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ABSTRACT
Objectives: To perform a meta-analysis to evaluate
the diagnostic efficacy of diffusion-weighted imaging
(DWI) in differentiating malignant from benign thyroid
nodules.
Design: A meta-analysis.
Data sources and study selection: Medical and
scientific literature databases were searched for original
articles published up to August 2015. Studies were
selected if they (1) included diagnostic DWI for
differentiating malignant from benign thyroid lesions,
(2) included patients who later underwent biopsy and
(3) presented sufficient data to enable the construction
of contingency tables.
Data synthesis: For each study, the true-positive,
false-positive, true-negative and false-negative values
were extracted or derived, and 2×2 contingency tables
were constructed. Methodological quality was assessed
using the Quality Assessment of Diagnostic Accuracy
Studies (QUADAS) instrument. The heterogeneity test,
threshold effect test, subgroup analyses and
publication bias analyses were performed.
Results: From the 113 identified search results, 15
studies, representing a total of 765 lesions, were
included in the meta-analysis. We detected
heterogeneity between studies but found no evidence
of publication bias. The methodological quality was
moderate. The pooled weighted sensitivity was 0.90
(95% CI 0.85 to 0.93); the specificity was 0.95 (95%
CI 0.88 to 0.98); the positive likelihood ratio was 16.49
(95% CI 7.37 to 36.86); the negative likelihood ratio
was 0.11 (95% CI 0.08 to 0.16); and the diagnostic
OR was 150.73 (95% CI 64.96 to 349.75). The area
under the receiver operator characteristic curve was
0.95 (95% CI 0.93 to 0.97).
Conclusions: Quantitative DWI may be a non-
invasive, non-radiative and accurate method of
distinguishing malignant from benign thyroid nodules.
Nevertheless, large-scale trials are necessary to assess
its clinical value and to establish standards regarding b
values and cut-off values for DWI-based diagnosis.

INTRODUCTION
Thyroid nodules, the most common path-
ology involving the thyroid gland, consist of

discrete lesions within the thyroid gland that
are often palpable and typically sonographi-
cally distinct from the surrounding thyroid
parenchyma.1 Less than 5% of palpable
thyroid nodules are malignant; however,
these nodules must be distinguished from
benign thyroid nodules to correctly and effi-
caciously treat patients suffering from this
pathology.2

Because clinical findings do not provide a
definitive diagnosis, several useful, non-
invasive imaging tests (such as ultrasonog-
raphy (US) and radionuclide scintigraphy)
can be used to determine which nodules
should be histopathologically evaluated to
rule out the possibility of thyroid malignancy.
US has been used as a first step in the assess-
ment of these nodules, but no single US cri-
terion has been demonstrated to accurately
differentiate benign nodules from malignant
nodules. Furthermore, the hazards associated
with radiation exposure during radionuclide
scintigraphy are unavoidable, and some func-
tioning nodules (hot nodules) found on scin-
tigraphy are malignant.
Diffusion-weighted imaging (DWI) is a

type of functional MRI that is based on the
diffusion of water molecules through the
tissue of interest (ie, tumour tissue). DWI

Strengths and limitations of this study

▪ The Preferred Reporting Items for Systematic
reviews and Meta-Analyses statement was used
to improve the reporting of our research.

▪ Hierarchical summary receiver operating charac-
teristic (HSROC) curves were constructed to
assess sensitivity (SEN) and specificity (SPE).

▪ We presented a new point: using a high b value
may provide higher diagnostic accuracy.

▪ Studies included in our meta-analysis lacked a
description of apparent diffusion coefficient
reproducibility and the sample size of included
studies was relatively small.
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can provide crucial information regarding the molecular
profile of the underlying pathology and pathophysio-
logical mechanisms.3 Specifically, the diffusion of water
molecules in malignant tumours is restricted, which
results in a decreased apparent diffusion coefficient
(ADC); this difference in the ADC facilitates the differ-
entiation of benign tumours from malignant tumours.4

Many studies1 5–18 have shown that DWI has the poten-
tial to differentiate benign from malignant thyroid
nodules. However, the sample sizes of these studies were
relatively small, and the findings have been inconclusive.
The aim of this study was to systematically review all of
the studies related to the ability of DWI to differentiate
benign from malignant thyroid nodules. Moreover,
based on the extracted data, an analysis of the technical
aspects of DWI and its additional value for tumour char-
acterisation is presented.

METHODS
As this meta-analysis was based on previously published
studies, ethical approval was not necessary.

Literature search
The PubMed, EMBASE, Cochrane Library and China
National Knowledge Infrastructure (CNKI) databases
were searched by two independent observers. The terms
‘Diffusion-Weighted Imaging (MeSH)’ or ‘DWI’ were
used for the diagnostic test, and the terms ‘thyroid
nodules (MeSH)’, ‘thyroid lesions’, or ‘thyroid’ were
used for the clinical domain (Search Strategy S1). We
limited our search to publications that met the following
criteria: published in the English or Chinese language;
the presence of the search term within the title or
abstract of the article; and a publication date no later
than May 2014. Review articles, letters, comments, case
reports and unpublished articles were excluded. The ref-
erence lists of all retrieved articles were manually
cross-checked.

Selection of articles
Two authors initially screened the titles and abstracts of
the search results and retrieved the full texts of all
potentially relevant reports. Next, the authors independ-
ently reviewed all relevant reports according to the pre-
defined inclusion criteria. Disagreements were resolved
by consensus or arbitration by a third author, who
assessed all of the involved items. The majority opinion
was used to determine whether a particular study met
the selection criteria.
Studies were considered as eligible if the following cri-

teria were met: (1) the study included a diagnostic DWI
for differentiating malignant from benign thyroid
lesions; (2) the controls underwent histopathological
analysis (surgery/biopsy) and/or follow-up analysis and
(3) the data were sufficient to accurately determine the
true-positive or false-negative results.

Studies were excluded if (1) there were fewer than 20
patients; (2) multiple reports were published for the
same study population (in this case, the most detailed or
recent publication was chosen) or (3) the study
included patients who had previously undergone treat-
ment for thyroid lesions.

Quality assessment and data extraction
The aforementioned three authors extracted data from
the selected reports. The methodological quality of the
included studies was independently assessed by two
observers using the Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) tool, which was specific-
ally developed to systematically review the diagnostic
accuracy of studies.19–21 Additionally, relevant data,
including author, the study nation, the description of
the study population, the study design characteristics,
the magnetic field strength, the pulse sequences and
descriptions of the interpretations of the diagnostic
tests, were extracted from each study. To resolve dis-
agreements between the reviewers, a third reviewer
assessed the disputed material, and the majority opinion
was used in the analysis.
For each study, the estimated true-positive (TP), false-

positive (FP), true-negative (TN) and false-negative (FN)
values, sensitivity (SEN), specificity (SPE), positive likeli-
hood ratio (PLR) and negative likelihood ratio (NLR)
for the detection of lesions were extracted, and 2×2 con-
tingency tables were constructed.

Meta-analysis
Exploring study heterogeneity is important in under-
standing the possible factors that influence accuracy esti-
mates and in evaluating the appropriateness of statistical
pooling of accuracy estimates from various studies.
Visual inspection of the forest plots, standard χ2-tests
and the inconsistency index (I2) were used to estimate
the heterogeneity of the individual studies, using Stata
software (Stata Corporation, College Station, Texas,
USA). p<0.1 or I2 >50% suggested notable heterogen-
eity.22 If notable heterogeneities were detected, the rele-
vant data were pooled using a random-effects coefficient
binary regression model; otherwise, a fixed-effects coeffi-
cient binary regression model was used.23

In the diagnostic test, one primary cause of heterogen-
eity is the threshold effect, which arises when different
cut-off values, or thresholds, are used to define a positive
(or negative) test result between different studies. When
a threshold effect exists, there is a negative correlation
between SEN and SPE.24–26 The Spearman correlation
coefficient between the logit of SEN and the logit of (1
−SPE) was computed to assess the threshold effect,
using Meta-Disc V.1.4; a strongly positive correlation
(p<0.05) suggests a threshold effect. We constructed
hierarchical summary receiver operating characteristic
(HSROC) curves to assess SEN and SPE.27 The areas
under the ROC curves (AUCs) were used to analyse the

2 Chen L, et al. BMJ Open 2016;6:e008413. doi:10.1136/bmjopen-2015-008413

Open Access



diagnostic precision of DWI in differentiating thyroid
nodules.
In addition to the threshold effect on systematic

review results, several other factors can result in varia-
tions in accuracy estimates between different test accur-
acy studies. In this study, meta-regression was used to
identify such heterogeneity by comparing the accuracy
measurement to study-level covariates (study nation,
study design, MRI field strength, reference standard,
enrolment, disease spectrum, patient spectrum or b
value). Then, subgroup analyses were performed.
Stratification was performed according to the following
parameters: (1) the b value; (2) studies with a prospect-
ive or retrospective design; (3) magnetic field strength;
(4) reference standard and (5) enrolment.
Using Stata software, the presence of publication bias

was assessed by producing a Deeks funnel plot and per-
forming an asymmetry test. Publication bias28 29 was con-
sidered to be present if there was a non-zero slope
coefficient (p<0.05), which suggested that only small
studies reporting high accuracy had been published;
alternatively, p>0.1 suggested that there was no evidence
of notable publication bias.
The Preferred Reporting Items for Systematic Reviews

and Meta-Analyses statement30 was used to improve the
reporting of our research (figure 1 and Checklist S2).

RESULTS
The database search initially yielded 113 potential litera-
ture citations; 4 additional results were identified by
searching the grey literature (figure 1). After reviewing
the titles and abstracts, 48 of these studies were excluded
because they were duplicate publications or not relevant
to this analysis. After reading the full texts, 19 of the

remaining 34 articles were excluded because (1) the
patients had previously undergone treatment, (2) the
article lacked sufficient information to complete a 2×2
contingency table or (3) the study was not published in
English or Chinese. Following the final screening
process, 15 published studies were considered to have
met all of our inclusion and exclusion criteria. The data
abstracted from these individual studies are summarised
in table 1. The quality was moderate in 15 studies,
according to the QUADAS-2 items; the results for the
distribution of the study design are shown in figure 2.
Significant heterogeneity was found based on the

pooled analysis (I2=54.5%, p=0.055). Therefore, SEN,
SPE, PLR and NLR were pooled using a random-effects
coefficient binary regression model. The pooled
weighted values were as follows: SEN 0.90 (95% CI 0.85
to 0.93); SPE 0.95 (95% CI 0.88 to 0.98); PLR 16.49
(95% CI 7.37 to 36.86); NLR 0.11 (95% CI 0.08 to 0.16);
and diagnostic OR (DOR) 150.73 (95% CI 64.96 to
349.75). The AUC was 0.95 (95% CI 0.93 to 0.97). The
forest plots and HSROC curves for the 15 studies are
shown in figures 3–5.
A Spearman rank correlation was performed as a

further assessment of the threshold effect; the
Spearman correlation coefficient was determined to be
0.081 (p=0.775). This result indicated that no notable
threshold effect was detected in the accuracy estimates
among individual studies.
The results of meta-regression indicated that study

nation, study design, MRI field strength, reference stand-
ard, enrolment, disease spectrum, patient spectrum and
b values were not strongly correlated with accuracy. The
estimated SEN and SPE for each subgroup are presented
in table 2.
The results of the Deeks funnel plot asymmetry test

(p=0.786) showed no evidence of notable publication
bias (figure 6).

DISCUSSION
Thyroid nodules are highly prevalent and clinically diffi-
cult to manage. Compared with benign thyroid nodules,
malignant thyroid nodules have larger nuclei, denser
stroma and higher cell counts, all of which lead to
increased cellularity and reduced extracellular space.31

Many studies11–14 18 32 33 and a systematic review34

demonstrated that the ADCs of malignant thyroid
nodules are significantly smaller than those of benign
nodules. A meta-analysis35 that included seven studies
regarding the potential of DWI to differentiate between
malignant and benign thyroid nodules was published in
2014, and suggested that DWI can be used as a diagnos-
tic tool to distinguish benign from malignant thyroid
nodules by measuring the ADC. In our study, eight add-
itional references were included that were not present in
the aforementioned meta-analysis. Unlike the previous
meta-analysis, our meta-analysis examined the technical
aspects of DWI and its additional value in tumourFigure 1 Flow chart illustrating the selection of studies.
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Table 1 Characteristics of the included studies

Study Year Nation

SEN

(%)

SPE

(%)

Field

(T) Enrolment Design Reference Blinding

b

value

Razek et al18 2008 Egypt 98 92 1.5 Consecutive pro Histopathologic ND 500

Li et al17 2009 China 79 86 1.5 ND retro Histopathologic ND 150

86 77 1.5 ND retro Histopathologic ND 300

93 58 1.5 ND retro Histopathologic ND 500

Schueller-Weidekamm

et al15
2009 Austria 85 100 1.0 ND pro Both Unblinded 800

Bozgeyik et al1 2009 Turkey 89 100 1.5 Consecutive pro FNAB Blinded 100

100 80 1.5 Consecutive pro FNAB Blinded 200

90 100 1.5 Consecutive pro FNAB Blinded 300

Ren et al16 2010 China 90 90 1.5 Consecutive retro Histopathologic ND 100

83 90 1.5 Consecutive retro Histopathologic ND 200

93 83 1.5 Consecutive retro Histopathologic ND 300

93 97 1.5 Consecutive retro Histopathologic ND 400

Yan et al14 2011 China 87 100 1.5 ND retro Histopathologic Blinded 500

Aydin et al13 2012 Turkey 92 75 1.5 Consecutive retro Histopathologic ND 400

El-Hariri et al12 2012 Egypt 94 95 1.5 ND pro Both ND 500

Mutlu et al11 2012 Turkey 80 97 1.5 ND pro Both ND 1000

Nakahira et al10 2012 Japan 94 83 1.5 ND retro Histopathologic Blinded 1000

Yue et al9 2012 China 86 79 1.5 ND retro Histopathologic Blinded 300

Ilica et al8 2013 Turkey 90 100 3 ND pro Both ND 1000

Shi et al7 2013 China 92 88 1.5 ND retro Histopathologic ND 500

Wu et al6 2013 China 77 100 1.5 ND retro Histopathologic Blinded 300

68 64 1.5 ND retro Histopathologic Blinded 500

54 71 1.5 ND retro Histopathologic Blinded 800

Elshafey et al5 2013 Egypt 96 92 1.5 ND pro Both Blinded 1000

Histopathologic and FNAB.
FNAB, Fine-needle aspiration biopsy; ND, not mentioned; pro, prospective; retro, retrospective; SEN, sensitivity; SPE, specificity.

Figure 2 Methodological quality

of the 15 included studies. (A)

Methodological quality graph:

each methodological quality item

is presented as the percentages

across all included studies. (B)

Methodological quality summary.
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characterisation. Our results revealed for the first time
that using a high b value may provide better results. The
results of our meta-analysis showed that the pooled
weighted SEN and SPE of the 15 included studies were
0.90 (95% CI 0.85 to 0.93) and 0.95 (95% CI 0.88 to
0.98), respectively. These results demonstrated that DWI
has a high SEN and SPE for differentiating malignant
from benign thyroid nodules.
The DOR represents the ratio of the odds of correctly

diagnosing the diseased patients (true-positives) relative
to the odds of obtaining a positive result among the
non-diseased patients (false-positives). The DOR is
closely linked to existing indicators and is particularly
applicable to meta-analyses of diagnostic test

performance. Because the DOR is derived from logistic
models, it is possible to include additional variables to
correct for heterogeneity.36 In our meta-analysis, we
found that the estimated DOR for DWI was 150.73 (95%
CI 64.96 to 349.75). This result indicated that DWI is an
accurate modality for detecting malignant thyroid
lesions.
We observed that the Spearman correlation coefficient

was 0.081 (p=0.775); this result indicated that no signifi-
cant threshold effect was detected. Additionally, our
results indicated that none of the factors potentially
impacting the meta-regression analysis results contribu-
ted to the observed heterogeneity. To determine
whether there were other sources of heterogeneity, a

Figure 3 Forest plots of sensitivity (SEN) and specificity (SPE) with corresponding 95% CIs for diffusion-weighted image in the

detection of thyroid nodules.

Figure 4 Forest plots of the

diagnostic OR (DOR) with

corresponding 95% CIs for

diffusion-weighted image in the

detection of thyroid nodules.
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subgroup analysis must be performed to detect the
factors that impact heterogeneity.
The b value is a very important factor affecting image

quality and ADC measurements. When low b values are
applied, the ADCs tend to be higher due to the contri-
bution of perfusion. Applying high maximum b values
may be preferable when ADC measurements are per-
formed to differentiate malignant from benign tissues
exclusively based on their water diffusion characteristics.
However, the signal-to-noise ratio decreases as the b
value increases, thus limiting the maximum b value. Six
of the studies included in this review used three or more
pairs of b values to compute the ADC. Three of these

six studies demonstrated that lower b values had a
higher SEN and accuracy for differentiating benign
from malignant nodules, whereas the remaining studies
reported the opposite results. In our subgroup analysis,
the results demonstrated that the pooled DORs of the
300, 500 and 1000 s/m2 subgroups were 47.04 (95% CI
11.55 to 190.54), 53.13 (95% CI 17.95 to 219.34) and
115.21 (95% CI 28.42 to 298.76), respectively. The diag-
nostic accuracy may be greater in the higher b value sub-
groups than in the lower b value subgroups. However,
there were no notable differences in the DOR or the
AUC between these subgroups.
Our study contains several inherent limitations that

should be considered when interpreting our results.
First, most of the studies included in our meta-analysis
lacked a description of ADC reproducibility and were
performed in Asian countries, and no studies were from
Europe or North America. Some studies37 38 have noted
that selective reporting is higher among Chinese studies
than elsewhere, across several fields. This issue may rep-
resent one source of heterogeneity. Second, the sample
size of these studies was relatively small, which is a par-
ticular problem in diagnostic studies.39 This limitation
may result in an overestimation of the diagnostic accur-
acy, particularly in studies including non-representative
samples of patients and invalid reference standards.40

Third, our meta-analysis was based only on published
studies, which are prone to report positive or significant
results; the studies in which results are not significant or
negative are often rejected or not even submitted.
Although it is suggested that the quality of the data
reported in articles accepted for publication in peer-
reviewed journals is superior to the quality of unpub-
lished data,41 including only published studies may
ultimately lead to reporting bias.

Figure 5 Hierarchical summary receiver operating

characteristic (HSROC) curves from the bivariate model of

diffusion-weighted image in the detection of thyroid nodules.

Table 2 Sensitivity and specificity estimates for each subgroup

Subgroup

Number of

studies Mean SEN (%) Mean SPE (%) DOR AUC (%)

b value (s/m2)

300 4 90 (80 to 96) 88 (83 to 93) 47 (11 to –190) 91 (88 to 95)

500 6 92 (86 to 96) 82 (77 to 86) 53 (12 to 239) 93 (90 to 96)

1000 4 88 (81 to 93) 93 (84 to 98) 115 (30 to 446) 96 (93 to 99)

Magnetic field strength (T)

1.0 1 85 100 NA NA

1.5 13 89 (85 to 93) 88 (85 to 91) 64 (26 to 156) 95 (91 to 99)

3.0 1 90 100 NA NA

Study design

Retrospective 8 91 (86 to 94) 83 (78 to 88) 33 (13 to 85) 93 (89 to 97)

Prospective 7 87 (81 to 92) 98 (94 to 99) 153 (76 to 446) 97 (95 to 99)

Blinding

Yes 9 90 (85 to 93) 88 (83 to 92) 69 (32 to 147) 95 (93 to 97)

Unknown or no 6 88 (79 to 94) 90 (85 to 94) 66 (12 to 365) 94 (89 to 98)

The numbers in parentheses are the 95% CIs.
AUC, area under the curve; DOR, diagnostic OR; NA, not applicable; SEN, sensitivity; SPE, specificity.
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CONCLUSIONS
In conclusion, DWI has a high SEN and SPE, and may
be a reliable, non-invasive and non-radiative imaging
modality for the detection of thyroid nodules. Using a
high b value may provide higher diagnostic accuracy.
Nevertheless, large-scale trials are necessary to assess the
clinical value of DWI, and to establish standards regard-
ing b values and cut-off values for DWI-based diagnosis.
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