream pathways, including autoph-

agy and cell death by apoptosis [17-19]. There are two major types

of systemic amyloidosis. AA-amyloidosis, also called secondary or

reactive amyloidosis, is a consequence of prolonged high level

expression, mainly in the liver, of the acute-phase protein Serum

Amyloid A precursor protein (SAA). AA-amyloidosis is usually

associated with chronic inflammatory conditions but it can also be

caused by mutations in a constitutively expressed protein, resulting

in its greater tendency to aggregate [20,21]. The second type of

amyloidosis is called AL-amyloidosis. It is either a primary or a

multiple myeloma-associated amyloidosis; its fibrils are derived

from fragments of monoclonal immunoglobulin light chain (l and

k) condensed into b-pleated sheet structures as a result of

incomplete breakdown in the autophagolysosomes [22]. It is rare

to find both AA and AL types in the same patient, and such cases

only account for ,2–3% of all amyloidosis patients [23].

Our Zdhhc13 mutant mice manifested both AA and AL amyloids

(Figure 5, Figure 6, Figure 7). Liver, spleen, kidneys, skin, adrenal and

salivary glands are the most affected organs resulting in hepato-

splenomegaly, nephromegaly, sialadenosis (non-inflammatory swell-

ing of the salivary glands) and skin involvement. We cannot attribute

this observed amyloidosis to inflammation, as CRP levels were

normal (Table S2). Nor can we attribute it to multiple myeloma, as

blood and bone marrow contained no excess plasma cells (data not

shown). Furthermore, sequences of all amyloid-related genes in the

candidate regions were normal except for the single mutation

(R425X) in Zdhhc13. The coexistence of AL and AA systemic

amyloidosis could be attributed to the fact that the presence of AL

type amyloid fibrils acting as an amyloid-enhancing factor (AEF) and

enhance the AA amyloid deposition [23–26]. Alternatively, a

deficiency of Zdhhc13 may play a role in the amyloidogenesis.

Palmitoylation is known to affect protein stability by influencing a

protein’s access to an ubiquitinating enzyme [27]. Palmitoylation is

Figure 9. Expression of Zdhhc13. (A) Expression of Zdhhc13 in normal adult tissues. GAPDH was used as a loading control, (B) Expression of
Zdhhc13 in liver, skin, lung and brain at postnatal (P) days 2, 8, and 30. Again, GAPDH was used as a control, (C) A gene trap vector insertion in intron
1 of Zdhhc13. The open arrow containing a b-geo cassette indicates the location of the gene trap vector, (D) Xgal staining of the p10 gene trap
mutant and wild type. Note protein expression in the epithelium of the hair follicles. Sections were counterstained with nuclear fast red. The
magnification is 2006, (E) Histopathology of gene traps mice skin, showing the abnormal follicles, lack of hair and thickened epidermis which are
similar to ENU mutant mice.
doi:10.1371/journal.pgen.1000985.g009
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also known to protect huntingtin from aggregation [28], and prevent

oligomerization of certain proteins [29]. Moreover, defective

palmitoylation results in aggregation of amyloid b-sheet, which leads

to the formation of fibril [30].

Therefore, we propose that a deficiency of Zdhhc13 PAT activity

may have caused amyloidosis in our mice. The lack of Zdhhc13

PAT activity affected palmitoylation of a set of unspecified protein

targets and compromised their conformational stability and

subcellular localization, eventually causing systemic amyloidosis

of both the AA and AL types [26]. Coincidentally, a computer

algorithm predicted the presence of palmitoylation site(s) on both

SAA and the light chains of IgG [31]. Consistent with this notion

was our demonstration of reduced level of palmitoylation of IgG

light chain in the mutant mice.

Deficiency of protein palmitoylation in the Zdhhc13 mutant mice

could also explain the apparent osteoporosis because palmitoyla-

tion regulates osteoblast differentiation through bone morphogen-

esis protein (BMP)-induced Osterix expression [6]. Deletion of

Osterix leads to a loss of mature osteoblasts and a lack of calcified

bones (Osteoporosis), other signaling pathways such as NF-kB may

be also involved in the development of the severe osteoporosis

phenotype observed as early as weaning [32].

The Zdhhc13 mutant mice also showed significant skin

pathology with hypotrichosis, alopecia and loose skin with

wrinkling and folding. Histopathology revealed epidermal hyper-

plasia with a thin dermis, inactive hair follicles and amyloid

deposition. Expression analysis shows that expression of Zdhhc13 is

upregulated at the time of follicle maturation (P8), consistent with

Figure 10. Palmitoyl-acyl transferase (PAT) activity and IgG light chain palmitoylation in the wild-type and mutant mice. (A) Acyl-
biotin exchange assay showing palmitoylation of huntingtin (Htt) was greatly reduced by the mutant Zdhhc13 as compared to the wild type in the
hydroxylamine (NH2OH)-treated group. Low panel was a loading control for huntingtin. Wt: wild Zdhhc13, Mut: mutant Zdhhc13, C: Control: cells
transfected with huntingtin alone without co-transfection with Zdhhc13. WB: western blot, (B) HEK 293T cells co-transfected with huntingtin and
Zdhhc13 showing expression of these proteins was approximately even, (C) Levels of IgG light chain palmitoylation in the wild-type and mutant mice.
IgG light chain purified from serum of the wild and mutant mice were labeled with S-palmitoylation using acyl-biotin exchange method. IgG light
chain treated with hydroxylamine showed reduced palmitoylated signals in mutant mice as compared to the wild type (p = 0.001, n = 3, t test). Low
panel was a loading control.
doi:10.1371/journal.pgen.1000985.g010
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a direct role of Zdhhc13 in hair formation. Although the exact

molecular mechanisms are not clear, these phenotypes are

consistent with defects in the NF-kB signaling pathways [33].

Another possible mechanism responsible for the skin pathology is

the BMP-induced MAPK pathway as protein palmitoylation plays

an important role in BMP-induced MAPK pathway activation [6].

BMP is involved not only in osteoblast differentiation but also in

epidermal proliferation and differentiation, hair follicle cycling and

innervations [34]. Since Zdhhc13 normally upregulates both NF-

kB and MAPK signaling pathways [35] the Zdhhc13 mutation may

significantly affect these pathways, leading to the disease

phenotypes.

In summary, we report that deficiency of a single palmitoyl

acyltransferase (Zdhhc13) can cause severe systemic phenotypes,

including failure to thrive, cachexia, osteoporosis, alopecia, multi-

organs/systems dysfunction secondary to systemic amyloidosis and

early death. Our results established a direct link between protein

palmitoylation and regulation of important diverse physiological

functions and indicated that its absence can result in profound

disease pathology. This mouse model will be useful for further

investigation of the mechanisms by which improper palmitoylation

leads to disease processes. The identification of target proteins of

ZDHHC13 would be an important first step for understanding the

molecular mechanisms underlying human alopecia, osteoporosis

and many neurodegenerative diseases caused by protein misfold-

ing and amyloidosis.

Materials and Methods

Mouse Lines
The first recessive mutant allele was generated by a

conventional ENU mutagenesis regimen. [36]. Briefly, multiple

doses of N-ethyl-N-nitrosourea (ENU) (100 mg per kg body

weight) were injected to mutagenize spermatogonia of C57BL/6J

males (G0 generation). Recessive mutations were isolated in the

third generation of breeding to females that carried either the

balancer chromosome 129S6.Inv(11)8Brd or 129.Rex mutations,

both of which had been made congenic on a 129S6/SvEvTac

genetic background (N = 10). The mutant mice reported here

were identified by their small size and hypotrichosis as early as

postnatal day 7 and were designated as skin and coat mutation 4

(skcm04Jus). The mutant line was inherited as a recessive trait that

segregated independently of the chromosome 11 balancer and the

phenotype was completely penetrant in the 129S6/SvEv genetic

background, and, later on, in the C3H background. The

experimental protocols in this study were reviewed and approved

by the Institutional Animal Care and Utilization Committee of

Academia Sinica.

The gene trap allele was produced from embryonic stem (ES)

cells AC0492 obtained from the Sanger Institute Gene Trap

Resource (SIGTR). ES cells were injected into C57BL/6J

blastocysts by the Darwin Genetics Core at Baylor College of

Medicine. Chimeras were obtained, mated to C57BL/6J mice,

and the allele was transmitted through the germline to generate

Zdhhc13SIGTR mice. Subsequent experiments were performed on

mice from this mixed 129/B6 genetic background. After initial

genotyping of ES cells for the gene trap allele per protocols

available from the resource, the phenotype was used to follow

transmission of the allele. Zdhhc13 is located at 56 Mb on

Chromosome 7, which is only 7 Mb from Oculocutaneous

albinism 2 (Oca2; pink-eyed dilution), which is located at 63 Mb.

Therefore, mice carrying the gene trap allele were also pink-eyed

and had dilute coat colors because of the Oca2 mutation carried in

the 129/Ola ES cells used to generate the gene trap.

Blood Chemistry
Blood samples were obtained through an incision of the tail

artery or by cardiac puncture at the time of sacrifice and collected

in a heparinized tube (MICROTAINER, BD Diagnostics,

Franklin Lakes, NJ). Complete hemogram was carried out using

Abbott Cell-DYN 3700 Veterinary Haematology Analyzer

(Abbott Laboratory, Illinois, USA). Thin blood smears were

taken directly from the tail artery, fixed with absolute methanol

for 5 minutes and stained by modified Wright’s Giemsa stain for

Plasma cells (Plasma B cells) identification. Plasma was analyzed

using the FUJI DRI-CHEM SYSTEM 3500s (Fuji Photo Film

Co. Ltd.) for measurement of aspartate aminotransferase (AST;

U/l), alanine aminotransferase (ALT; U/l), creatinine phospho-

kinase (CPK; U/l), total cholesterol (TCHO; mg/dl), total

protein (TP; g/dl), albumin (ALB; g/dl), globulin (GLO; g/dl),

total bilirubin (TBIL; mg/d), blood urea nitrogen (BUN; mg/dl),

C-reactive protein (CRP; mg/dl), calcium (Ca; g/dl) and

magnesium (Mg; g/dl).

Micro-Computed Tomography (Micro–CT) Analysis of
Bone

For trabecular bone analysis and 3D images, a micro-CT

scanner (Skyscan-1076, Skyscan, Belgium) was operated at 50 kV,

200 uA, 0.4u of rotation step, 0.5 mm Al filter and 9 um/pixel of

scan resolution. For bone mineral density (BMD) analysis, it was

operated at 50KV, 200 uA, 1u of rotation step, 0.5 mm Al filter

and 35 um/pixel of scan resolution. Cross-sections were recon-

structed using a cone-beam algorithm (software Cone_rec;

Skyscan, Belgium). Files were then imported into CTAn software

(Skyscan) for three-dimensional analysis and three-dimensional

image generation. BMD for each femur was measured by CTAn,

which was calibrated using of phantoms with known BMD

(0.25,0.75 g/cm3).

Histopathology
Mice were sacrificed with overdoses of sodium pentobarbital for

the histop-athological examinations. After flushing with normal

saline, mice were perfused through the heart with 4% parafor-

maldehyde in 0.1M PBS, pH7.4, the perfusion flow rate, (4 ml/

min) was controlled by an infusion pump (Bio-Rad, Econo Pump).

A total of 37 organs and tissues, including heart, lung, liver,

kidney, spleen, pancreas, adrenal gland, salivary gland, brain, skin,

adipose tissues, skeletal muscles and bone, were removed,

embedded in paraffin, cut into 5 mm sections and stained with

hematoxylin-eosin (H&E) for general pathological examinations.

Other serial sections were also processed for Congo Red staining

to detect amyloid; and immunohistochemistry staining for amyloid

classification. Bone marrow was aspirated from both femora for

bone marrow smears immediately after sacrificing by cervical

vertebral dislocation. Smears were fixed with absolute ethanol for

5 minutes and stained by modified Wright’s Giemsa stain for

Plasma cells identification.

Immunohistochemistry
Immunostaining used the following antibodies: rabbit anti-

human l light chains polyclonal antibody, rabbit anti-human k
light chains polyclonal antibody, mouse anti-human amyloid A

monoclonal antibody (DakoCytomation). Tissue sections were

pretreated with concentrated formic acid for 1 min, washed in tris-

buffered saline (TBS) for 10 min, then incubated in Rodent Block

M (BioCare) or tris-buffered saline Tween (TBST) containing 2%

bovine serum albumin and 3% normal goat serum at 37uC for

30 min. Then, tissue sections were incubated with primary
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antibody, washed in TBST, incubated in 3% H2O2 for 15 min at

room temperature and then washed again in TBST followed by

incubation with horseradish peroxidase-conjugated secondary

antibody (anti-rabbit IgG and goat anti-mouse IgG (Jackson

ImmunoResearch. West Grove, USA). Color was developed with

0.1% 3,39-diaminobenzidine.

Mapping of Gene Responsible for Abnormal Phenotypes
For the purpose of rough mapping, the affected skcm04Jus mice,

which were in a mixed 129S6/SvEv and C57BL/6 mixed genetic

background at the N = 4 generation on 129S6/SvEvTac

(obtained from Baylor College of Medicine) were outcrossed to

the C3He/HeJ strain in Academia Sinica to generate N1

offspring, and N1 mice were then intercrossed with generate

N1F1 offspring. DNA was collected from 32 affected N1F1 mice.

A panel of 295 single nucleotide polymorphism (SNP) markers

located on all 19 mouse autosomes and the X-chromosome for

mouse strains C3H/HeJ, C57BL/6, DBA/2J or BALB/cByJ was

selected from a SNP dataset containing 10,915 SNPs from 48

mouse strains (provided by Tim Wiltshire, Genomics Institute of

the Novartis Research Foundation, San Diego, California). SNPs

were chosen based on the criterion that the genotype of these

strains at the 295 loci was different from that of C57BL/6J. Since

point mutations were introduced into C57BL/6J genome by

ENU, the recessive mutant phenotype will always associated with

a homozygous B6 SNP genotype at the mutant locus. SNP

genotyping using genomic DNA isolated from mouse tails

(Puregene DNA purification kit, Gentra Systems, Minneapolis,

MN, USA) was performed using high-throughput MALDI-TOF

mass spectrometry [37,38]. Primers and probes flanking the SNPs

were designed in multiplex format using SpectroDESIGNER

software (Sequenom, San Diego, CA, USA). PCRs were

performed in a volume of 5 ml containing 0.15 U of Taq

polymerase (HotStarTaq, Qiagen, Valencia, CA, and USA),

5.0 ng of genomic DNA, 1.0 pmol of each PCR primer and

2.5 nmol of dNTP. Thermocycling conditions were one cycle at

94uC for 15 min, 45 cycles of 94uC for 20 s, 56uC for 30 s, 72uC
for 30 s and one final cycle of extension at 72uC for 3 min.

Unincorporated dNTPs were dephosphorylated using 0.3 U of

Shrimp Alkaline Phosphatase (Hoffman-LaRoche, Basel, Swit-

zerland) followed by primer extension using 9 pmol of each

primer extension probe, 4.5 nmole of the appropriate dNTP/

ddNTP combination, and 1.28 U of Thermosequenase (Amer-

sham Pharmacia, Piscataway, NJ, USA). Reactions were cycled at

94uC for 2 min, followed by 55 cycles of 94uC for 5 s, 52uC for

5 s and 72uC for 5 s. Following the addition of a cation exchange

resin (SpectroCLEAN, Sequenom) to remove residual salt from

the reactions, 15 nl of the purified primer extension reaction was

spotted onto a 384-element silicon chip preloaded with 3-

hydroxypicoloinic acid matrix (SpectroCHIP, Sequenom), using

the SpectroPOINT (Sequenom). SpectroCHIPs were analyzed

using a Bruker Biflex III MALDI-TOF SpectroREADER mass

spectrometer (Sequenom) and spectra processed with Spectro-

TYPER (Sequenom).

For fine mapping, 52 SNPs covering the candidate region from

46468726 bp (SNP rs30814649) to 64723695 bp (SNP rs32491610)

on chromosome 7 (Mouse Genomic Informatics (MGI) http://

www.informatics.jax.org/javawi2/servlet/WIFetch?page=snpQF were

selected. Strain C57BL/6 was used as a selected strain and C3He/HeJ

and 129/SvEv as reference strains. DNA samples from 84 affected N1F1

mice and 10 parental heterozygous mice in a 96 well plate (MicroAmp

Optical 96-Well Reaction Plate, Applied Biosystems) were used for SNP

genotyping using high-throughput MALDI-TOF mass spectrometry.

Identification of the Mutant Gene
All exons, exon-intron junctions and 2.5 kb promoter regions of

candidate genes, Saa11, Saa3, Saa4, Saa1, Saa2 and Zdhhc13, were

amplified and sequenced. Primers were designed using

the Primer3 program http://biotools.umassmed.edu/bioapps/

primer3_www.cgi. The primers used for the detection of an exon

12 mutation in the Zdhhc13 gene were F, 59-CTGGGTTGA-

GAGTATTCCACA-39 and R, 59-GAGATTAGCCACA-

GAGCTTCG-39. PCR reactions were performed in a final

volume of 25 ml, containing 50 pmol of each primer (0.5 ul),

106 Taq Buffer (10 mM Tris–HCl (pH 8.3), 50 mM KCl) with

1.5 mM MgCl2 (2.5 ul), 2.5 mM dNTPs (2.5 ul) and Taq DNA

polymerase (5 U/ul) MDBio, Inc. (0.25 ul). Amplification condi-

tions were an initial denaturation of 4 min. at 94uC, followed by

20 cycles of touchdown PCR in 30 s at 94uC, 30 s at 65uC
(decrease 0.5uC per cycle), 40 s at 72uC; and a final 20 cycles in

30 s at 94uC, 30 s at 55uC, followed by 40 s at 72uC and then a

final extension at 72uC for 5 min. All amplified PCR fragments

were digested with shrimp alkaline phosphatase and ExoI to

remove unincorporated primers and sequenced using the BigDye

Terminator Cycle Sequencing Kit v1.1/3.1 (Applied Biosystems,

Foster City, CA, USA) following the manufacturer’s instructions.

Sequencing products were separated on either ABI PRISM 3100

Genetic Analyzer or ABI PRISM 3700 DNA Analyzer (Applied

Biosystems). Raw sequencing data were analyzed with the DNA

Sequencing Analysis Software v3.7 (Applied Biosystems).

Expression Analysis
To examine the differences in the tissue expression of Zdhhc13,

total RNA samples were extracted from liver and kidney of three

6-month old mutants as well as three aged-matched wild type

C3He/HeJ mice using Trizol following the manufacturer’s

protocol. First-strand cDNA was synthesized using 1 ml oligo-dT

15 primer and 1 ml SuperScript III RT (200 U/1 ml) in 20 ml

volume of 2 mg of total RNA, 1 ml of 10 mM dNTPs, 1 ml of

reaction buffer (10 mM Tris-HCl pH 8.3, 2.5 mM KCl, 0.6 mM

MgCl2), ml of RNase inhibitor40 U/ml, and 1 ml of 0.1 M DTT.

Real-time quantitative RT-PCR analysis used the ABI PRISM

7700 Sequence Detection System (Applied Biosystems). RT-PCR

amplification of Zdhhc13 was carried out using the following

primer set: 59- GACTGGACGCTGCATAGGTT, forward

strand in Zdhhc13 exon13, and 59- TGGCACAATGATTTGAC-

CAG, reverse strand in Zdhhc13 exon 15. The primers were

designed using Primer Express (Applied Biosystems).

The cDNA corresponding to 75 ng of reversed transcribed total

RNA was amplified in a final volume of 20ml using Power SYBER

green PCR Master mix in 20ml total reaction volume in duplicate

assays for Zdhhc13 and endogenous B-actin as an internal control.

An analysis of the results was based on the Ct calculation, where

Ct represents the cycle number at which fluorescence of the PCR

samples crossed a given threshold. The expression level of b-actin

was taken as the first ‘‘calibrator’’ to normalize the total Zdhhc13

mRNA in each tissue (DCt). Expression of, Zdhhc13 in each of the

control mouse tissue was then taken as the second ‘‘calibrator’’ to

normalize the expression of Zdhhc13 in the affected tissue

accordingly (DDCt). Final results were given as the relative

amounts of Zdhhc13 mRNA in the affected mouse tissues as

compared to the control (2DDCt).

Northern analysis was carried out as previously described by

Lorenzetti et al. [39], using 10 ug of total RNA isolated using RNA

STAT-60 reagent (TEL-TEST, Inc., Friendswood, TX) according

to the manufacturer’s protocol, and transferred to a nylon

membrane. The blot was hybridized using Ultrahyb (Ambion)

with a probe for Zdhhc13 is the N-terminal 571 base pairs, which
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was PCR amplified with two primers (F-59-ATGGAG-

GGCCCGGGCCT-39, R-59-TAAGCCGATAGCATGAGCG-

39). The probe for GAPDH is the N-terminal 509 base pairs,

which was PCR amplified with two primers (F-59-

GGTCGGTGTGAACGGATTTGG-39, R-59-CATGAGCC-

CTTCCACAATGCC-39). [39] B-galactosidase staining was

carried out using X-gal staining, the skins of p1, p6 and p10 mice

were embedded in Tissue Tek and frozen after fixation with 4%

paraformaldehyde and sucrose protection. The 10 mm vertical

cryosections were fixed again in 2% paraformaldehyde followed

by serial washing (three times washing with 2 mM MgCl2
containing PBS, 0.02% NP40 and 0.01% deoxycholate). The

sections were pre-incubated with the staining buffer (PBS

supplemented with 5 mM K3Fe(CN)6, 5 mM K3Fe(CN)6, 2 mM

MgCl2) for 2 min, and further incubated with the staining buffer

supplemented with 1 mg/ml Xgal for 3 hrs. After washing with

PBS, the sections were counterstained with Nuclear Fast Red

(Vector) and then mounted.

Evaluation of Enzyme Activity of Zdhhc13
We used huntingtin, a known substrate for Zdhhc13, and acyl-

biotin exchange assay [11] to measure the palmitoyl acyl

transferase activity. Plasmid construction: The cDNA of wild type

and mutant Zdhhc13 were subcloned into C-terminal p3xFLAG-

CMV vector (Sigma). Huntingtin (1–548 aa) cDNA was

subscloned into pcDNA4/myc-His (Invitrogen). Cell culture:

HEK293T cell were used for transiently transfected with

Lipofectamine 2000 (Invitrogen). At 24–48 hours posttransfection,

cells were harvested with PBS and proteins were extracted with

lysis buffer (LB, 150 mM NaCl, 50 mM Tris-HCl, 5 mM EDTA,

1 mM PMSF, 1X protease inhibitor (Roche), 0.2% Triton X-100,

pH 7.4) containing 50 mM N-ethylmaleimide (NEM) (Sigma).

Immunoprecipitation (IP) and immunobloting (IB) of huntingtin

protein and acyl-biotin exchange assay to label S-palmitoylated

protein were performed using Myc antibody (Invitrogen), 1:250 for

IP; 1:5000 for IB; and FLAG, mouse, antibody (Sigma) 1:2000 for

IB; as described previously [11].

IgG Light Chains Purification and the Evaluation of S-
Palmitoylation

Serum from 5 month old mice was used to purify the IgG light

chain. Serum was incubated with Protein A/G agarose beads

(Santa Cruze Biotechnology) for 1 hour at room temperature.

After washing the beads with PBS for 3 times, IgG light chain were

eluted with 0.2 M Glycine (pH 2.5) and neutralized with 1M Tris-

HCl (pH 8.5). The eluted fractions were precipitated using the

chloroform/methanol (C/M) precipitation method. Protein pellets

were redissolved with 4% SDS buffer (50 mM Tris-HCl, 4% SDS,

5 mM EDTA, pH 7.4) containing 50 mM N-ethylmaleimide

(NEM) (Sigma) for 10 minutes at 37uC. Following dilution with

3 vol of lysis buffer, the fraction was rotated end-over-end

overnight at 4uC. Excess NEM was removed with 3 sequential

C/M precipitations. Protein pellets were redissolved with 4% SDS

buffer and divided to 2 portions. First portion was added to 3 vol of

lysis buffer containing 1 M hydroxylamine, pH 7.2 and incubate

for 1 hour at room temperature to remove palmitate group from

the protein. Control portion was in lysis buffer without

hydroxylamine. After incubation, 3 sequential C/M precipitations

were performed on samples to remove hydroxylamine. Protein

pellets were redissolved with 4% SDS buffer and were added with

3 vol of lysis buffer containing 0.5 mM biotin-BMCC (Pierce),

pH 6.2 and incubate for 1 hour at 4uC to label the protein,

followed by SDS-PAGE and Western blotting. Streptavidin

protein- HRP (abcam) was used against biotinylated protein.

Rabbit anti-human k light chain polyclonal antibody (DakoCyto-

mation) was used against IgG light chain.

Supporting Information

Figure S1 Predicted secondary structure of Zdhhc13 (Huntingtin-

interacting protein 14-related protein, HIP14-related protein a

palmitoyltransferase ZDHHC13). ZDHHC is 660 AA with molec-

ular weight of 70890 Da, it has 6 transmembrane domains and 6

ANK repeats (ANK 1–6), Zn_Fing (DHHC-TYPE) length is 51aa

(from 426–476aa) and the Bompbias (Phe-rich) is 64aa (from 328–

391aa). The active site (S-palmitoyl cysteine intermediate) is located

at residue 456. Note that nonsense mutation arg-425-stop codon is

located before both Zn_Fing and the active site of the protein.

Found at: doi:10.1371/journal.pgen.1000985.s001 (0.10 MB TIF)

Table S1 Peripheral blood complete blood counts in affected

and wild-type mice.

Found at: doi:10.1371/journal.pgen.1000985.s002 (0.05 MB

RTF)

Table S2 Blood chemistry in affected and wild-type mice.

Found at: doi:10.1371/journal.pgen.1000985.s003 (0.05 MB

RTF)

Acknowledgments

We thank the staff of the National Clinical Core and the Taiwan Mouse

Clinic Core for their excellent technical assistance.

Author Contributions

Conceived and designed the experiments: ANS YTC. Performed the

experiments: ANS YHC HJB YWH HWH KML LFS IwS MJJ. Analyzed

the data: ANS HJK KML CPDT JYW TK JJYY. Contributed reagents/

materials/analysis tools: JYW MJJ JJYY YTC. Wrote the paper: ANS

YTC. Interpreted Histopathological and IHC findings: YHC.

References

1. Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and

traffic. Nat Rev Mol Cell Biol 8: 74–84.

2. Iwanaga T, Tsutsumi R, Noritake J, Fukata Y, Fukata M (2009) Dynamic
protein palmitoylation in cellular signaling. Prog Lipid Res 48: 117–127.

3. Charollais J, Van Der Goot FG (2009) Palmitoylation of membrane proteins
(Review). Mol Membr Biol 26: 55–66.

4. Nadolski MJ, Linder ME (2007) Protein lipidation. Febs J 274: 5202–5210.

5. Resh MD (1999) Fatty acylation of proteins: new insights into membrane
targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta

1451: 1–16.

6. Leong WF, Zhou T, Lim GL, Li B (2009) Protein palmitoylation regulates
osteoblast differentiation through BMP-induced osterix expression. PLoS ONE

4: e4135. doi:10.1371/journal.pone.0004135.

7. Lobo S, Greentree WK, Linder ME, Deschenes RJ (2002) Identification of a Ras

palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem 277:

41268–41273.

8. Tsutsumi R, Fukata Y, Fukata M (2008) Discovery of protein-palmitoylating

enzymes. Pflugers Arch 456: 1199–1206.

9. Roth AF, Feng Y, Chen L, Davis NG (2002) The yeast DHHC cysteine-rich
domain protein Akr1p is a palmitoyl transferase. J Cell Biol 159: 23–28.

10. Linder ME, Deschenes RJ (2004) Model organisms lead the way to protein
palmitoyltransferases. J Cell Sci 117: 521–526.

11. Huang K, Sanders S, Singaraja R, Orban P, Cijsouw T, et al. (2009) Neuronal

palmitoyl acyl transferases exhibit distinct substrate specificity. Faseb J 19: 19.

12. Oyama T, Miyoshi Y, Koyama K, Nakagawa H, Yamori T, et al. (2000) Isolation of

a novel gene on 8p21.3-22 whose expression is reduced significantly in human

colorectal cancers with liver metastasis. Genes Chromosomes Cancer 29: 9–15.

13. Mukai J, Liu H, Burt RA, Swor DE, Lai WS, et al. (2004) Evidence that the gene

encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 36:
725–731.

14. Noveroske JK, Weber JS, Justice MJ (2000) The mutagenic action of N-ethyl-N-

nitrosourea in the mouse. Mamm Genome 11: 478–483.

Model of Zdhhc13 Mutation Causing Severe Phenotype

PLoS Genetics | www.plosgenetics.org 14 June 2010 | Volume 6 | Issue 6 | e1000985



15. Singaraja RR, Hadano S, Metzler M, Givan S, Wellington CL, et al. (2002)

HIP14, a novel ankyrin domain-containing protein, links huntingtin to

intracellular trafficking and endocytosis. Hum Mol Genet 11: 2815–2828.

16. Goytain A, Hines RM, Quamme GA (2008) Huntingtin-interacting proteins,

HIP14 and HIP14L, mediate dual functions, palmitoyl acyltransferase and

Mg2+ transport. J Biol Chem 283: 33365–33374.

17. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum

unfolded protein response. Nat Rev Mol Cell Biol 8: 519–529.

18. Hazenberg BP, van G, II, Bijzet J, Jager PL, van Rijswijk MH (2004) Diagnostic

and therapeutic approach of systemic amyloidosis. Neth J Med 62: 121–128.

19. Chien P, Weissman JS, DePace AH (2004) Emerging principles of conformation-

based prion inheritance. Annu Rev Biochem 73: 617–656.

20. Westermark P, Benson MD, Buxbaum JN, Cohen AS, Frangione B, et al. (2007)

A primer of amyloid nomenclature. Amyloid 14: 179–183.

21. Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426: 900–904.

22. Merlini G, Bellotti V (2003) Molecular mechanisms of amyloidosis. N Engl J Med

349: 583–596.

23. Rekhtman N, Hash KS, Moresi JM (2006) Mucocutaneous bullous amyloidosis

with an unusual mixed protein composition of amyloid deposits. Br J Dermatol

154: 751–754.

24. van der Hilst JC, van der Meer JW, Drenth JP, Simon A (2007) AL amyloidosis

enhances development of amyloid A amyloidosis. Br J Dermatol 156: 748–749.

25. Fu X, Korenaga T, Fu L, Xing Y, Guo Z, et al. (2004) Induction of AApoAII

amyloidosis by various heterogeneous amyloid fibrils. FEBS Lett 563: 179–184.

26. Solomon A, Macy SD, Wooliver C, Weiss DT, Westermark P (2009) Splenic

plasma cells can serve as a source of amyloidogenic light chains. Blood 113:

1501–1503.

27. Valdez-Taubas J, Pelham H (2005) Swf1-dependent palmitoylation of the

SNARE Tlg1 prevents its ubiquitination and degradation. Embo J 24:

2524–2532.

28. Yanai A, Huang K, Kang R, Singaraja RR, Arstikaitis P, et al. (2006)

Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function.
Nat Neurosci 9: 824–831.

29. Gustafsson M, Thyberg J, Naslund J, Eliasson E, Johansson J (1999) Amyloid

fibril formation by pulmonary surfactant protein C. FEBS Lett 464: 138–142.
30. Johansson J (2001) Membrane properties and amyloid fibril formation of lung

surfactant protein C. Biochem Soc Trans 29: 601–606.
31. Ren J, Wen L, Gao X, Jin C, Xue Y, et al. (2008) CSS-Palm 2.0: an updated

software for palmitoylation sites prediction. Protein Eng Des Sel 21: 639–644.

32. Chang J, Wang Z, Tang E, Fan Z, McCauley L, et al. (2009) Inhibition of
osteoblastic bone formation by nuclear factor-[kappa]B. Nat Med 15: 682–689.

33. Bell S, Degitz K, Quirling M, Jilg N, Page S, et al. (2003) Involvement of NF-
kappaB signalling in skin physiology and disease. Cell Signal 15: 1–7.

34. Cazeneuve C, Ajrapetyan H, Papin S, Roudot-Thoraval F, Genevieve D, et al.
(2000) Identification of MEFV-independent modifying genetic factors for

familial Mediterranean fever. Am J Hum Genet 67: 1136–1143.

35. Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, et al. (2003)
Large-scale identification and characterization of human genes that activate NF-

kappaB and MAPK signaling pathways. Oncogene 22: 3307–3318.
36. Kile BT, Hentges KE, Clark AT, Nakamura H, Salinger AP, et al. (2003)

Functional genetic analysis of mouse chromosome 11. Nature 425: 81–86.

37. Kao HJ, Cheng CF, Chen YH, Hung SI, Huang CC, et al. (2006) ENU
mutagenesis identifies mice with cardiac fibrosis and hepatic steatosis caused by

a mutation in the mitochondrial trifunctional protein beta-subunit. Hum Mol
Genet 15: 3569–3577.

38. Wu JY, Kao HJ, Li SC, Stevens R, Hillman S, et al. (2004) ENU mutagenesis
identifies mice with mitochondrial branched-chain aminotransferase deficiency

resembling human maple syrup urine disease. J Clin Invest 113: 434–440.

39. Lorenzetti D, Bishop CE, Justice MJ (2004) Deletion of the Parkin coregulated
gene causes male sterility in the quaking(viable) mouse mutant. Proc Natl Acad

Sci U S A 101: 8402–8407.

Model of Zdhhc13 Mutation Causing Severe Phenotype

PLoS Genetics | www.plosgenetics.org 15 June 2010 | Volume 6 | Issue 6 | e1000985


