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Diffusion MRI (dMRI) is widely used to investigate neuronal and structural development
of brain. dMRI data is often contaminated with various types of artifacts. Hence, artifact
type identification in dMRI volumes is an essential pre-processing step prior to carrying
out any further analysis. Manual artifact identification amongst a large pool of dMRI
data is a highly labor-intensive task. Previous attempts at automating this process are
often limited to a binary classification (“poor” vs. “good” quality) of the dMRI volumes
or focus on detecting a single type of artifact (e.g., motion, Eddy currents, etc.). In
this work, we propose a deep learning-based automated multiclass artifact classifier
for dMRI volumes. Our proposed framework operates in 2 steps. In the first step,
the model predicts labels associated with 3D mutually exclusive collectively exhaustive
(MECE) sub-volumes or “slabs” extracted from whole dMRI volumes. In the second
step, through a voting process, the model outputs the artifact class present in the
whole volume under investigation. We used two different datasets for training and
evaluating our model. Specifically, we utilized 2,494 poor-quality dMRI volumes from
the Adolescent Brain Cognitive Development (ABCD) and 4,226 from the Healthy Brain
Network (HBN) dataset. Our results demonstrate accurate multiclass volume-level main
artifact type prediction with 96.61 and 97.52% average accuracies on the ABCD
and HBN test sets, respectively. Finally, in order to demonstrate the effectiveness of
the proposed framework in dMRI pre-processing pipelines, we conducted a proof-
of-concept dMRI analysis exploring the relationship between whole-brain fractional
anisotropy (FA) and participant age, to test whether the use of our model improves
the brain-age association.
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INTRODUCTION

Diffusion weighted imaging (DWI; Stejskal and Tanner, 1965;
Le Bihan et al., 1986; Huisman, 2003; Baliyan et al., 2016),
as well as diffusion tensor imaging (DTI; Basser and Jones,
2002; Alexander et al., 2007), are widely used these days in
brain research and clinical neuroimaging (Huisman, 2010). Using
dMRI one is able to gain insight into white matter’s development
based on the different diffusion rates of water across different
brain tissues (Hüppi and Dubois, 2006; Ladouceur et al., 2012;
Simmonds et al., 2014). Moreover, dMRI provides means for
investigation of other abnormal white matter developments such
as Schizophrenia (Roalf et al., 2015; Tønnesen et al., 2018)
and Alzheimer’s disease (Hoy et al., 2017; Lo Buono et al.,
2020). dMRI data can also be used for different brain biomarker
measurements in large population studies such as the Human
Connectome Project (Van Essen et al., 2012). However, dMRI
data is often contaminated by various sources of artifacts such
as motion, Eddy currents, low signal to noise ratio (SNR),
gradient distortions, chemical shift, susceptibility, Gibbs ringing,
etc., (Le Bihan et al., 2006; Krupa and Bekiesińska-Figatowska,
2015). Existence of such artifacts in dMRI volumes without any
exclusion or correction could bias the results of any subsequent
analysis and make their interpretation unreliable (Bammer et al.,
2003; Van Dijk et al., 2012; Reuter et al., 2015). Hence quality
control and artifact identification in dMRI data is an essential
pre-processing step before conducting any analysis.

Current approaches for quality control and artifact
identification in dMRI data are mostly performed manually
by visual inspection of all volumes (sometimes even all slices)
by an expert(s). This process is extremely labor-intensive and
suffers from being subjective in nature. Hence there is a need for
automated ways of artifact identification that are fast and reliable.

Computerized approaches for quality control and artifact
identification of dMRI data are able to alleviate the challenge
of manual inspection. Throughout the years, several tools for
automated quality control of dMRI data have been proposed such
as FSL (Jenkinson et al., 2012; Andersson et al., 2016; Bastiani
et al., 2019), DTIPrep (Oguz et al., 2014), DTI studio (Jiang et al.,
2006), and TORTOISE (Pierpaoli et al., 2010). More recently,
various statistical (Roalf et al., 2016) or Artificial Intelligence (AI)
approaches for quality control and artifact detection of dMRI
data have been introduced (Iglesias et al., 2017; Kelly et al., 2017;
Alfaro-Almagro et al., 2018; Fantini et al., 2018; Graham et al.,
2018; Samani et al., 2020; Ahmad et al., 2021; Ettehadi et al.,
2021). However, most of these approaches either only operate on
a binary-level (i.e., distinction of “poor-quality” data from “good-
quality” without identifying the specific artifact type) (Samani
et al., 2020; Ahmad et al., 2021; Ettehadi et al., 2021), or have
been designed to only detect a single specific type of artifact (e.g.,
motion) (Iglesias et al., 2017; Kelly et al., 2017; Fantini et al.,
2018). A detailed report on the performance of such tools can be
found in Liu et al. (2015), Haddad et al. (2019).

In this work, we propose a deep learning-based framework for
automatic multiclass artifact classification in poor-quality dMRI
volumes. Unlike previous work, our framework is not customized
for a single specific artifact type and takes into account a wider

range of artifacts to classify. In particular, our method classifies
four classes of artifacts namely: motion, out of field of view
(FOV), low signal to noise ratio (SNR), and MRI miscellaneous
artifacts. The MRI miscellaneous artifacts category serves as a
control group for the classifier which includes other MRI (as well
as dMRI) artifacts that do not necessarily belong to any of the
other three classes.

The proposed method operates in two steps. First, the dMRI
volumes are partitioned into MECE slabs and fed to a designed
convolutional neural network (CNN). The designed CNN then
outputs the artifact class labels of the slabs. Second, through
a voting process, the slab-level predicted labels are utilized to
decide on the final label for the whole dMRI volume (i.e., volume-
level artifact label). We tested our method on two separate
datasets. Our results demonstrate that the proposed framework
can be utilized for fast automatic classification of the four
categories of artifacts considered here. Moreover, the extended
validation analysis calibrating FA-age correlation demonstrates
an improvement using the models’ predicted artifact labels.
These results together suggest that the model can be utilized
in dMRI pre-processing pipelines to improve the results of
subsequent analyses.

MATERIALS AND METHODS

As mentioned in the introduction section, the proposed
framework employs a 2-step approach to classify poor-quality
dMRI volumes into four categories of artifacts. In the first step,
the prominent artifact class labels of individual MECE 3D slabs
(extracted from dMRI whole volumes) are predicted through
design and training of a residual squeeze and excitation (SE)
CNN. In the second step, the most consistent label amongst
the predicted slabs’ labels is chosen via a voting system as the
prominent artifact type present in the whole dMRI volume.
Figure 1 shows an overview of the multiclass major artifact
detection framework. As a proof of concept, we utilize the labels
generated by the framework to run an FA-age correlation analysis
in order to test the model’s efficacy. In this section, details of our
2-step approach, the conducted FA-age analysis, and the datasets
used in this work are discussed.

Slab-Level Artifact Classification Using
Residual SE-CNN
Due to memory limitations of the currently available typical
GPUs, it is often not feasible to feed a whole 3D dMRI volume
into a CNN. Hence, images need to be partitioned prior to
feeding them to a GPU. Therefore, to address this issue while
capturing artifact patterns over the entire 3D image without
missing any region, we partition the dMRI volumes into a
number of MECE slabs spanning the entire volume at hand.
In addition to addressing GPU memory limitations, the MECE
slab-based classifier approach has two benefits: (a) it allows the
proposed residual SE-CNN model to capture local information,
and to achieve global consistency, by sweeping the entire volume
through 3D MECE regions, and (b) it allows utilization of a
voting approach to predict the artifact type of a whole dMRI
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volume, thereby making the final prediction more robust to
slab-level misclassifications.

In order to classify the main artifact type in each slab
associated with a dMRI volume, we use a custom-designed
residual SE-CNN architecture. Our custom residual SE-CNN
architecture consists of several cascaded modified versions of
original residual blocks (He et al., 2016) equipped with squeeze
and excitation components (Hu et al., 2018). The SE block is
shown in Figure 2 (left), and the modified residual block with SE
is depicted in Figure 2 (right). The SE block is a self-attention unit
that aims at modeling the interdependencies between different
channels within the layers (Hu et al., 2018). Essentially, SE blocks
learn how to filter information across channels, in order to focus
on the most relevant features for the classification task. This

is achieved through learning the relative importance weights of
different channels. The process of learning the channel weights
is done via a global average pooling along the image spatial
dimensions (i.e., x, y, and z) followed by two fully connected
layers with non-linear activation functions operating on the
channel dimension. The key hyperparameter of a SE block is
the squeeze parameter r (in the first fully connected layer) that
reduces the number of channels by a ratio of r to find the most
important channel representation for the classification task. After
learning the channel weights, they are projected onto the original
feature tensor by element-wise multiplication (see Figure 2, left).
For more information on this topic, readers are directed to
Hu et al. (2018). The SE block is then placed in the double
convolutional path of the modified residual block to learn the

FIGURE 1 | A schematic overview of the proposed multiclass volumetric dMRI artifact classifier.

FIGURE 2 | Left: The building blocks of an SE block. Right: A modified residual block with SE. The double convolutional path of the residual block is equipped with a
SE block that captures attention weights for different channels of the convolutional kernels.
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FIGURE 3 | The architecture of the residual SE-CNN slab-level artifact classifier.

channels weights of the two preceding 3D convolutional kernels
(see Figure 2, right). This block is called modified residual block
with SE and is used sequentially in our classifier’s architecture.

The architecture of the proposed residual SE-CNN artifact
classifier is shown in Figure 3. As depicted in Figure 3, our
residual SE-CNN model is built with five stacked modified
residual blocks with SE. After each block, a 3D Maxpooling layer
is used to reduce the image dimensions. Throughout the network,
the image spatial dimension is reduced while the number of
channels is increased. For each layer, the kernel sizes and the
number of channels are presented in Figure 3. After the 5th
modified residual block with SE, the features vector (consisting
of 4,096 elements) is unrolled and fed through two consecutive
fully connected layers. Finally, a SoftMax classifier with 4 possible
classes (motion, out of FOV, low SNR, and MRI miscellaneous
artifacts) is used to perform the slab-level main artifact type
classification. To regularize the model and minimize overfitting
effects dropout units are placed after the fully connected layers.

Whole-Volume Artifact Prediction
After predicting the slab-level labels via the residual SE-CNN
model, we utilize these labels to predict the main artifact label
associated with the whole 3D dMRI volume via the voting block
(Figure 1). The voting block takes the predicted labels for the N

MECE slabs of a dMRI whole volume as inputs and outputs the
main existing artifact type of that dMRI volume. This is achieved
via maximum consensus on the predicted labels between the slabs
as detailed by Algorithm 1 presented in Table 1.

Fractional Anisotropy-Age Analysis as a
Proof of Concept to Demonstrate
Efficacy of the Artifact Classifier
The 4,226 manually labeled poor-quality dMRI volumes of the
HBN dataset (details of this dataset are presented in the data and

TABLE 1 | Detailed steps of Algorithm 1 for voting on the final labels of
dMRI whole volumes.

Algorithm 1: Generating whole volume artifact labels

Input: N slabs’ predicted labels: L = {l1, l2, . . . , lN}
Output: Whole volume’s predicted artifact label: LVol

Procedure:
- Let integers 0, 1, 2, and 3 denote the four possible values for each label li
- Let nj denote the count for the jth possible label:
• Then for each vector L we have:

N = {n0, n1, n2, n3}

- The whole volume label is predicted as follows:
• LVol = argmax

{
nj

}
for j = 0, 1, 2, and 3
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pre-processing section) were derived from 66 randomly selected
subjects from a larger pool of 100 participants whose age varied
from 5.57 to 21.89 years with mean and median age of 10.95
and 10.05 years, respectively. The HBN dataset was selected
because the age range was appropriate for the desired age-based
analysis, and because many of the MRI scans were known to be
corrupted with artifacts based on our prior experience with this
dataset (Luna et al., 2021). Prior research has demonstrated a
linear relationship between participant age and FA (Rathee et al.,
2016; Richie-Halford et al., 2021). Exploiting this fact, a proof-
of-concept analysis examined the bivariate correlation between
mean whole-brain FA and participant age.

Two tests (referred to as A and B) were conducted in which A:
the age of 100 HBN participants was correlated with their mean
whole-brain FA values and, B: the same analysis was re-run after
removing artifact corrupted dMRI volumes (as labeled by the
SE-CNN artifact classifier). Following similar methods described
elsewhere [e.g., (Pujol et al., 2016; Chow and Chang, 2017)], scans
had their corrupted volumes removed if the number of poor-
quality dMRI volumes were between 1 and 26 (or <20% of the
dMRI volumes). Of note, scans with >26 poor-quality dMRI
volumes were not excluded from this analysis to ensure the same
sample size across the A/B testing. Of the 66 scans, the dMRI data
of 17 were affected by the A/B testing. An increase in the FA-age
correlation will support the efficacy of the classifier.

Data and Pre-processing
Diffusion MRI data is highly heterogeneous due to various
reasons such as scanner differences, diffusion directions (various

gradient directions), demographics (e.g., age, gender, etc.), etc.,
(Ahmad et al., 2021). This heterogeneity makes it almost
impossible to train a CNN on a dataset and use the trained
model (without changing the learned parameter values) as is to
account for the differences that may be found while analyzing
a different study (Ahmad et al., 2021). Hence, to demonstrate
the feasibility of high accuracy automated artifact classification
using the proposed residual SE-CNN architecture, we trained
our model on two different datasets separately, and evaluated
the results. Namely, we used the Adolescent Brain Cognitive
Development (ABCD; Casey et al., 2018) and Healthy Brain
Network (HBN; Alexander et al., 2017) datasets. By training the
model separately for each dataset, the model’s parameters are
learned optimally according to the target distribution. In what
follows we discuss the two datasets as well as the annotation and
pre-processing steps.

Adolescent Brain Cognitive Development Dataset
The goal of the ABCD study is to track human brain development
over time (childhood through adolescence) (Casey et al., 2018).
For this purpose, the study hired more than 10,000 participants
between the age of 9–10 years old. Institutional review boards
at 21 different sites that were involved in this study approved
the study protocols. The ABCD dataset is available at1. In this
work we utilized multi-shell (b = 0, 500, 1000, 2000, 3000 s/mm2)
diffusion scans from 85 participants. All scans are isotropic
[1.7 × 1.7 × 1.7 mm3 with matrix size of (140 × 140 × 81)] and
have identical diffusion directions (96). Due to imaging across

1https://nda.nih.gov/abcd

FIGURE 4 | Examples of the four artifact classes. Artifact patterns are demonstrated with red arrows or rectangles. The motion artifact blurring patterns are
observable across the border between the brain and the background as depicted by the red arrows. To better observe the out of FOV class, two views of the same
volume were depicted [(A): Sagittal and (B): Axial]. The example for the low SNR class, shows a poor signal to noise ratio all over the image. Two different artifact
types (form two different volumes) belonging to the MRI miscellaneous artifact class are shown in the right side of the figure [(A): Herringbone style artifacts are
evident in the region shown by the red rectangle; (B): Susceptibility artifact are show on both sides of the brain by the red arrows].
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21 different sites, the acquisition parameters are slightly different
which aids the model to learn robustness to heterogeny of the
acquisition parameters within the dataset.

Healthy Brain Network Dataset
The Child Mind Institute2 launched the HBN study in 2017
(Alexander et al., 2017) and made the data publicly available
at3. This ongoing study focused on creating a large-scale
dataset of 10,000 5–21 years old New York City area children
and adolescents. This study utilized a community-referred
recruitment strategy. The study design was approved by the
Chesapeake Institutional Review Board4. In this work, we
used multi-shell (b = 0, 1000, 2000 s/mm2) dMRI scans
from 100 distinct subjects. All scans have isotropic resolution
(1.8 × 1.8 × 1.8 mm3), with 72 slices, and identical diffusion
directions (64). Since the in-plane matrix size of HBN dataset
(mostly 104 × 104) is different from that of ABCD (i.e.,
140 × 140) we resized the HBN images in the xy plane using the
Bi-cubic interpolation implemented in the scikit-image Python

2https://childmind.org/
3http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/
4https://www.chesapeakeirb.com/

FIGURE 5 | Class distribution for the two datasets. (A) The ABCD dataset has
1,353 volumes contaminated with motion, 933 volumes being out of FOV, 67
volumes with low SNR, and 141 volumes with MRI miscellaneous artifacts.
(B) The HBN dataset contains 449 volumes with motion, 2,583 volumes being
out of FOV, 258 volumes with low SNR, and 936 volumes with MRI
miscellaneous artifacts.

library (Van der Walt et al., 2014). The resized HBN volumes have
a matrix size of (140× 140× 72).

Manual Annotation and Class-Distribution
All clean (no artifacts) volumes in both ABCD and HBN datasets
were excluded from this work (except for the FA-age analysis).
The remaining poor-quality volumes in both datasets (2,494
volumes in ABCD and 4,226 volumes in HBN) were manually
annotated (at volume-level not slice-level, this reduces the labor
intensity of manual annotation) into four main artifact classes
(indexed as: 0: motion, 1: out of FOV, 2: low SNR, and 3:
MRI miscellaneous artifacts) by an expert with 12 years of
experience in MRI and DTI analysis. The MRI miscellaneous
artifacts class refers to all other types of MRI (and dMRI)
artifacts (such as Eddy currents, ghosting, etc.) that do not
necessarily fall into the other three artifact categories considered
here. One of the reasons for having this broad class is due to
the difficulty of identifying a single major source of artifact in
some dMRI volumes. Hence by having this class, the model
can learn to distinguish between the other three prominent
artifact types and classify a poor-quality volume into a 4th
class if it doesn’t fall into the other three categories. Figure 4
illustrates examples of the artifact classes considered in this
work. The volume-wise manually annotated class distributions
in ABCD and HBN datasets are shown in Figure 5. The labeled
volumes are randomly assigned to train, validation, and test
sets using a split ratio of 6:2:2. The intensity of each volume
is normalized to the range of (0, 1). To capture the visual
patterns of the artifacts that manifest themselves better in the
border between the brain and background (such as motion
and out of FOV), no brain extraction or background removal
was carried out.

Fractional Anisotropy-Age Pre-processing Pipeline
Standard dMRI pre-processing using MRtrix (Tournier et al.,
2019) and FSL (Jenkinson et al., 2012) including denoising,
EDDY (Andersson and Sotiropoulos, 2016), TOPUP (Andersson
et al., 2003), and bias field correction (Zhang et al., 2001) was
carried out for all 100 HBN participants followed by derivation of

TABLE 2 | The model and training’s main hyperparameters.

Hyperparameter Value/Algorithm

Kernel initialization technique Glorot

Convolutional kernel size [1,1,1]
With zero paddings

Maxpooling kernel size [2,2,2]
(Last two layers: [2,2,1])

Squeeze parameter r 8

Activation function RELU
(Unless otherwise mentioned)

Dropout probability 0.5

Batch size 32

Optimizer SGD with Nesterov
Initial learning rate = 0.0001
Momentum = 0.6
Decay rate = 10−6

Loss function Categorical cross-entropy
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whole-brain FA values (test A). The same pipeline was executed
in addition to removing some of the noisy dMRI volumes (B). It
is to be noted that the pre-processing can clean the dMRI data,
but this cleaning is consistent across A/B.

RESULTS

In this section we discuss our implementation and the
results. In particular, we detail the slab extraction procedure,
the architecture’s hyperparameters, as well as the choice of
hyperparameters for training the residual SE-CNN artifact
classifier. Next, we present the slab-level classification results of
the residual SE-CNN classifier on the ABCD and HBN test sets
as well as the whole volume prediction accuracy using the voting
procedure. Finally, we discuss the results of the FA-age analysis
on the HBN dataset.

Extraction of Mutually Exclusive
Collectively Exhaustive Slabs From
Whole Volumes
As mentioned in the Materials and Methods section, we partition
a whole dMRI volume into N MECE 3D slabs. Concatenation
of these slabs along the z dimension forms the original dMRI
volume without any loss of information. We chose a slab size of
(140, 140, 9). Using this slab size, we end up with nine slabs per
each dMRI volume in the ABCD and eight slabs for each dMRI
volume in the HBN dataset. The slabs are then fed to the residual
SE-CNN as inputs.

Model Hyperparameters and Training
History
The architecture of our proposed residual SE-CNN was
presented in Figure 3. This architecture with its set of chosen

FIGURE 6 | The training history for ABCD dataset. The loss (top) and the accuracy (bottom) for train and validation sets. The best performing model is the model
with highest accuracy on the validation set which happens at epoch 1999 shown by the red arrow.
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hyperparameters was used for both ABCD and HBN datasets.
In the implementation phase, for all convolutional layers, RELU
activation function was used (if any) as the choice of non-
linearity unless explicitly noted. The kernels’ parameters were
initialized via the random Glorot initialization technique (Glorot
and Bengio, 2010). All convolutional kernel sizes were set to (1,
1, 1) with zero paddings to keep the spatial dimensions same
before and after employment of the convolutional filters. For

FIGURE 7 | The slab-level confusion matrix for the ABCD test set. The matrix
shows roughly a diagonal behavior with minor misclassifications between
motion and out of FOV classes.

FIGURE 8 | The whole volume-level confusion matrix for the ABCD test set.
After utilizing the voting process, the matrix turns more diagonal as the
misclassification errors get smaller.

the Max-pooling layers, the first three consecutive blocks, used
a pooling size of (2, 2, 2), and the pooling size of (2, 2, 1) was used
for the last two blocks. The squeeze parameter r was set to 8. We
used the RELU activation function for the last two fully connected
layers (with 256 and 128 nodes, respectively). The probability
for the two dropout units was set to 0.5. Finally, we used a
SoftMax activation function for the SoftMax layer with four
artifact classes: 0 (motion), 1 (out of FOV), 2 (low SNR), and 3
(MRI miscellaneous artifacts). The architecture was implemented
in Python, using Keras with TensorFlow as backend. Except for
the number of epochs, the training hyperparameters were also the
same for both datasets. The model was trained for 2000 epochs on
the ABCD dataset while the HBN dataset converged slightly faster
and was trained for 1500 epochs. The batch size was set to 32. The
model was trained, separately for ABCD and HBN, to minimize
the categorical cross-entropy loss function using the manually
labeled data in their respective training sets. For optimizing the
cost function, SGD with Nesterov optimizer (Sutskever et al.,
2013) (initial learning rate = 0.0001, Momentum = 0.6, and decay
rate = 10−6) was used. A summary of the hyperparameters and
their values are presented in Table 2. In what follows we discuss
the results on the two datasets separately.

Evaluation on the Adolescent Brain
Cognitive Development Dataset
The ABCD training history is depicted in Figure 6. As depicted,
the training is stable and the overall accuracy is increasing
over epochs. The criterion used for model selection was the
highest overall classification accuracy on the validation set. The
test set’s slab-level confusion matrix for the best performing
model (at epoch 1999) is presented in Figure 7. The slab-level
classification accuracy of the model on the training, validation,
and test sets were 96.80, 92.00, and 91.86%, respectively. Using
the voting procedure discussed in Algorithm 1, we evaluated
the performance of the model on whole volume major artifact
classification. The model achieved a test set primary artifact
classification average accuracy of 96.61%. The confusion matrix
for whole volume predictions is depicted in Figure 8.

Evaluation on the Healthy Brain Network
Dataset
The model was trained for 1500 epochs (using the exact same
training hyperparameters as in ABCD) on the HBN dataset
and the training history is shown in Figure 9. Similar to the
ABCD, the training process also shows a stable behavior for
the HBN dataset. The highest validation accuracy model (i.e.,
the best model) was achieved at epoch 1462 resulting in slab-
level classification accuracies of 95.00, 94.69, and 95.77% on the
train, validation, and test sets, respectively. Figure 10 shows the
slab-level artifact classification confusion matrix. Although the
accuracy on the motion class is below 90%, through the voting
process this accuracy increases as the misclassification errors
become smaller by voting. To demonstrate this, Figure 11 shows
the volume-level classification confusion matrix. The model
archived an overall test set volume-level accuracy of 97.52% and
the accuracy on the motion class improved significantly.
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FIGURE 9 | The training history for HBN dataset. The loss (top) and the accuracy (bottom) for train and validation sets. The highest slab-level validation accuracy
model happens at epoch 1462 and is shown by the red arrow.

Fractional Anisotropy-Age Analysis
Results
Results of the A/B testing demonstrate an improvement in FA-
age correlation brought about by including the labels from
the residual SE-CNN model. Figures 12A,B depict the linear
regression fit with respective 95% confidence intervals for the
FA-age relationship for the tests A and B, respectively. Test A
demonstrates an R2 of 0.116 whereas test B demonstrates an R2

of 0.142 at the same significance level (p < 0.001).

DISCUSSION

Summary, Strengths, and Shortcomings
In this work, we developed an automatic 4-class major artifact
classifier for 3D diffusion MRI volumes. We trained the exact

same architecture with the same exact choice of hyperparameters
(both model’s and training’s hyperparameters) on two different
datasets, namely ABCD and HBN. Our results demonstrate the
capability of this architecture and the proposed hyperparameter
choices, followed by the voting procedure to accurately classify
four categories of artifacts in 3D dMRI volumes.

As mentioned earlier, diffusion MRI is highly diverse in
nature. In particular, different diffusion directions across various
studies is an important source of heterogeneity. This makes it
highly challenging to propose and train an architecture that
generalizes with an acceptable accuracy to unobserved and
different distributions from the one it has been trained on.
One main reason for this is due to the fact that the 3D
convolutional kernels, when trained on a dataset with a specific
set of diffusion directions, learn their spatial parameters’ optimal
values according to those specific directions. Hence, when the
model faces a new dataset with different diffusion directions, the
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FIGURE 10 | The slab-level confusion matrix for the HBN test set. The matrix is mostly diagonal with some misclassifications in the motion class.

exact same learned values for the convolutional kernels are not
optimal according to the new diffusion directions. Moreover, in
the case of our architecture, the channel attention weights learned

FIGURE 11 | The whole volume-level confusion matrix of the test set of HBN.
Voting process further decreased the misclassifications and turned the matrix
more diagonal.

in the SE blocks are also learned according to the diffusion
directions of the original dataset they were trained on. These
learned attention weights are not the optimal values for a dataset
with different diffusion directions. Hence applying a model that
is trained on a dataset, while fixing all of its learned parameters’
values, to perform artifact classification on a different dataset is
not a suitable solution.

To alleviate this issue, we proposed an architecture with
a specific set of model’s hyperparameters (not learnable
parameters, it is important to note this distinction) as well
as training’s hyperparameters. We provided evidence that this
architecture can be trained on a small subset of data when
facing a new dataset to find the optimal kernel parameters
values according to different heterogeneity sources, especially
the diffusion directions. Previous works on binary (“poor” vs.
“good”) quality control of dMRI volumes such as (Ahmad
et al., 2021), which is a much simpler task than a 4-class
artifact classification, have also proposed to re-train the network
on a small subset of manually annotated data to solve the
generalization issue when facing a new diffusion MRI dataset.

The major challenges with training a neural network model
are twofolds: (1) the labor-intensive task of manual annotation,
and (2) model’s as well as training’s hyperparameters tuning
process. Through our proposed framework we have tried to
address these two challenges to make it more convenient for
potential users to be able to train the model according to their
target diffusion MRI dataset. First, since our framework utilizes
a 3D architecture, manual annotation needs to be done only
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FIGURE 12 | (A) Correlation analysis between whole-brain fractional anisotropy (FA) and age (in years) for test A (i.e., all 100 HBN participants). The solid red line
denotes the regression line, and the two curved red dashed lines denote the 95% confidence intervals. (B) Correlation analysis between whole-brain fractional
anisotropy (FA) and age (in years) for test B (i.e., 100 HBN participants with some noisy (labeled by SE-CNN classifier) dMRI volumes removed). The solid red line
denotes the regression line, and the two curved red dashed lines denote the 95% confidence intervals. The FA-age relationship improved after utilization of the labels
generated by the model to stratify the data.

at the volume level (not slice/voxel level) by assigning a single
label to a whole volume. This significantly reduces the load of
manual annotation task. For example, in our case, it only took
our expert ∼17 min to manually annotate one subject (∼110
volumes) with four classes of artifacts. Second, we found a set
of hyperparameters for the model’s architecture as well as the
training’s hyperparameters, which gave us comparable results in
two different datasets. Based on these results, we believe these sets
of hyperparameters can be used to train the proposed architecture
on a different dataset or at least serve as a starting point to reduce
the search space.

As mentioned in the introduction section, most works on
automated artifact detection or quality control of dMRI scans
have been done on a binary (“poor” vs. “good”) level. To the
best of our knowledge, our proposed framework is the first
automated and accurate method to consider a wider range of
artifact classification (i.e., four classes of motion, out of FOV, low
SNR, and MRI miscellaneous artifacts). Collecting dMRI scans
is labor intensive and a costly process, especially when dealing
with infants. Hence, we believe by teasing out the type of artifact
in poor-quality volumes, one might be able to correct for the
detected artifact (if possible) and restore the volumes to reduce
the cost of acquiring dMRI scans.

The proposed model improved in the FA-age correlation
when its predicted labels were incorporated to stratify the
dataset. This improvement supports the utility of the model in
a standard dMRI pre-processing application. The increase in
FA-age correlation after removal of corrupted dMRI volumes
underscores the applicability of this artifact classifier.

While we demonstrated the capability of our method to
provide a convenient mean for accurate automatic classification
of four categories of artifacts in poor-quality diffusion MRI
volumes, we are aware of its shortcomings. The current method
only addresses four categories of artifacts. In the future we plan
to further improve upon the framework to be able to consider a

wider range of artifacts. In other words, we plan to further tease
out the types of artifacts in the MRI miscellaneous category (the
4th class). Additionally, the current framework only identifies
a single major artifact type for each volume. In the future, we
plan to adapt our model to output multiple potential artifact
types (if any) in cases where there might be several different
artifact categories present in the volume under investigation.
Moreover, the proposed method currently predicts artifact types
on whole volume-level. While in most cases, the entire poor-
quality volume is affected by the detected artifact and hence
discarded (or corrected, if possible), in some cases where the size
of the dataset is small, users are interested in only discarding (or
correcting, if possible) the few slices that were affected by the
detected artifact. Hence, in the future we plan to find ways and
adapt our framework to further improve the resolution of our
artifact classification from volume-level to slice-level.

CONCLUSION

Artifact type identification is an exhaustive but essential step in
pre-processing of dMRI data to discard or correct (if possible) the
contaminated volumes. Without artifact correction or removal of
the contaminated volumes, one cannot guarantee the accuracy
of any subsequent analysis and draw reliable conclusions. In
this paper, we proposed a deep learning architecture, namely
a 3D residual SE-CNN, followed by a voting procedure to
automatically classify poor-quality volumes into 4 categories
of artifacts (i.e., motion, out of FOV, low SNR, and MRI
miscellaneous artifacts). Our results demonstrate the capability
of the proposed framework in accurate multiclass artifact
classification. Moreover, to take into account, the heterogeneity of
the dMRI data, we found a set of hyperparameters for the model
as well as training hyperparameters that were able to provide
accurate classifications on two different datasets (i.e., 96.61 %
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on ABCD’s test set and 97.52% on HBN’s). The provided sets of
hyperparameters can be used to guide the potential users with
training the proposed architecture according to their own dataset
to compensate for the heterogeneity. This potentially enables the
framework to be integrated in dMRI processing pipelines for fast
automatic artifact type identification.
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